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Introduction

Labour is the physiologic process by which a fetus is 
expelled from the uterus. It requires the presence of  
regular painful uterine contractions, which increase in 
frequency, intensity and duration leading to progressive 
cervical effacement and dilatation. In normal labour, there 
appears to be a time‑dependent relationship between these 
elements: The biochemical connective tissue changes in the 
cervix usually precede uterine contractions that, in turn, 
lead to cervical dilatation. All of  these events culminate 
in spontaneous rupture of  the fetal membranes.[1] 
The mean duration of  human singleton pregnancy is 
280 days (40 weeks) from the first day of  the last normal 
menstrual period. ‘‘Term’’ is defined as the period from 

37.0 to 42.0 weeks of  gestation. Preterm birth (defined 
as delivery before 37  weeks’ gestation) and post‑term 
pregnancy  (defined as pregnancy continuing beyond 
42 weeks) is both associated with a significant increase in 
perinatal morbidity and mortality.

Studies in animals have underlined the importance 
of  fetus in control of  timing of  labor. Activated fetal 
hypothalamic‑pituitary‑adrenal (HPA) axis leads to a surge 
in adrenal cortisol production. Fetal cortisol stimulates 
activity of  placental 17 α hydroxylase/17, 20 lyase (CYP 17) 
enzyme, which catalyzes the conversion of  pregnenolone 
to estradiol.[1] The altered ratio of  progesterone: estrogen 
in favor of  later, up regulates the synthesis of  uterine 
prostaglandins (PG) and labour.[2‑7] Human placenta lacks 
CYP 17 and as such, the mechanism of  labour is different.

Parturition in most animals results from changes in 
circulating hormone levels in the maternal and fetal 
circulations at the end of  pregnancy (endocrine events), 
whereas labour in humans results from a complex dynamic 
biochemical dialog that exists between the fetoplacental 
unit and the mother (paracrine and autocrine events).
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A B S T R A C T

The myometrium must remain relatively quiescent during pregnancy to accommodate growth and development of the feto‑placental 
unit, and then must transform into a highly coordinated, strongly contracting organ at the time of labour for successful expulsion of the 
new born. The control of timing of labour is complex involving interactions between mother, fetus and the placenta. The timely onset 
of labour and delivery is an important determinant of perinatal outcome. Both preterm birth (delivery before 37 week of gestation) and 
post term pregnancy (pregnancy continuing beyond 42 weeks) are both associated with a significant increase in perinatal morbidity and 
mortality. There are multiple paracrine/autocrine events, fetal hormonal changes and overlapping maternal/fetal control mechanisms 
for the triggering of parturition in women. Our current article reviews the mechanisms for uterine distension and reduced contractions 
during pregnancy and the parturition cascade responsible for the timely and spontaneous onset of labour at term. It also discusses 
the mechanisms of preterm labour and post term pregnancy and the clinical implications thereof.
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Steps in Parturition

In pregnancy there is a dynamic balance between the forces 
that cause uterine quiescence and the forces that produce 
coordinated uterine contractility. There is also a balance 
between the forces that keep the cervix closed to prevent 
uterine emptying and the forces that soften the cervix and 
allow it to dilate. For delivery to occur, both balances must 
be tipped in favor of  active uterine emptying.[6,7] Many of  
the elements in this parturition complex elaborate feed 
forward characteristics. Labour at term is physiologically 
regarded as a release from the inhibitory effects of  
pregnancy on myometrium.[8] Human labour at term 
is a multifactorial physiologic event involving integrity 
of  complementary endocrine, paracrine and autocrine 
factors leading to gradual changes within maternal uterine 
tissues (myometrium, deciduas and uterine cervix).

