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Abstract A neural code adapted to the statistical structure of sensory cues may optimize

perception. We investigated whether interaural time difference (ITD) statistics inherent in natural

acoustic scenes are parameters determining spatial discriminability. The natural ITD rate of change

across azimuth (ITDrc) and ITD variability over time (ITDv) were combined in a Fisher information

statistic to assess the amount of azimuthal information conveyed by this sensory cue. We

hypothesized that natural ITD statistics underlie the neural code for ITD and thus influence spatial

perception. To test this hypothesis, sounds with invariant statistics were presented to measure

human spatial discriminability and spatial novelty detection. Human auditory spatial perception

showed correlation with natural ITD statistics, supporting our hypothesis. Further analysis showed

that these results are consistent with classic models of ITD coding and can explain the ITD tuning

distribution observed in the mammalian brainstem.

Introduction
Humans and other species localize sound sources in the horizontal plane using sub-millisecond inter-

aural time difference (ITD) between signals arriving at the two ears (Middlebrooks and Green,

1991). ITD is detected by auditory brainstem neurons within narrow frequency bands

(Goldberg and Brown, 1969; Yin and Chan, 1990; Carr and Konishi, 1990; McAlpine et al.,

2001).

Classical psychophysical studies demonstrated that humans detect sound location better in the

front than in the periphery (Mills, 1958; Yost, 1974; Makous and Middlebrooks, 1990). Enhanced

performance at frontal locations could be efficient for hunting and foraging, as proposed for vision

(Collins and Opthalmological Society of the United Kingdom, 1922; Cartmill, 1974; Changizi and

Shimojo, 2008). Physiological evidence indicates that coding of binaural spatial cues could support

finer discriminability in the front (van Bergeijk, 1962; Feddersen et al., 1957; McAlpine et al.,

2001; Grothe et al., 2010). Better sound discrimination and localization in frontal locations can also

be predicted from the geometry of the head and the placing of the ears, causing higher ITD rate of

change as a function of azimuth in the front (Woodworth, 1938; Feddersen et al., 1957;

Gelfand, 2016).

For azimuth detection based on ITD, sound diffraction by structures surrounding the ear can

affect the ITD-azimuth relationship (Aaronson and Hartmann, 2014; Roth et al., 1980). In addition,

because the brain computes ITD in narrow frequency bands, the interaction of nearby frequencies

within a given cochlear filter may also be a source of ITD variability over time (ITDv). Sensory variabil-

ity is known to be fundamental in change detection. It has been shown that stimulus discrimination

depends not only on the mean difference between stimuli but also on the variability of the sensory

evidence (Green and Swets, 1966).
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This study tested the hypothesis that the natural ITD statistics are encoded by the brain, deter-

mining ITD perception. Using human HRTF databases and models of cochlear filters, we estimated

ITD rate of change and ITDv, and tested whether these statistics combined in a Fisher information

metric predicted spatial discrimination thresholds and deviance detection better than ITD rate of

change alone. We presented sounds through insert earphones, removing ITD statistics, to determine

whether sound location discriminability and spatial deviance detection were predicted by natural

ITD statistics independently from the actual stimulus properties. We found that natural ITD statistics

were correlated with auditory spatial discriminability and spatial deviance detection. Analysis of clas-

sic models of ITD coding (Stern and Colburn, 1978; Harper and McAlpine, 2004) support the idea

that ITD statistics influence the density distribution of ITD tuning, which may be genetically encoded

and conserved across human subjects. Thus, our results are consistent with the hypothesis that

human brain evolution has incorporated natural statistics of spatial cues to the neural code underly-

ing auditory spatial perception.

Results
ITD statistics, specifically, the derivative (rate of change) of the mean ITD over azimuth (ITDrc) and

the standard deviation of ITD over time (ITDv) were estimated from human HRTFs and models of

cochlear filters. We first tested whether these ITD statistics predict human spatial discrimination

thresholds measured under free-field sound stimulation from previously published datasets

(Mills, 1958) and from data collected using tests specifically designed for measuring ITD discrimina-

tion through sounds delivered by earphones. Next, we used EEG and mismatch negativity signals

(MMN) to address the question of whether these natural ITD statistics influence ITD deviance detec-

tion. Finally, we evaluated the compatibility of ITD statistics with the classic neural models for coding

ITD.

ITD statistics estimated from human HRTFs and properties of cochlear
filters
To test the hypothesis that natural ITD statistics influence the neural code underlying sound localiza-

tion, we estimated ITDrc and ITDv in sounds reaching the ears of human subjects. The method for

eLife digest When a person hears a sound, how do they work out where it is coming from? A

sound coming from your right will reach your right ear a few fractions of a millisecond earlier than

your left. The brain uses this difference, known as the interaural time difference or ITD, to locate the

sound.

But humans are also much better at localizing sounds that come from sources in front of them

than from sources by their sides. This may be due in part to differences in the number of neurons

available to detect sounds from these different locations. It may also reflect differences in the rates

at which those neurons fire in response to sounds. But these factors alone cannot explain why

humans are so much better at localizing sounds in front of them.

Pavão et al. showed that the brain has evolved the ability to detect natural patterns that exist in

sounds as a result of their location, and to use those patterns to optimize the spatial perception of

sounds. Pavão et al. showed that the way in which the head and inner ear filter incoming sounds has

two consequences for how we perceive them. Firstly, the change in ITD for sounds coming from

different sources in front of a person is greater than for sounds coming from their sides. And

secondly, the ITD for sounds that originate in front of a person varies more over time than the ITD

for sounds coming from the periphery. By playing sounds to healthy volunteers while removing

these differences, Pavão et al. found that natural ITD statistics were correlated with a person’s ability

to tell where a sound was coming from.

By revealing the features the brain uses to determine the location of sounds, the work of Pavão

et al. could ultimately lead to the development of more effective hearing aids. The results also

provide clues to how other senses, including vision, may have evolved to respond optimally to the

environment.
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estimating the ITD mean and standard deviation (Figure 1A), which was applied across locations

and frequencies, included: (1) Impulse responses obtained from publicly available human HRTF data-

bases (Listen HRTF database; 51 subjects) were convolved with acoustic signals, which results in

modulation of ongoing phase and gain that depends on both frequency and sound direction; (2)

Sound signals were filtered using models of human cochlear filters (Glasberg and Moore, 1990) (3)

Instantaneous phase and interaural phase difference (IPD) was extracted from the resulting signals;

(4) The mean and standard deviation of instantaneous IPD was computed and converted to ITD to

estimate ITD mean and ITD standard deviation over time, at each azimuth and frequency, across

subjects (Figure 1B); and (5) ITDrc was calculated as the derivative of mean ITD over azimuth and

ITDv was calculated as the standard deviation of ITD over time.

The ITDrc and ITDv statistics were combined to compute the Fisher information in ITD at each

location and frequency. Estimation theory has shown that the square root of Fisher information

relates to discrimination threholds (Abbott and Dayan, 1999; Brown et al., 2018). Thus, the square

root of ITD Fisher information (HFIITD) was the ITD statistic used in this study (see Methods section

for details), which closely approximates the ITDrc/ITDv ratio, computed at each location and fre-

quency (Figure 1C-left). HFIITD displayed low variability across individuals (Figure 1C-right), indicat-

ing it constitutes a statistic that is largely invariant across human subjects.