For parturition to occur, two changes must take place in 
a woman’s reproductive tract. First, the uterus must be 
converted from a quiescent structure with dyssynchronous 
contractions to an active co‑ordinately contracting organ 
with complex interlaced muscular components resulting 
in regular phasic uterine contractions. This requires the 
formation of  gap junctions between myometrial cells 
to allow for transmission of  the contractile signal. The 
fetus may coordinate this switch in myometrial activity 
through its influence on placental steroid hormone 
production, through the mechanical distention of  the 
uterus and through the secretion of  neurohypophyseal 
hormones and other stimulators of  prostaglandin 
synthesis. The second change is that the cervical 
connective tissue and smooth muscle must be capable 
of  dilatation to allow the passage of  the fetus from 
the uterus. These changes are accompanied by shift 
from progesterone to estrogen dominance, increased 
responsiveness to oxytocin by means of  up regulation 
of  myometrial oxytocin receptor, increased PG synthesis 
in uterus, increased myometrial gap junction formation, 
decreased nitric oxide (NO) activity and increased influx 
of  calcium into myocytes[9,10] with ATP dependent 
binding of  myosin to actin,[11] increased endothelin 
leading to augmented uterine blood flow and myometrial 
activity[12] [Figure 1]. The final common pathway toward 
labour appears to be the activation of  the fetal HPA 
axis and is probably common to all viviparous species. 
Complementary changes in the cervix involving a 
decrease in progesterone dominance and the actions 
of  prostaglandins and relaxin, via connective tissue 
alterations, collagenolysis, and a decrease in collagen 
stabilization through metalloproteinase inhibitors, lead 
to cervical softening and dilation.[13]

Excitability in Uterine Smooth Muscles 
and Coordination of Myometrial 
Contractility; Role of Hormones

Transformation of  uterine myometrium from a state of  
quiescence to coordinated muscle contraction, involves 
changes in the density and activity of  ion channels and pumps, 
and of  gap junctions, which facilitate the spread of  activity 
throughout the muscle cells in the uterine wall. These changes 
are achieved by local and circulating hormones in the lead up 
to labour, a process that has been termed ‘activation’.[14] The 
contractility of  myometrium is heralded by origin of  action 
potentials (AP) with subsequent spread among muscle fibres. 
The APs consist of  both simple spikes and complex forms. 
Simple spikes in human myometrium are attributed to L‑type 
calcium channels, transient sodium channels and rapidly 
activating and inactivating calcium channels.[15] Complex APs 
consist of  simple spikes followed by a sustained plateau of  
depolarization. This form of  AP is most conspicuous in 
inner layer and upper segment (fundus) of  uterus and occurs 
throughout 3rd trimester and during labour.[16] Duration of  
plateau dictates the duration of  contraction.[15,17,18] Rapid 
propagation of  AP throughout the uterus is mediated by 
action potential calcium wave hypothesis.[19] Key elements 
of  this hypothesis include the following
1.	 APs propagate through the uterus and initiate 

intercellular calcium waves. This step synchronizes the 
initiation of  the contraction through the thickness of  
the wall and among all regions of  the uterus.

2.	 Following initiation by an AP, an intercellular calcium 
wave propagates through each bundle and individual 
myocytes contract as the wave passes. Calcium waves 
do not cross boundaries between bundles. Either 

Figure 1: Endocrinological control of pregnancy and parturition in women. 
The balance between the effects of estrogen and progesterone is critical to 
maintenance of pregnancy and the onset of labor. Other important hormonal 
factors modulate this balance as shown in the scheme
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functional gap junctions or paracrine signalling 
mechanisms are required for intercellular calcium wave 
propagation.

3.	 Electrical activity is not required for the direct recruitment 
of  myocytes for contraction; however, gap junction 
function is essential for the action potential to propagate 
through each bundle in the uterus. The proportion of  
myocytes that contract as a direct result of  experiencing 
the initiating action potential could be very small (<1%).

4.	 Each myocyte remains contracted as long as the [Ca2+]i 
remains elevated, the duration of  which is determined 
by the calcium metabolism of  each individual cell.

Prostaglandin F2α and oxytocin increase the opening of  
L‑type calcium channels in response to depolarization. 
Estrogen is involved in the change in the form of  AP to 
complex forms. Oxytocin enhances the plateau component 
of  complex APs leading to gradual increase in duration of  
contractions as gestation ends[19] [Figure 2].

Myometrial Activation During Labour

Trigger for onset of  labour comprises a fetal endocrine 
cascade involving the fetal H‑P‑A axis which, in most species, 
leads to an increase in estrogen and decrease in progesterone 
in maternal plasma.[20] This endocrine cascade ultimately leads 
to both the ‘activation’ (contraction‑associated protein (CAP) 
expression) and the ‘stimulation’ of  the myometrium 
through the increased production of  uterotonic agonists 
such as oxytocin and stimulatory prostaglandins [Figure 3]. 
Activation is associated with increased expression of  the gap 
junction protein, connexin‑43(Cx‑43) as well as the oxytocin 
receptor (OTR) and prostaglandin F receptor. Expression 
of  these CAPs is regulated positively by estrogen and 
negatively by progesterone, and CAP expression is increased 
in preterm labour but does not increase when labour is 
blocked by progesterone.[21] Expression of  other CAPs 
such as the sodium channel and calcium channel is also 
increased close to term. Other putative CAPs are expressed 
in the uterus, including enzymes that regulate uterotonin 
levels  (e.g., oxytocin endopeptidase and cyclooxygenase), 
proteins which interact with actin/myosin  (e.g., MLCK, 
calmodulin), other uterotonin receptors  (e.g., endothelin, 
thromboxane A2, α‑adrenergic and potassium channels, 
however, there is no strong evidence to link their expression 
in the myometrium with the onset of  term or preterm labor. 
Estrogen increases transcription of  the Cx‑43 and OTR 
genes. Estrogen also significantly increases the levels of  
mRNA encoding the AP‑1 protein, c‑fos in the myometrium 
that precedes the increased expression of  Cx‑43. The onset 
of  term and preterm labour in the rat is associated with 
increased expression of  c‑fos and the fos family members 
fra‑1 and fra‑2, and Cx‑43 and expression of  these genes 
is attenuated when labour is blocked by progesterone. 
progesterone, a critical pregnancy‑maintaining hormone, can 

Figure 2: Parturition cascade leading to labour induction at term. The 
induction of labour at term is reegulated by paracrine and autocrine factors 
acting in coordination promote uterine contraction. COX-2: Cyclooxygenase 
2, OT: Oxytocin, PGDH: Prostaglandin dehydrogenase, PGEM: 13, 
14-dihydro-15-keto-PGE2, PGFM: 13, 14-dihydro-15-keto-PGF2&#945;, 
PLA2: Phospholipase A, SROM: Spontaneous rupture of the fetal 
membranes, 11&#946;-HSD: 11&#946;-hydroxysteroid dehydrogenase, 
16-OH DHEAS: 16-hydroxy-dehydroepiandrostendione sulfate

Figure 3: Dual pathway by which the fetal genome controls the onset of 
labour through endocrine and mechanical signals. HPA-Hypothalamic 
Pituitary Adrenal, P-progesterone, E-estrogen
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block stretch‑induced gene expression in the myometrium 
and maintain myometrial growth post‑term.[22]