ITDrc is determined by the shape and filtering properties of the head, including diffractions

(Woodworth, 1938; Aaronson and Hartmann, 2014; Roth et al., 1980). These features should

affect ITDv as well; however, ITDv also depends on phase and gain modulations induced by interac-

tion between neighboring frequencies, within the critical band of single cochlear filters (Figure 1—

figure supplement 1A). Consistently, the correlation between ITDrc and ITDv was not strong (rSpear-

man = �0.41). These ITD statistics were consistent across broadband signals with different frequency

spectra (Figure 1—figure supplement 1B). Additionally, we tested the consistency of ITD statistics

across environments, comparing statistics estimated from HRTFs recorded in anechoic and reverber-

ant rooms (database available in http://medi.uni-oldenburg.de/hrir; Kayser et al., 2009). Echoes sig-

nificantly disrupted ITD statistics; however, the precedence effect is expected to segregate leading

signals from their lagging echoes (Wallach et al., 1949; Brown et al., 2015). Accordingly, ITD statis-

tics estimated in anechoic and reverberant environments were similar when signal transients were

considered (Figure 1—figure supplement 1C). Finally, the estimated ITDv was equivalent to the var-

iability over trials (obtained from one instantaneous sample of 200 different broadband signals;

rSpearman = 0.99), indicating that ITDv exhibits ergodicity. Invariance across contexts is a premise

motivating the question of whether ITD statistics are represented in the brain, influencing auditory

spatial perception.

Different auditory cue statistics have been examined in previous studies, as well as their predic-

tive accuracy of human auditory spatial discriminability. Higher ITDrc in the midline supports the bet-

ter spatial discrimination observed in frontal locations (Mills, 1972; Gelfand, 2016; Brown et al.,

2018). Consistent with previous reports (Woodworth, 1938; Feddersen et al., 1957; Gel-

fand, 2016), we found that ITDrc was higher in the midline for most frequencies. Additionally, the

highest ITDrc occurred at locations distant from the midline in some frequencies, which was also

observable in previous studies (Kuhn, 1977; Benichoux et al., 2016).

Across-trial ITD variability induced by concurrent sounds was reported by Cazettes et al., 2014

as a metric relevant to the owl’s auditory spatial perception. When this method was applied to

human HRTFs and human cochlear filters, for the range of frequencies of interest in human ITD

detection, we found ITD variability values weakly correlated to those obtained with the method used

in the present study. However, a stronger correlation between both metrics was observed for the

range of frequencies most relevant to owls’ sound localization (above 2000 Hz), suggesting that the

effect of concurrent sounds on ITDv may not represent a significant source of ITDv in humans.

Młynarski and Jost, 2014 also estimated auditory cue statistics across environments. However, they

did so without reporting the location of sound sources, which restricted the use of their estimated

statistics for testing the prediction of sound discrimination across locations.

In the current study, we hypothesized that the neural representation of ITD is influenced by natu-

ral ITD statistics so that ITD perception is predicted by natural HFIITD (Figure 1D). To test this

hypothesis, we investigated the HFIITD prediction accuracy of ITD discrimination performance and
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Figure 1. ITD statistics of natural stimulus. (A) Estimation of ITD mean and standard deviation over time in

broadband signals filtered by human head-related impulse responses (HRIRs) and modeled cochlear filters. (1)

Example HRIRs from sound emitted from speakers located at �15 degrees and recorded with microphones

positioned in each ear (obtained from a publicly available LISTEN dataset). Traces show example impulse

responses in the right (red) and left (blue). (2) A broadband signal was convolved with HRIRs from right (red) and

left (blue) ears for each direction. (3) Convolved signals were then filtered using parameters analogous to human

cochlear filters. Example of signal passed through a cochlear filter with a frequency band centered on 1000 Hz for

the left (blue) and right (red) ears. (4) The instantaneous phase of the resulting signals on the left and right ears

was computed. Top, instantaneous phase over time for the left (blue) and right (red) signals shown in 3. Bottom,

instantaneous phase differences (IPD, in radians) and instantaneous time differences (ITD, in microseconds)

between left and right signals. (5) Histogram of instantaneous IPD and ITD, illustrating their variability over time for

the example signal shown in 3. (B) ITD mean (left) and standard deviation (right) over time, as a function of

frequency and azimuth. Plots represent median values across subjects (N = 51), fit by spline curves, and color

coded for each frequency. The derivative of the curves on the left was used to calculate ITD rate of change (ITDrc)

across azimuth. The ITD variability (ITDv) was computed as the standard deviation of the ITD distribution over

time. (C) Left, information of ITD cues as a function of frequency and azimuth, quantified by the median square

root of ITD Fisher information (HFIITD) across subjects (azimuth was converted to ITD to obtain the estimate of the

ITD statistics as a function of frequency and ITD, matching the stimulus metrics and model parameters used in our

study). HFIITD statistic closely approximates ITDrc/ITDv. Right, the interquartile range of HFIITD across subjects

shows low inter-individual variability. Black lines on each panel indicate the p-limit across frequency, beyond which

ITD cues become ambiguous for narrowband sounds. (D) This study tests the hypothesis that over evolutionary

and/or ontogenetic time scales the human brain became adapted to natural ITD statistics, such that stimuli that

are more informative about sound source location would be distinctively encoded.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Basis of ITD statistics and consistency across conditions.
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novelty detection. Finally, we evaluated the consistency between ITD statistics and frameworks pro-

posed in two classical neural models for ITD coding.

Prediction of spatial discrimination thresholds from ITD statistics
A central hypothesis tested by this study was that a neural code adapted to natural ITD statistics

influences ITD-change discriminability (dITD) thresholds even under conditions where ongoing stimu-

lus statistics are constant across frequency and locations (Figure 2A).

Free-field dITD thresholds as a function of ITD and frequency as reported by a classic study of

human sound localization (Mills, 1958) were used to test the hypothesis. In addition, a test measur-

ing dITD thresholds through dichotic (earphone) sound delivery was conducted. Neither of these

datasets delivered stimuli carrying natural ITD statistics: they both used tones, which abolishes ITDv,

and disables ITDrc estimation by either fixing the head of subjects (in free-field) or by decoupling

head movement and ITD input (in dichotic). Thus, the effect of natural ITD statistics influencing the

neural representation of ITD could be assessed in both approaches.

We first tested whether natural ITD statistics predicted the free-field dITD thresholds estimated

from the previously reported dataset (Mills, 1958). Figure 2B shows the free-field dITD thresholds

reported by Mills, 1958 as a function of ITDrc and HFIITD estimated in our study. HFIITD displayed

higher correlation with dITD thresholds than ITDrc. These results are consistent with the hypothesis

that selectivity for HFIITD statistic (which combines ITDv and ITDrc) may underlie the evolution of the

neural code supporting discrimination thresholds.

Additionally in the current study, to test ITD-change discrimination thresholds and evaluate pre-

diction accuracy of ITD statistics we presented sounds through earphones instead of free-field stimu-

lation. This avoids potential effects of ongoing ITD statistics and the influence of other sound

localization cues. The 24 normal-hearing adults that participated in the testing were instructed to

detect a change in ITD within a pair of tonal sounds (Methods), which allowed us to obtain dichotic

dITD thresholds across reference ITD and frequency, for the range of interest (Figure 2C-left). The

dichotic dITD thresholds averaged across subjects correlated with free-field thresholds reported by

Mills, 1958 (rSpearman = 0.64). However, dITD thresholds were higher in the present study compared

to Mills, 1958; other studies also using dichotic stimuli reported higher dITD thresholds (e.g.

Brughera et al., 2013) than Mills, 1958. This may be due to approach differences, such as presenta-

tion of sounds through earphones vs. free-field stimulation and testing untrained subjects in the

present study rather than highly trained individuals as was done in Mills, 1958. Using free-field stim-

ulation leaves open the possibility that listeners rely on cues other than ITD to detect sound location

in azimuth, which may have lowered the thresholds as found in Mills, 1958. Additionally, training in

ITD detection may have an effect on threshold levels compared to normal untrained individuals.

We computed the average dichotic dITD thresholds across participants and quantified the Spear-

man correlation between them and ITD statistics estimated in our study. When all frequency condi-

tions were analyzed, average dichotic dITD thresholds showed moderate correlation with ITDrc

(Figure 2C-middle) and HFIITD (Figure 2C-right). This was particularly influenced by low correlation

for dITD thresholds for 250 Hz tones. Higher thresholds for this frequency have previously been

reported (Brughera et al., 2013). Exclusion of this frequency substantially improved HFIITD’s predic-

tion accuracy (Figure 2C-right), suggesting that dITD thresholds at 250 Hz may be determined by

additional parameters not addressed by the ITD statistics investigated in our study. Comparing the

prediction accuracy of these statistics using linear mixed-effects models (Materials and methods)

resulted in the same outcome as the Spearman correlation analysis. This provides further support for

the hypothesis that both ITDrc and ITDv statistics, combined in HFIITD, influence the ITD neural code

underlying discrimination thresholds.

Neural code underlying deviance detection is adapted to ITD statistics
A further investigation to support the idea that ITD statistics are correlated with auditory spatial per-

ception was conducted by testing the ability to detect spatial deviants from a standard sound loca-

tion in space. To test this, we measured the mismatch negativity (MMN) component of event-related

brain potentials (ERPs) (Näätänen et al., 1978) for sounds coming from standard (repeated) and

deviant (sporadic) spatial locations. MMNs are observable when a sequence of standard stimuli is

unexpectedly interrupted by a low probability stimulus, without the listener making an overt
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response (Näätänen et al., 1978; Pakarinen et al., 2007; Sussman, 2007; Sussman et al., 2014;

Figure 3A-left). Thus, the MMN signals provide a direct brain measure of discriminability that does

not require training subjects to perform behavioral tasks. The MMN signal is displayed by subtract-

ing the mean ERP response elicited by the standard stimuli from the mean ERP elicited by deviant

stimuli. The amplitude of the MMN indexes discriminability between standard and deviant sounds.

The larger the tone features separation between standard and deviant stimuli, or the larger the per-

ceived difference between standard and deviant, the more negative the MMN amplitude

(Deouell et al., 2006; Sams et al., 1985; Pakarinen et al., 2007; Tiitinen et al., 1994). Thus, MMN

was used to test whether natural ITD statistics influence the magnitude of ITD deviance detection

(Figure 3B).
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Figure 2. ITD statistics predict human ITD-change detection thresholds. (A) Hypothesis (top) and null hypothesis

(bottom) of an adapted neural code underlying human ITD discrimination. (B) Classic study by Mills, 1958

estimated the minimum azimuth change detection across frequency and locations for sounds in free-field

averaged across subjects; these measures were converted to threshold dITD as a function of reference ITD (left).

Scatter plots on the middle and right show free-field dITD thresholds as a function of ITDrc and HFIITD. (C) Test

conducted in the present study to specifically assess dITD thresholds for tonal sounds delivered through

headphones (dichotic stimulation). Left, mean dichotic dITD thresholds over subjects as a function of reference ITD

across frequency. Middle, dichotic dITD thresholds as a function of ITDrc. Right, dichotic dITD thresholds as a

function of HFIITD. Bars indicate 50% confidence intervals of mean dITD thresholds. Black lines represent power

functions fit to all the analyzed frequencies (solid) and excluding 250 Hz frequency from the analysis (dotted).
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Figure 3. ITD statistics predict discriminability of spatial deviants indexed by MMN responses. (A) Left, passive

oddball sequence protocol, in which subjects listened to frequent ‘standard’ stimuli embedded with rare

spatial ‘deviants’. In each condition, two tones were presented with the same frequency and distinct ITDs. Right,

MMN response within the 100–200 ms latency range of the deviant-minus-standard trace (black line) is shown for

the midline frontal electrode (FZ) along with standard (green) and deviant (purple) event related potential traces,

averaged across conditions and subjects. Inset on the bottom-right shows the topography of the MMN response.

(B) Hypothesis (top) and null hypothesis (bottom) of an adapted neural code underlying MMN responses to spatial

deviants tested in this study. Under a neural code relying on natural ITD statistics, the correlation between

amplitude of MMN responses and difference between deviant and standard ITD is expected to show a synergistic

effect of ITD statistics. (C) Left, coefficients of correlations between MMN amplitude and different predictor

equations adjusting ITD difference between standard and deviant by ITD statistics, as a function of the relative

weight of the standard stimulus (ws), relative to the weight of the deviant (wd). Middle, best prediction of MMN

amplitude in the model relying on HFIITD, weighting standard more than deviant (80%:20%). Right panel, changes

in MMN peak amplitude as a function of the difference between ITD of deviant and standard show stronger

negative linear slopes for conditions where the weighted average of HFIITD was higher, compared to conditions

with lower HFIITD.
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A set of ITD and frequency conditions was selected and presented to 33 normal-hearing adults in

order to sample critical ranges drawn from the HRTF analysis (Materials and methods). Frequencies

of 400, 550, 600 and 650 Hz were chosen because ITDrc and ITDv changed as a function of azimuth

in a manner that could maximize the difference in prediction accuracy across ITD statistics. Frequen-

cies lower than 400 Hz were not tested because of observed distortion in the sound stimulation sys-

tem, while frequencies above 650 Hz were excluded to avoid phase ambiguity confounds. MMN

signals were measured separately across participants and conditions. The averaged peak amplitude

of MMN was used to quantify the subject’s capacity to discriminate between ITDs of the standard

and deviant. The characteristic fronto-central scalp topography of the MMN responses were

observed (Giard et al., 1990; Figure 3A-right).

We then examined the prediction accuracy of MMN amplitude of model equations relying on the

absolute difference between the ITDs of standard and deviant stimuli adjusted by the weighted sum

of ITD statistics of standard and deviant stimuli. The equation we used to test the prediction of

MMN amplitude by HFIITD was:

MMNpeak ~ jITDd � ITDsj ws

ffiffiffiffi

F
p

IITD sþ 1�wsð Þ
ffiffiffiffi

F
p

IITD d

� �

;

where ITDs and ITDd are the ITD of standard and deviant, ws and 1-ws are the relative weights of the

standard and deviant, and HFIITDs and HFIITDd are the estimated HFIITD values corresponding to the

frequency and ITD of the standard and deviant stimuli.