Now let us review the role of  different hormones in 
parturition, in detail

Corticotropin Releasing Hormone

Corticotropin releasing hormone (CRH) is a peptide 
hormone released by the hypothalamus but is also 
expressed by placental and chorionic trophoblasts and 
amnionic and decidual cells.[23‑25] In fact from second 
trimester  (16thweek onwards), the placenta is the major 
source of  CRH secretion.[23] CRH stimulates pituitary 
ACTH secretion and adrenal cortisol production. In the 
mother, cortisol inhibits hypothalamic CRH and pituitary 
ACTH release, creating a negative feedback loop. In 
contrast, cortisol stimulates CRH release by the decidual, 
trophoblastic, and fetal membranes.[25‑28] CRH, in turn, 
further drives maternal and fetal HPA activation, thereby 
establishing a potent positive feed‑forward loop. In 
normal pregnancy, the increased production of  CRH from 
decidual, trophoblastic, and fetal membranes leads to an 
increase in circulating cortisol beginning in midgestation.[29] 
The effects of  CRH are enhanced by a fall in maternal 
plasma CRH‑binding protein near term.[30] Activation 
of  the fetal HPA axis results in enhanced fetal pituitary 
adrenocorticotropin hormone (ACTH) secretion that leads, 
in turn, to the release of  abundant C19 estrogen precursor 
dehydroepiandrostenedionesulfate  (DHEAS) from the 
intermediate (fetal) zone of  the fetal adrenal [Figure 2]. This 
is because the human placenta is an incomplete steroidogenic 
organ and estrogen synthesis by the human placenta has 
an obligate need for C19 steroid precursor [Figure 2].[31] 
DHEAS is converted in the fetal liver to 16‑hydroxy DHEAS 
and then travels to the placenta where it is metabolized into 
estradiol (E2), estrone (E1), and estriol (E3). The action 
of  estrogen is likely paracrine‑autocrine.[32,33] In addition 
to DHEAS, the fetal adrenal glands also produce copious 
amounts of  cortisol. Cortisol acts to prepares fetal organ 
systems  (by fetal lung maturation) for extrauterine life 
and to promote expression of  a number of  placental 
genes, including corticotropin releasing hormone (CRH), 
oxytocin, and prostaglandins  (especially prostaglandin 
E2 [PGE2]). CRH also enhances prostaglandin production 
by amnionic, chorionic, and decidual cells.[25] Prostaglandins, 
in turn, stimulate CRH release from the decidual and fetal 
membranes.[26] The rise in prostaglandins ultimately results 
in parturition.[34] CRH also can directly affect myometrial 
contractility.[35] Other actions of  CRH include dilation 
of  the uterine vessels and stimulation of  smooth muscle 
contractions, dilation of  the fetal placental vessels via NO 
synthetase activation; and stimulation of  prostaglandins F2α 

and E2 production by fetal membranes and decidua.[36‑38] 
These are all actions conducive to the initiation of  labour. 
CRH is also stimulated by inflammatory cytokines.[39]

Estrogen

Pregnancy is a hyperestrogenic state. The placenta is 
the primary source of  estrogen and concentration of  
estrogen increases with progressing gestational age. The 
human placenta lacks CYP 17, needed for conversion 
from progesterone to estradiol. The fetal zone of  
the adrenal gland produces DHEAS, which may be 
hydroxylated to 16‑OH‑DHEAS in the fetal liver. The 
16‑OH‑DHEAS may be aromatized by the placenta to 
produce estriol, the major circulating estrogen of  human 
pregnancy  [Figure  2]. In contrast to the nonpregnant 
state, during late human pregnancy the ovary is a minor 
source of  circulating estrogens. Estradiol and estrone are 
synthesized primarily (90%) by aromatization of  maternal C 
19 androgens (testosterone and androstenedione), whereas 
estriol is derived exclusively from the fetal C19 estrogen 
precursor  (DHEAS). Estriol concentrations in serum 
and saliva increase during the last four to six weeks of  
pregnancy.

Estrogens promote a series of  myometrial changes 
including increased production of  PG E2 and PG F2α 
with augmented expression of  PG receptors,[40] increased 
receptor expression of  oxytocin, α adrenergic agonist 
which modulate membrane calcium channels,[41] increased 
synthesis of  connexin and gap junction formation in 
myometrium,[42] up regulation of  enzyme responsible 
for muscle contraction like myosin light chain kinase, 
calmodulin.[43‑46] All these changes allow coordinated uterine 
contractions.

Cervical ripening may be associated with the 
down‑regulation of  the estrogen receptor. The 
control of  the softening of  the cervix, which involves 
rearrangement and realignment of  collagen, elastin, and 
glycosaminoglycans such as decorin, is not well studied 
and is poorly understood.[13]

Progesterone

Corpus luteum is the source of  progesterone till seven 
weeks of  pregnancy. Placenta takes over the function at 
approximately seven to nine weeks of  gestation. In pregnancy 
progesterone is in dynamic balance with estrogen in the 
control of  uterine activity. Animals demonstrate systemic 
progesterone withdrawal as an essential component in 
initiation of  labour. Humans though do not show fall 
in circulating progesterone, there is growing number of  
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evidence that,[47‑51] spontaneous onset of  labour is preceded 
by a physiologic withdrawal of  progesterone activity at the 
level of  uterine receptors.