Figure 3C—left shows the Spearman correlation between each of the predictors’ output and the

amplitude of MMN peaks (averaged across subjects) as a function of the weight of the standard. The

highest correlation was found when multiplying the ITD difference between standard and deviant by

HFIITD, and assigning 80% weight to the standard and 20% to the deviant (Figure 3C-middle). Pre-

diction accuracy of model equations using linear mixed-effect models (Materials and methods)

yielded the same results as the Spearman correlation analysis. Figure 3C-right shows that conditions

with higher weighted HFIITD display larger changes in MMN amplitude as a function of difference

between ITD of deviant and standard than conditions with low weighted HFIITD. The good predic-

tion of MMN by the model relying on HFIITD further supports the idea that combined ITDrc and

ITDv are critical in auditory spatial perception.

Classic neural models of ITD discriminability are consistent with a
representation of ITD statistics
Two classic models of neural coding underlying discriminability of azimuth positions in acoustic

space based on ITD (Stern and Colburn, 1978; Harper and McAlpine, 2004) were used to examine

the potential link between the brain representation of sensory statistics and perceptual functions.

The model by Stern and Colburn, 1978 postulated an increased density of pairs of fibers underlying

tuning to ITDs near the midline, under a labeled-line code framework, as the basis for increased ITD

discriminability in the front (Figure 4A). This density distribution showed high correlation with HFIITD
(Figure 4A) and prediction accuracy of the experimental data of dITD thresholds and ITD deviant

detection. Additionally, the density distribution of the model was adjusted to match ITD statistics

(Figure 4B) by defining the density of cells tuned to each ITD as a linear transformation of HFIITD.

The Stern and Colburn, 1978 model required only minor changes to the density distribution origi-

nally proposed to represent the HFIITD pattern. This indicates that this seminal model, which explains

multiple experimental findings, is consistent with a density distribution of ITD tuning influenced by

the natural ITD statistics.

On the other hand, the model postulated by Harper and McAlpine, 2004 relies on the maximiza-

tion of Fisher information of firing rate within the physiological ITD range to explain the optimal IPD-

tuning distribution in a population of brainstem neurons under a rate code framework. This model

provides an explanation for the tuning to peripheral ITDs reported in brainstem recordings of mam-

mals (McAlpine et al., 2001; Hancock and Delgutte, 2004; Pecka et al., 2008). We followed the

model’s method of calculating Fisher information of individual neurons’ IPD-tuning curves

(Figure 4C, top) and their proposed distribution of best IPDs of the neuronal population in humans

(Figure 4C, bottom-left) for computing the population’s Fisher information of firing rate (Figure 4C,

bottom-right). The population’s Fisher information of firing rate across ITD and frequency, which
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would correspond to the predicted ITD discriminability by this neural model, showed low correlation

with both ITDrc and HFIITD (Figure 4C, bottom-right). This is expected from Harper and McAlpine,

2004 model’s premise of a uniform maximization of Fisher information by firing rate across the phys-

iological ITD range, as it differs from the higher frontal information predicted by the current study.

The Harper and McAlpine, 2004 model is, however, consistent with the low prediction accuracy of

dITD thresholds and ITD deviance detection results (Figures 2 and 3).

Figure 4. Classic models of neural properties underlying ITD discriminability and their potential for explaining

encoding of ITD statistics. (A) Distribution of internal delays replotted from Stern and Colburn, 1978, Figure 2b,

which proposes a higher density of pairs of fibers encoding frontal ITDs. (B) The density of pairs of fibers

proposed by Stern and Colburn, 1978 as the mechanism underlying ITD discriminability could effectively achieve

the representation of ITD statistics: the density was adjusted to match the pattern of HFIITD. Note that the

adjusted distribution largely preserves the shape of the distribution of the original model. (C) Distribution of IPD-

tuning maximizing coding across the physiological range of ITD, as proposed by Harper and McAlpine, 2004.

Top, single-neuron Fisher information as a function of IPD. Bottom-left, distribution of best IPDs brain across

frequency expected for humans under the framework proposed by the authors; white straight lines indicate

physiological range determined by the distance between ears. Bottom-right, reconstructed neuron population

Fisher information, converted from IPD to ITD for each frequency for obtaining the predicted ITD discriminability;

black curved lines indicate the p-limit, beyond which ITD cues become ambiguous within narrow frequency bands.

Spearman correlation coefficients for the relationship between population Fisher information and ITDrc and HFIITD

outlined above. (D) The IPD-tuning distribution proposed by Harper and McAlpine, 2004 as a mechanism

underlying ITD discriminability was adjusted for matching the neuron population Fisher information to ITDfi. Top,

the neuron distributions matching ITD statistics depict best IPDs away from midline across frequency, consistent

with a coding strategy based on two clustered subpopulations tuned to IPDs away from the front

(McAlpine et al., 2001; Harper and McAlpine, 2004; Hancock and Delgutte, 2004; Pecka et al., 2008).

Bottom, the neuron population Fisher information highly correlated with the ITD statistics.
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Furthermore, we also tested whether a model relying on the firing rate Fisher information could

also match ITD statistics (Figure 4D). Towards this goal, the density of neurons tuned to each IPD of

the model was changed in order to make the neural information correlated with HFIITD. This con-

sisted of designing neural populations with a density of preferred ITDs resulting in Fisher information

of their ITD tuning curves being equal to HFIITD. The IPD-tuning distribution that generates a neural

population Fisher information of firing rate matching HFIITD differs from the IPD- tuning distribution

originally proposed by Harper and McAlpine, 2004. However, matching ITD statistics under this

coding framework predicted neurons’ IPD-tuning clustered within peripheral IPDs across the fre-

quency range tested, consistent with reports of brainstem recordings in mammals (McAlpine et al.,

2001; Hancock and Delgutte, 2004; Pecka et al., 2008).

These results suggest the mechanisms underlying ITD discriminability proposed by Stern and Col-

burn, 1978 and Harper and McAlpine, 2004 are consistent with coding frameworks adapted to nat-

ural ITD statistics, providing a plausible biological connection between the coding of sensory

statistics and perceptual functions.

Discussion
Different explanations for the greater discriminability of sound locations in the frontal region have

been proposed, including an uneven density of brainstem ITD-sensitive neurons under a labeled-line

code framework (Colburn, 1977; Stern and Colburn, 1978) and greater change in the firing rate of

these neurons as a function of azimuth in the front compared to the periphery under a rate code

framework (McAlpine et al., 2001; Harper and McAlpine, 2004). Mechanisms based on the spatial

information carried by auditory stimuli have also been invoked, such as the rate of change of ITD as

a function of azimuth (ITDrc) (Mills, 1972; Gelfand, 2016). Our study proposes a new factor influenc-

ing the amount of spatial information carried by auditory stimuli, the ITDv. These statistics combined

in the square root of ITD Fisher information (HFIITD) were good predictors of ITD discriminability and

spatial novelty detection, supporting the hypothesis that natural ITD statistics determine the neural

code underlying human sound localization. Finally, we showed that the models of Stern and Col-

burn, 1978 and Harper and McAlpine, 2004 can reflect the encoding of ITD statistics, thereby pro-

viding a functional connection between neural coding frameworks proposed by these models and

experimental data on ITD perception.

Previous reports proposed connections between neural network properties and natural stimulus

statistics by investigating the selectivity of midbrain neurons to the variability of spatial cues in the

owl’s auditory system (Cazettes et al., 2014; Fischer and Peña, 2017). These studies provided evi-

dence of how sensory reliability could be represented (Fischer and Peña, 2011; Rich et al., 2015;

Cazettes et al., 2016) and integrated into an adaptive behavioral command (Cazettes et al., 2018).