Progesterone in  vitro decreases myometrial contractility 
and inhibits myometrial gap junction formation.[52] 
Progesterone activity stimulates the uterine NO synthetase, 
which is a major factor in uterine quiescence. Progesterone 
down‑regulates prostaglandin production, as well as the 
development of  calcium channels and oxytocin receptors 
both involved in myometrial contraction.[52] Calcium is 
necessary for the activation of  smooth muscle contraction. 
In the cervix, progesterone increases tissue inhibitor of  
matrix metalloproteinase 1 (TIMP‑1).[53] TIMP‑1 inhibits 
collagenolysis. Thus, it is clear that progesterone is a 
major factor in uterine quiescence and cervical integrity. 
The factors that result in parturition must overcome the 
progesterone effect that predominates during the early 
pregnancy period of  uterine quiescence. The activity of  17, 20 
hydroxysteroid dehydrogenase in fetal membranes increases 
around the time of  parturition, leading to an increase in 
net 17β‑estradiol and 20‑dihydroprogesterone.[54] This is a 
factor in altering the estrogen/progesterone balance. There 
may be decreased progesterone receptor levels at term 
resulting in a diminished progesterone effect.

Cortisol and progesterone appear to have antagonistic 
actions within the fetoplacental unit. For example, cortisol 
increases prostaglandin production by the placental and fetal 
membranes by up‑regulating cyclooxygenase‑2  (amnion 
and chorion) and down‑regulating 15‑hydroxyprostaglandin 
dehydrogenase (15‑OH‑PGDH) (chorionic trophoblast), 
thereby promoting cervical ripening and uterine contractions. 
Progesterone has the opposite effect.[55] In addition, cortisol 
has been shown to compete with the inhibitory action of  
progesterone in the regulation of  placental CRH gene 
expression in primary cultures of  human placenta.[56] It is 
likely, therefore, that the cortisol‑dominant environment 
of  the fetoplacental unit just before the onset of  labour 
may act through a series of  autocrine‑paracrine pathways to 
overcome the efforts of  progesterone to maintain uterine 
quiescence and prevent myometrial contractions.

Prostaglandins

Prostaglandins are formed from arachidonic acid that is 
converted to prostaglandin H2 by the enzyme prostaglandin 
H synthetase (PGHS). PGHS‑2 is an inducible form of  the 
enzyme. Cytokines increase the concentration of  this enzyme 
80‑fold. Prostaglandins are degraded by 15‑OH‑PGDH. 
Cyclo‑oxygenase‑2  (COX‑2) is cytokine inducible, is 
increased by NO. This is another mechanism by which 
prostaglandin production increases during inflammation.

There is good evidence that prostaglandins are involved in 
the final pathway of  uterine contractility and parturition. 
Prostacyclins, inhibitory prostaglandins present throughout 
early pregnancy, are also responsible for uterine quiescence 
during pregnancy. Although prostaglandins may not be 
obligatory for labour in knockout mice, they are of  major 
importance in women.[57,58] Prostaglandins are produced 
in the placenta and fetal membranes. Prostaglandin levels 
are increased before and during labour in the uterus 
and membranes.[59,60] PGF2α is produced primarily by 
the maternal decidua and acts on the myometrium to 
up‑regulate oxytocin receptors and gap junctions, thereby 
promoting uterine contractions. PGE2 is primarily of  
fetoplacental origin and is likely more important in 
promoting cervical ripening  (maturation) associated 
with collagen degradation and dilation of  cervical small 
blood vessels[61] and spontaneous rupture of  the fetal 
membranes [Figure 2]. Many factors affect the production 
of  prostaglandins. Levels are decreased by progesterone 
and increased by estrogens.[62‑65] Several interleukins result 
in an increase in prostaglandin production.[66]