Although properties of the neural mechanisms underlying human and owl sound localization differ in

frequency range and putative ITD coding schemes (Schnupp and Carr, 2009), studies in both spe-

cies support the concept that natural ITD statistics guide ITD processing.

This study specifically investigated whether ITDrc and ITDv, inherent in natural acoustic scenes,

are relevant parameters determining ITD discriminability. We tested this hypothesis using discrimina-

tion thresholds obtained through free-field (Mills, 1958) and dichotic stimulation protocols that dis-

abled natural ITDrc and ITDv statistics. We found that the integration of these ITD statistics based

on Fisher information (HFIITD) was the best predictor of discrimination thresholds of spatial changes

across frequency and location. This suggests that the neural code is adapted to the combination of

ITDrc and ITDv statistics. However, the higher dichotic dITD thresholds for 250 Hz tonal stimuli (also

reported by Brughera et al., 2013) constituted an outlier, indicating limited predictive power of ITD

discriminability at this particular frequency by the ITD statistics investigated in this study. Although

additional factors may determine discriminability in lower frequencies, our results overall are consis-

tent with the notion that natural HFIITD statistics can modulate the neural code underlying human

sound localization.

We also implemented an MMN paradigm to obtain converging evidence that natural ITD statis-

tics influence spatial perception. Although both ITD-change detection thresholds and the MMN nov-

elty detection paradigms required discriminating a change in ITD, novelty detection also involves

identification of a repetitive (standard) pattern. Furthermore, the combination of ITDrc and ITDv
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(HFIITD) was a better predictor of the deviance detection response, the MMN component, than ITDrc

alone, which is also consistent with results of psychophysical discriminability thresholds.

Parras et al., 2017 developed an approach designed to isolate the relative contribution of pre-

diction errors and repetition suppression in novelty detection. In the present study, natural ITD sta-

tistics might have modulated novelty detection at both levels. However, the model that best

described the MMN signals in the current study relied mostly on the ITD statistics of the standard

stimulus for weighting the difference between the ITDs of standard and deviants stimuli primarily by

the ITD statistics of the standards. Other factors with potential influence on detecting ITD changes

in a reference location are attention and training. The novelty detection protocol controlled for these

factors because the MMN indexes a brain response to detected deviations irrespective of attention

or training. Our finding that prediction of novelty detection signals was based primarily on the ITD

statistics of the standard stimulus is consistent with the interpretation that natural ITD statistics are

critical for pattern detection. Our results indicate that when the standard stimulus is in a location of

higher statistical discriminability, a ‘stronger’ standard is built, which makes deviance detection eas-

ier. We speculate that the different weights for standards and deviants are the result of the mecha-

nism underlying the building up of a standard, which requires repetitive stimulation.

Finally, our results support classic neural models of ITD coding. The compatibility of ITD statistics

with classic neural models of ITD coding suggest that ITD statistics provide a potential mechanism

influencing the density distribution of ITD tuning. The critical parameter of the density distribution of

fiber pairs encoding interaural delays that the Stern and Colburn, 1978 model relied on to explain

ITD discriminability was correlated with our ITD statistics. Thus, this model prediction matches the

experimental data. Additionally, the coding scheme of the model proposed by Harper and McAl-

pine, 2004 is a plausible framework for our results, in which ITD discriminability is predicted by the

neural population Fisher information. When the neural population Fisher information was modeled

to match the ITD Fisher information, the predicted distribution of ITD tuning resembled experimen-

tal observations in brainstem of mammalian species (McAlpine et al., 2001; Harper and McAlpine,

2004; Hancock and Delgutte, 2004; Pecka et al., 2008).

In sum, we found evidence that natural ITD statistics are correlated with auditory spatial percep-

tion, supporting the idea that these statistics may determine the density distribution of ITD tuning in

the auditory system and influence auditory spatial perception. The consistency across subjects indi-

cates that this information may be genetically encoded and conserved, and serve as a potentially

adaptive evolutionary mechanism for approaching optimal performance. Such a mechanism would

be useful where larger ITD changes are required for detecting shifts in location for regions of space

and frequency levels at which ITD discriminability is naturally weaker. These results have clinical

implications in identifying stimulus parameters that are relevant to spatial discrimination and novelty

detection that may lead to the development of more efficient hearing-aid devices.

Materials and methods

HRTF measurement
The dataset used in this study consisted of head-related impulse responses collected at the Institute

for Research and Coordination in Acoustics/Music (IRCAM) from 2002 to 2003, available to the pub-

lic at the LISTEN HRTF website http://recherche.ircam.fr/equipes/salles/listen. The procedure was

performed inside an anechoic room with walls that absorbed sound waves above 75 Hz. The pulse

signals were played by TANNOY 600 speakers facing the subjects, at a distance of 1.95 m from the

center of the head. Subjects were seated on an adjustable rotating chair with a position sensor

placed on the top of the head, allowing recording only when the position was correct. The impulse

sounds were collected with a pair of small Knowles FG3329 microphones, calibrated using a BandK

4149 microphone. These small microphones were mounted on a silicon structure, which occluded

the ear canals of the subjects, avoiding resonance and placing the microphone sensor at the

entrance of the ear canal. The signal captured by the microphones was driven to a custom-made

amplifier with 40 dB gain, and recorded using an RME sound card interface with Max/MSP real time

library which deconvolved the microphone signal.
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HRTF analysis
HRTF data from 51 subjects were included in the analysis (Figure 1). Head-related impulse

responses (h) for the left (L) and right (R) ears corresponding to speaker locations at 0-degree in ele-

vation and �90 to 90 degrees in azimuth (q) were denoted as a function of time, hL,q(t) and hR,q(t).

The azimuth in the database was sampled in 15-degree steps. Impulse responses were convolved

with a white noise signal of 1 s duration s(t) to model the signals (x) received at the left and right

ears:

xL tð Þ ¼ hL;� tð Þ � s tð Þ

xR tð Þ ¼ hR;� tð Þ � s tð Þ

where * denotes convolution.

This procedure transfers temporal and level effects of the filtering properties of the head to the

convolved signal. These convolved signals were filtered by narrow-band filters modeling cochlear

processing, using the gamma-tone filter bank from Malcolm Slaney’s Auditory Toolbox, available in

(https://engineering.purdue.edu/~malcolm/interval/1998-010). Gamma-tone filters are described in

the following cochlear impulse response equation,

g t; fkð Þ ¼ t3e
� t

t k cos 2pfktð ÞU tð Þ;

where U(t) is the unit step function and the center frequencies of the filters (fk) ranged from 250 to

1250 Hz in 5 Hz steps. These center frequencies are within the range where ITD is a primary spatial

binaural cue (Rayleigh and Xii, 1907) and also correspond with the frequency range of thresholds

estimated by Mills, 1958. The time constants (tk) were chosen such that the bandwidth of these fil-

ters matched the estimated bandwidth of human cochlear filters (Glasberg and Moore, 1990).