Other Factors

Circulating oxytocin does not increase in labour until 
after full cervical dilatation.[67] Oxytocin is less effective 
in causing uterine contractions in mid pregnancy than at 
term. However, the concentration of  uterine oxytocin 
receptors increases toward the end of  pregnancy.[68] 
This results in increased efficiency of  oxytocin action 
as pregnancy progresses. Estrogen increases oxytocin 
receptor expression and progesterone suppresses such 
estrogen‑induced increase in cultured human myometrial 
cells.[69] Oxytocin induces uterine contractions in two 
ways. Oxytocin stimulates the release of  PGE2 and 
prostaglandin F2α in fetal membranes by activation 
of  phospholipase C. The prostaglandins stimulate 
uterine contractility.[70] Oxytocin can also directly induce 
myometrial contractions through phospholipase C (PLC), 
which in turn activates calcium channels and the release 
of  calcium from intracellular stores.[71,72] Oxytocin is 
locally produced in the uterus.[73] The role of  this local 
endogenous oxytocin is unknown.

Relaxin is a peptide hormone that is a member of  the insulin 
family. Relaxin consists of  A and B peptide chains linked 
together by two disulfide bonds. In women, circulating 
relaxin is a product of  the corpus luteum of  pregnancy. 
Circulating relaxin is secreted in a pattern similar to that of  
human chorionic gonadotropin. That circulating relaxin is 
not critical for pregnancy maintenance However; relaxin is 
also a product of  the placenta and decidua. Relaxin from 
these sources, which may act locally, is not secreted into 
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the peripheral circulation.[74] Relaxin receptors are present 
on the human cervix.[75] Some of  the effects of  relaxin 
include stimulation of  procollagenase and prostromelysin, 
as well as a decrease in TIMP‑1.[76] Relaxin is also capable of  
inhibiting contractions of  non‑pregnant human myometrial 
strips.[77] Paradoxically, relaxin does not inhibit contractions 
of  pregnant human uterine tissue.[78] This may be because 
of  the competitive effects of  progesterone.

Preterm Labor

Preterm (premature) birth is defined as delivery between 
20‑37 weeks, it complicates 7%‑10% of  all deliveries.[79] The 
causes include intrauterine growth restriction, preeclampsia, 
placenta previa, premature rupture of  membrane, 
intraamniotic infection and spontaneous. It may reflect 
a normal break down of  the normal mechanisms 
responsible for maintaining uterine quiescence throughout 
gestation.[80] Several mechanisms are proposed
1.	 Deficiency of  choriodecidual 15‑OH‑PGDH enzyme, 

responsible for degradation of  prostaglandins, leads 
to increased concentrations of  PGE2 which reaches 
myometrium and initiates contractions.[81]

2.	 Maternal physical and psychological stress leads to 
premature activation of  the maternal HPA axis and 
premature release of  CRH with resultant programming 
of  placental clock.[82,83] Chronic hypertension, severe 
pregnancy induced hypertension, uteroplacental 
insufficiency is variably associated with stress induced 
HPA axis activation[84,85] culminating in preterm labour 
[Figure 4].

3.	 Genital infections affecting decidua/amniochorion 
lead to maternal or fetal inflammatory response.[86] 
The activated macrophages and granulocytes release 
inflammatory mediators like cytokines, (IL‑1, IL‑6 and 
TNFα), matrix metallo proteinases (MMP) (collagenase, 
gelatinase, stromelysin) and products of  lipooxygenase 
and cyclooxygenase pathway.[87‑90] Cytokines stimulate PG 
production and induces MMPs, which further weaken 
the fetal membranes and ripen the cervix by disrupting 
the rigid collagen matrix. Cutokine and eicosanoids 
accelerate each other’s production. TNF‑α additionally 
promotes apoptosis. Infection per se leads to reduction in 
15‑OH‑PDGH enzyme levels aiding in preterm labour.[91] 
All these mediators ultimately result in premature rupture 
of  membranes and overwhelmed normal parturition 
cascade leading to preterm labour [Figure 5].