The outputs of the gamma-tone filter bank on the left (yL(t;fk)) and right (yR(t;fk)) sides were com-

puted by convolving left- and right-ear input signals with gamma-tone filters,

yL t; fkð Þ ¼ g t; fkð Þ � xL tð Þ

yR t; fkð Þ ¼ g t; fkð Þ � xR tð Þ:

Instantaneous phase was then computed for these output signals using the Signal Processing

Toolbox (Mathworks). The instantaneous phase was computed as the phase (argument; arg) of the

analytic representation of the signal,

�L t; fkð Þ ¼ arg yL t; fkð Þþ iŷL t; fkð Þf g

�R t; fkð Þ ¼ arg yR t; fkð Þþ iŷR t; fkð Þf g

where y is the signal and ŷ is its Hilbert transform.

For each azimuth (q) and frequency range (fk), we then calculated the instantaneous interaural

phase difference (IPD) over time,

IPD t; fkð Þ ¼ �R t; fkð Þ� �L t; fkð Þ

where IPD(t;fk) is in radians.

The circular mean and standard deviation of the instantaneous IPD over time was then computed.

To avoid the ITD rate of change being corrupted by artificial values caused by phase ambiguity, we

unwrapped (MATLAB function) the mean IPD over azimuth, and subtracted the value 2p repeatedly

(from all IPD values jointly) until the IPDs corresponding to midline locations returned to the value

before the shift. Finally, the circular mean and standard deviation of IPD was converted to ITD (in ms)

using the following equation:

ITD ¼ 10
6IPD
2pf

.

All the HRTF analysis steps described above are shown in Figure 1A. The mean ITD across azi-

muth was interpolated using a cubic spline (Figure 1B-left), and the rate of change of ITD across azi-

muth (ITDrc) was calculated as the derivative of this curve. The standard deviation of ITD (ITDv) was
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interpolated using the same method (Figure 1B-right) and the derivative of ITDv was calculated as

the derivative of this curve.

We next combined the ITDrc and ITDv in a single quantity that is related to the discriminability of

sound locations using ITD. The discriminability of a stimulus q based on a measurement m(q) is often

described in terms of the Fisher information

FI �ð Þ ¼�E
q
2

q�2
logp mj�ð Þj�

� �

;

where p(m|q) is the conditional probability of the measurement given the stimulus. In our analysis, q

refers to azimuth location, while m(q) is the ITD computed from the output of the left and right

cochlear filters at a given frequency which is used to infer the stimulus.

We also assume that the conditional probability of ITD given azimuth p(ITD|q) is a Gaussian distri-

bution with mean m(q) and standard deviation s(q). Substituting the Gaussian conditional probability

p(ITD|q) into the definition of the Fisher information (Abbott and Dayan, 1999), the formula reduces

to

FI �ð Þ ¼ �
0
�ð Þ

s �ð Þ

� �2

þ2
s

0
�ð Þ

s �ð Þ

� �2

;

where m’(q) is the ITD rate of change (ITDrc), s(q) is the standard deviation of ITD (ITDv) and s’(q) is

the derivative of the standard deviation of ITD (ITDv’) with respect to azimuth. Discrimination thresh-

olds have been shown to be proportional to the square root of the Fisher information (Abbott and

Dayan, 1999), therefore we computed the square root of the ITD Fisher information (HFIITD).

The second term in the equation, which is often absent in calculations of Fisher information, is

included in our analysis because the standard deviation of ITD changes with direction. Note that

when the derivative of standard deviation s’(q) is zero, the square root of the Fisher information sim-

plifies to m’(q)/s(q), the same as ITDrc/ITDv. This first term in the equation is conceptually similar to

the d-prime metric; however, while d-prime is the subtraction of two means divided by the standard

deviation, this part of the equation is the derivative of the mean divided by the standard deviation.

Finally, azimuth was converted to ITD (using the relationship between azimuth vs. ITD determined

from the HRTFs), obtaining an estimate of the ITD statistics across frequency and ITD. The ITD statis-

tics were computed for each subject, then the median and interquartile range of them was com-

puted for each combination of azimuth and frequency across subjects (Figure 1C).

Estimation of spatial discriminability thresholds from previously
published datasets (Mills, 1958)
Human spatial discriminability thresholds were estimated in the classic Mills, 1958 study. Data col-

lection for this study was performed inside an anechoic room with a movable speaker, which deliv-

ered tones of different frequencies. The three participants were blindfolded and had their heads

fixed by a clamp mounted on the chair on which they were sitting. In each trial, a 1 s duration ‘refer-

ence azimuth’ tone was played first, and 1 s after, the same signal played again after the speaker

was moved slightly to the left or to the right. Subjects reported the left or right change using an

interface box. Psychometric functions were obtained plotting the proportion of judgments to the

left and to the right against the angle between reference and test locations. The azimuth changes

leading to 75% responses to the right and to the left were estimated by linear interpolation. The

threshold angle for discriminating a change was estimated by dividing the distance between these

values by 2.

To convert azimuth to ITD, Mills, 1958 used binaural microphones placed inside a dummy-head

ears. The ITD corresponding to the reference azimuth and the IPD corresponding to the threshold

azimuth change were measured visually from signal traces using an oscilloscope. Threshold IPDs vs.

reference ITDs were plotted in a logarithmic Y-axis vs. linear X-axis scale and linear curves were fit to

the data. For the current study, we extracted data points of threshold dIPD across reference ITD and

frequency from Mills, 1958. Threshold dIPD was converted to threshold dITD (using the same equa-

tion described in the HRTF analysis section).
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Estimation of spatial ITD discriminability thresholds
A test was designed to estimate detection thresholds of changes in stimulus ITD (dITD) across spe-

cific frequencies of interest for this study. Healthy adult subjects were included in the sample

(N = 24; 12 females and 12 males; mean age 28.0 ± 8.6; five left-handed and 19 right-handed; 19

from São Paulo and five from New York). After the procedure was described to the subjects, they

provided written informed consent. The protocol was approved by the Ethics Committee of Universi-

dade Federal do ABC and by the Internal Review Board of the Albert Einstein College of Medicine,

where the study was conducted. There were no distinct groups in the experiment. All subjects had

no reported history of neurological disorders or hearing impairments.

Pilot measurements of dITD thresholds were initially conducted in 10 subjects, using the same

combination of frequencies and ITDs across subjects. This pilot experiment, which lasted approxi-

mately 150 min, was performed in up to five sessions per subject. Results from these measurements

already showed that the ratio between ITDrc and ITDv leads to good prediction for frequencies

above 250 Hz. Based on feedback from subjects undergoing pilot measurements, a shorter protocol

lasting about 60 min was designed, which was conducted in 24 subjects, leading to the reported

dITD thresholds results.

In this computer-based test, subjects were presented with 65 dB (A scale) tones within a range of

frequencies through headphones calibrated with an Instrutherm DEC-460 decibel meter or a B&K

4947 microphone with an artificial ear. Trials started by pressing the spacebar key. In each trial, two

binaural tones were presented in sequence. The ITD of both sounds started at the same value (refer-

ence ITD) and changed by different amounts (dITD) in the second half of either the first or the sec-

ond sound in the sequence. Subjects were instructed to press the keys ‘1’ or ‘2’ depending on which

sound in the pair they perceived a shift in location, and press a given key twice if confident, or alter-

nate both (1 and 2) keys if unable to perceive a shift or unsure about it. Trials could be repeated as

many times as needed by pressing the spacebar key. Feedback sounds indicated whether each of

the pressed keys was correct or wrong.