4.	 Decidual hemorrhage generates thrombin, which is a 
powerful uterotonic agent.[92] It stimulates myometrial 
contractions by activated phosphatidyl inositol 
signaling pathways[93] and also increases expression of  
plasminogen activator and MMPs[94] [Figure 6].

Figure 6: Hemorrhage and preterm labor. ECM: Extracellular matrix, 
MMP: Matrix Metallo Proteinase, PAI-1: Plasminogen activator inhibitor  1, 
tPA: Tissue-type plasminogen activator, uPA: Urokinase plasminogen activator

Figure 5: Inflammation of decidua-amniochorion and preterm labor. FasL: 
Fas ligand, CRH: Cortico Tropic Hormone, PG: Prostaglandin, MMP: Matrix 
Metallo Proteinase

Figure 4: Maternal and fetal HPA axis and stress induced preterm birth. 
COX-2: Cyclooxygenase 2, MLCK: Myosin light chain kinase, OTR: Oxytocin 
receptors, PG: Prostaglandin, PGDH: Prostaglandin dehydrogenase
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5.	 Excessive uterine stretching caused by multiple 
birth pregnancy/polyhydramnios generates a 
signal that transmits through cellular cytoskeleton 
and activates cellular protein kinase.[95] The acute 
distension also upregulates certain genes including an 
interferon‑stimulated gene encoding a 54‑kD protein, 
the gene for Huntington‑interacting protein 2  (an 
ubiquitin‑conjugating enzyme), and a novel as yet 
unidentified transcript.[96]

6.	 Higher mid pregnancy CRH levels and a 4  week 
advancement in the higher levels of  salivary or urinary 
estriol result in preterm labour.[97,98] Salivary estrogen 
has been suggested as a screen for the potential of  
preterm labour risk.[99]

7.	 Premature birth is associated with increased circulating 
relaxin levels.[100] Women who have superovulation 
with human menopausal gonadotrophins for either 
ovulation induction or in  vitro fertilization have a 
significantly higher risk of  premature birth. These 
women, who have multiple corpora lutea, have 
significant levels of  hyperrelaxinemia. Women 
destined to have premature delivery have higher levels 
of  relaxin at 30  weeks gestation than women who 
deliver at term.[100]

Post Term Pregnancy

Post‑term (prolonged) pregnancy is defined as a pregnancy 
that has extended to or beyond 42 weeks (294 days) from 
the first day of  the last normal menstrual period or 
14 days beyond the best obstetric estimate of  the date 
of  delivery. The most common cause of  prolonged 
pregnancy is an error in gestational age dating. Risk 
factors include nulliparity and a previous post‑term 
pregnancy, male fetus.[101,102] Rarer causes include placental 
sulfatase deficiency, fetal adrenal insufficiency, or fetal 
anencephaly. There is a definite underlying biologic 
or genetic basis, which is not yet clearly defined.[101] 
Both the fetus and the mother are at risk.[103,104] The 
complications include increased perinatal deaths,[105] 
infantile death,[106] neonatal encephalitis.[107] Recent 
consensus opinions recommend the routine induction of  
labour at an earlier gestation age, specifically 41 weeks’ 
gestation.[106,108]

Conclusion

Labour is a complex physiologic process involving fetal, 
placental, and maternal signals. A  variety of  endocrine 
systems play a role in the maintenance of  uterine quiescence 
and the onset of  parturition, with its attendant increase in 
uterine contractility and cervical ripening. There are many 
factors that can tip the balance in favor of  delivery early, 

late, or on time. These factors, such as prostaglandins or 
inflammatory cytokines, may directly affect the contractile 
mechanisms. Other factors, such as oxytocin, CRH, or 
relaxin, may indirectly alter the actions of  complementary 
systems. The timely onset of  labour and birth is an important 
determinant of  perinatal outcome. Both preterm labour 
and delivery and post‑term pregnancy are associated with 
increased perinatal morbidity and mortality. It is only with 
increased understanding of  the processes of  parturition 
that obstetric care providers will be able to further improve 
the safety of  the birth process culminating in successful 
pregnancy outcomes.
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