The range of reference ITDs spanned from frontal (0 ms) to peripheral locations within the unam-

biguous range of ITD for each frequency. ITD change (dITD) varied from 1 ms to 200 ms towards the

periphery to cover a range from unequivocally detectable and undetectable changes for each fre-

quency. The direction of dITDs relative to the reference ITD was always away from the front, to avoid

direction dependent biases affecting threshold measurements. Each condition (a given combination

of frequency and reference ITD) was presented 29 times: four training trials with dITD 200 ms which

were not computed and 25 testing trials which were used for estimating the dITD threshold. An ini-

tial training block used 750 Hz tones and �50 ms reference ITD for all subjects and was not included

in the analysis. The following 20 blocks presented tones of frequencies 250, 500, 750, 1000 or 1250

Hz, and reference ITDs from �500 to 0 varied in steps of 100 ms. Reference IPDs of absolute values

smaller than p/2 radians were included, to avoid phase ambiguity. The sequence of conditions was

randomly varied across subjects.

Ongoing estimation of dITD thresholds was conducted from trial 1 of each block, to optimize the

test estimate. A psychometric sigmoid curve was progressively fit to a plot of correct responses

(assigned 1) and incorrect or unsure responses (assigned 0) as a function of dITD; the dITD corre-

sponding to 0.5 accuracy was selected as the estimated dITD threshold. Preliminary dITD thresholds

were computed from subsets of trials within varying dITD ranges. The first six trials ranged from

dITDs 10 to 190 ms, spaced by 36 ms. From these trials, a first preliminary dITD threshold was esti-

mated. In the following six trials, dITD was varied from �50 to 50 ms in steps of 20 ms, centered on

the first preliminary dITD threshold; by the end of trial 12 a second preliminary dITD threshold was

estimated using trials 1 to 12 using the same sigmoid fitting procedure. A third preliminary dITD

threshold was then estimated using trials 1–18. The final seven trials ranged from �21 to 21 ms

spaced by 7 ms, centered on the third preliminary dITD threshold. When a set of dITDs centered on

a preliminary dITD threshold extended beyond the 1 to 200 ms range, dITDs were adjusted to fall

within this range. While this procedure permitted an efficient estimate of dITD thresholds, it did not

yield plausible dITD threshold estimates in cases where subjects provided largely random responses

across dITDs. To address this limitation, a nonparametric receiver operating characteristic (ROC)

classifier was conducted offline to independently verify the validity of estimated dITD thresholds.
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For estimating threshold dITDs, an ROC classifier was computed over the 25 trials of each condi-

tion for each subject. The threshold was estimated by averaging the subset of possible thresholds

within the 1 to 200 ms range that jointly maximized the number of correct (hit) responses and mini-

mized false positive (type II error) ones. This optimization was obtained by selecting candidate dITD

thresholds within a minimum euclidean distance from the perfect discrimination (i.e. 100% hit rate

and 0% type II error rate) yielded by the ROC analysis. The ROC classifier was robust enough to esti-

mate consistent dITD thresholds to all conditions from all subjects (Figure 2C-left). The threshold

within 1–200 ms range estimated by the sigmoid fitting method were significantly correlated with

those estimated by the ROC classifier (rPearson = 0.85).

Prediction of spatial discriminability thresholds by ITD statistics
An initial analysis of the ranked (Spearman’s) correlation coefficients was performed for the relation-

ship between the threshold dITD averaged across subjects and the ITD statistics of the reference

ITD (middle and right plots of Figure 2C). Spearman’s correlations, which were computed from aver-

ages of dITD thresholds over subjects across multiple conditions (N number of combinations of ref-

erence ITD and frequency), were used to assess the monotonicity of this relationship. Since the N in

this analysis reflects the number of conditions, not the number of subjects, the standard statistical

power analysis does not apply. Accordingly, p-values were not computed for this correlation

analysis.

Additional analysis for the selection of dITD thresholds’ best predictors was performed using lin-

ear mixed-effect models (LMM; Magezi, 2015), classifying ITD statistics across stimulus conditions

as ‘fixed factor’ and participants as ‘random factor’. LMM analysis assumes linearity between meas-

ures and predictors, then we inspected whether the relationship between dITD thresholds and each

of the predictors was linear. Although relationships were mostly linear, some were best fitted by a

power function. In these cases, we applied the standard method for achieving linearity by log-trans-

forming both predictors and dITD thresholds. Linear regressions of the relationship between the

multiple log-transformed dITD thresholds collected from each subject and log-transformed ITD sta-

tistics were performed, and Akaike Information Criterion (AIC) computed. The AIC analysis was used

to compare the performance of each model, relying on both the number of model parameters and

sample size (i.e. number of subjects) as a metric of goodness of fit; the lowest AIC corresponds to

the best model. Since AIC is a relative quantity (i.e. the actual value brings no information alone), we

normalized the AIC values by subtracting the minimum AIC observed for that behavioral measure

(dAIC), which corresponds to the information loss compared to the best available model. Models

with dAIC between 0 and 2 were considered equally good in their prediction capacity. Sample sizes

were made several times higher than the number of parameters of our models to ensure samples

were sufficiently large.

Collection and analysis of the mismatch negativity (MMN) component
Healthy adult participants were included in the sample (N = 33, 16 females; 17 males; mean age

29.5 ± 4.8; all right-handed). After the procedure was described to the subjects, they provided writ-

ten informed consent. The protocol was approved by the Institutional Review Board of the Albert

Einstein College of Medicine, where the study was conducted. All subjects had no reported history

of neurological disorders and passed a bilateral hearing screening (20 dB HL or better at 500, 1000,

2000, and 4000 Hz).

A statistical power analysis for the MMN component using a stringent minimum MMN amplitude

of �0.5 mV (SD 0.7 mV) revealed substantial power (1-b=0.87) with an alpha level of 0.05 in 30 adult

subjects. We performed the first set of conditions (1–10) in 17 subjects and found that adjusting the

difference between ITD of standard and deviant by a weighted average of the ratio between ITDrc

and ITDv of the stimuli ITD; 16 additional subjects were recruited for a second set of conditions (11–

20), replicating the initial findings. No significant difference was found between groups and there-

fore the analysis reported in the manuscript was performed on the pooled data of all 33 participants.

Participants were seated inside a sound-attenuated booth (IAC Acoustics, Bronx, NY) in front of a TV

screen where a subtitled muted movie was presented. Sound was delivered by a Neuroscan StimAu-

dio system through insert earphones (3M Eartone 3A) calibrated to 53 dB (A-weighted) using a B
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and K 4947 microphone with an artificial ear. Sound signals were 50 ms duration tones (25 ms rise-

fall time) of different frequencies and ITDs synthesized with MATLAB software.

Participants listened to oddball sequences presenting repetitive (‘standard’) tones embedded

with sporadic (‘deviant’, 15% of the trials) tones with a 300 ms inter-stimulus interval (Figure 3A-

left). Each subject was presented with 10 conditions, which differed in frequency and ITD. Subjects 1

to 17 performed the following conditions (‘ITD standard’ vs. ‘ITD deviant’ at ‘tone frequency’): (1)

�590 vs. �295 ms at 400 Hz; (2) �295 vs. 0 ms at 400 Hz; (3) 0 vs. �295 ms at 400 Hz; (4)

�295 vs. 295 ms at 400 Hz; (5) 295 vs. �295 ms at 400 Hz; (6) �295 vs. 590 ms at 400 Hz; (7)

590 vs. �295 ms at 400 Hz; (8) �590 vs. �295 ms at 600 Hz; (9) �295 vs. 0 ms at 600 Hz; and (10)

0 vs. �295 ms at 600 Hz. Subjects 18 to 33 performed the conditions (11) 0 vs. �499 ms at 400 Hz;

(12) �499 vs. 0 ms at 400 Hz; (13) 0 vs. �159 ms at 400 Hz; (14) �159 vs. 0 ms at 400 Hz; (15)

0 vs. �499 ms at 550 Hz; (16) �499 vs. 0 ms at 550 Hz; (17) 0 vs. �499 ms at 650 Hz; (18) �499 vs. 0

ms at 650 Hz; (19) 0 vs. �159 ms at 650 Hz; and (20) �159 vs. 0 ms at 650 Hz. Each condition was pre-

sented in 3 blocks of 474 trials; the block order was randomized for each subject. Each of the condi-

tions was presented three times during the experimental session; the order of blocks was

randomized for each subject. The first trials of each block (18 standards + one deviant) were used

for training and not included in the analysis. Results reported included the following trials (385 stand-

ards and 70 deviants) for each subject. MMN values for each condition were estimated by subtract-

ing mean ERP signals of 210 deviant trials by the mean of 1155 standard trials; after removal of trials

with artifacts (see below). Sessions lasted approximately 2.5 hr, including placement of electrode

caps and breaks during the EEG recording.

EEG was recorded with Neuroscan SynAmps and a 32-channel electrode cap following the modi-

fied international 10–20 System, including electrodes on the nose (reference), P09 (ground) and left

and right mastoids (LM and RM, used for offline analysis). A bipolar configuration was used between

an external electrode below the left eye and the FP1-electrode position for measuring vertical elec-

tro-oculogram (EOG). The signal was recorded at 500 Hz sampling rate using a band-pass from 0.05

to 100 Hz. Impedances were maintained below 5 kOhms.

To measure the MMN, EEG signals from each subject were processed as follows: (1) 20 Hz low-

pass filtering; (2) pooling (by concatenating) all EEG signals obtained during sound stimulation; (3)

removal of eye-blink and saccade artifacts by performing Independent Component Analysis and

reconstructing the signal without components correlated to the EOG; (4) selection of 600-millisec-

ond epochs around sound presentation (�100 to 500 ms from sound onset); (5) removal of linear

portions of EEG signals and exclusion of trials containing voltage deflections larger than 75 mV; (6)

re-reference of the EEG recordings to the mastoid recordings by subtracting the average mastoid

signal from the other channels; (7) ERP measurement, averaging separately signals evoked by stan-

dard and deviant trials (the first 19 trials were used for subject training and excluded from the analy-

sis); (8) subtraction of standard from the deviant ERPs to compute the MMN; (9) identification of

time bin containing the MMN peak in signals from the FZ channel (frontal EEG electrode, in the mid-

dle of the forehead) averaged across subjects, for each condition; (10) measurement of MMN peak

for each subject and condition within this time bin.

Grand-averages of ERPs recorded at FZ electrodes were computed for standard and deviant trials

across all subjects and conditions; for estimating the MMN topography, the signal from each elec-

trode in the time bin of the peak MMN was averaged across subjects and conditions (Figure 3A-

right).

Prediction of MMN by ITD statistics
An initial analysis of the ranked (Spearman) correlation coefficients was performed for the relation-

ship between the MMN peak amplitude averaged across subjects and the absolute ITD difference

between standard and deviant stimuli, multiplied by the weighted sum of ITD statistics estimated for

both standard and deviant stimuli (Figure 3C-left). Additional LMM analysis (described in “Predic-

tion of spatial discriminability thresholds by ITD statistics’’ section) was used to compare perfor-

mance across predictors of MMN peak amplitude. LMM analysis was conducted on MMN peak as

the dependent variable, absolute ITD difference multiplied by the weighted sum of ITD statistics as

‘fixed’ factor and participant as ‘random’ factor. Since the relationship between MMN data and pre-

dictors followed a power function, it was linearized using log transformation in both measures. No
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outliers were detected or excluded. The AIC method was used for comparing the models (described

in “Prediction of spatial discriminability thresholds by ITD statistics’’ section).

Neural models
Two seminal models (Stern and Colburn, 1978; Harper and McAlpine, 2004) addressing discrimi-

nability of azimuth positions in acoustic space based on ITD were used to examine the potential link

between the brain representation of sensory statistics and perceptual functions.

The relative number of fiber pairs encoding interaural delays, p(t), used as predictors of ITD dis-

criminability (Figure 4A), was extracted from Stern and Colburn, 1978. To test whether ITD statis-

tics could be represented by this model, the p(t) parameter was adjusted to match statistics, by

normalizing ITD statistics from 0 to 1 and scaling the resulting data to obtain a probability distribu-

tion where the sum of all probabilities was equal to 1 (Figure 4B).

Fisher information from single-neuron IPD-tuning curves and the optimal population distribution

of IPD-tuning estimated for humans were extracted from data reported in Harper and McAlpine,

2004. The M-shaped Fisher information curve was positioned at the best IPD of each neuron within

the distribution, to obtain an estimate of the population Fisher information across IPD and fre-

quency. The neuron population Fisher information across IPD was converted to ITD, obtaining the

prediction of ITD discriminability induced by the neuron distribution (Figure 4C). To test whether

ITD statistics could be represented by parameters of this model, for each frequency, we generated

two midline-mirrored gaussian neural population distributions with random mean IPD tunings and

standard deviations from 0 to p, then selected the distribution that displayed the highest Pearson

correlation between Fisher information and ITD statistics, then constant were summed and multi-

plied to the density values in order to to obtain one in slope and intercept of a linear fit. Finally, the

density across all frequencies were corrected to generate probability one.

All data processing was performed in MATLAB (Mathworks) using built-in or custom-made rou-

tines. The datasets generated and analyzed in the current study are available in https://doi.org/10.

5061/dryad.h70rxwdf9.
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Sams M, Paavilainen P, Alho K, Näätänen R. 1985. Auditory frequency discrimination and event-related
potentials. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 62:437–448.
DOI: https://doi.org/10.1016/0168-5597(85)90054-1

Schnupp JWH, Carr CE. 2009. On hearing with more than one ear: lessons from evolution. Nature Neuroscience
12:692–697. DOI: https://doi.org/10.1038/nn.2325

Stern RM, Colburn HS. 1978. Theory of binaural interaction based in auditory-nerve data. IV. A model for
subjective lateral position. The Journal of the Acoustical Society of America 64:127–140. DOI: https://doi.org/
10.1121/1.381978, PMID: 711991

Sussman ES. 2007. A new view on the MMN and attention debate. Journal of Psychophysiology 21:164–175.
DOI: https://doi.org/10.1027/0269-8803.21.34.164

Sussman ES, Chen S, Sussman-Fort J, Dinces E. 2014. The five myths of MMN: redefining how to use MMN in
basic and clinical research. Brain Topography 27:553–564. DOI: https://doi.org/10.1007/s10548-013-0326-6,
PMID: 24158725
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