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Summary: The gateway reflex explains how autoreactive CD4+ T cells cause
inflammation in tissues that have blood-barriers, such as the central nervous system
and retina. It depends on neural activations in response to specific external stimuli, such as
gravity, pain, stress, and light, which lead to the secretion of noradrenaline at specific
vessels in the tissues. Noradrenaline activates NFkB at these vessels, followed by an
increase of chemokine expression as well as a reduction of tight junction molecules to
accumulate autoreactive CD4+ T cells, which breach blood-barriers. Transient receptor
potential vanilloid 1 (TRPV1) molecules on sensory neurons are critical for the gateway
reflex, indicating the importance of mechano-sensing. In this review, we overview the gateway
reflex with a special interest in mechanosensory transduction (mechanotransduction).
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MECHANO-SENSING RECEPTORS

Mechano-sensing is a general cellular phenomenon in which changes in membrane tension and the
cytoskeletal structure induce intracellular signal transduction in response to an extracellular
mechanical force (1). Many receptors are sensitive to mechanical forces. The list includes Twik-
related K+ channel (TREK) and Twik-related arachidonic acid-stimulated K+ (TRAAK), both of
which being two-pore domain K+ (K2p) channels, Piezo1/2, TMEM63/OSCA, and transmembrane
channel-like (TMC)1 and TMC2. These mechanosensory ion channels (MSCs) all sense
extracellular stimulations, such as pressure, gravity, acceleration, sound waves, tension, fluid flow,
pain, light, temperature, and blood pressure (2–6). In addition, cells adhere to neighboring cells and
to the extracellular matrix via transmembrane receptors of the cadherin (cell-to-cell) and integrin
(cell-to-substrate) families. These molecules are related to cell adhesion but are also mechano-
sensitive (7–9), suggesting they are mechano-sensing receptors in the broad sense of the term. The
extracellular stimuli are converted by MSCs and adhesion molecules into intracellular signals via
alterations in the intracellular ion concentration or intracellular cytoskeletal status in various cells
including sensory neurons and endothelial cells (10).
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MSCS AND ADHESION-RELATED
MOLECULES IN
MECHANOTRANSDUCTION

The above MSCs have been categorized as depolarizing cationic
non-selective channels, such as Piezo1/2, and hyperpolarizing K+-
selective stretch-activated channels, such as TREK/TRAAK K2p
channels, TMEM63/OSCA, and TMC1/2. In mammalian cells,
after the binding of a ligand or change in membrane tension
around them, these channels change their structurers to shift the
balance of the intracellular/extracellular ion concentration (2–5,
11). Piezo1/2 increase intracellular Ca2+, while the other channels
decrease intracellular K+, thus augmenting the effects of
intracellular Ca2+. Degenerin channels (DEG), epithelial sodium
channels (ENaC), acid-sensing ion channels (ASICS), and transient
receptor potentials (TRP) channels are otherMSCs.Recent electron
cryo-microscopy structure studies for TRPs have revealed that a
helical spring structure displaces intracellular cytoskeleton
molecules to open the channels upon mechanical stress (11–13).

Endothelial cells in the blood vessels contact each other as a
monolayer to pass essential factors, potential energy, and
sometimes immune cells for the surveillance of tumor
development and cells infected by pathogens from the blood to
the tissues. Endothelial cells are constantly enduring mechanical
stress from the blood flow, which is detected by transmembrane
proteins, such as tyrosine kinase receptors, G protein-coupled
receptors (GPCR), integrins, and cadherins, membrane
structures, such as caveolae and primary cilia, glycocalyx, and
cytoskeleton proteins, such as actin and tubulin, all of which
transduce a mechanical signal to intracellular signals that cause
transcriptional alterations to change the cellular status of
endothelial cells (14–18)(Figure 1).
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THE GATEWAY REFLEX

Endothelial cells in the central nervous system (CNS) represent a
specific vessel structure named the blood-brain barrier (BBB),
which prevents peripheral immune cells and other factors
including immunoglobulins from infiltrating the CNS from the
blood. The BBB is important for maintaining the CNS
environment and depends on many of the mechano-sensing
molecules described above. However, observations of
neuroinflammation due to an accumulation of immune cells in
many diseases, including autoimmune diseases, schizophrenia,
and Alzheimer’s disease, suggest the BBB can be compromised
(19–24). To migrate past the BBB and into the CNS, peripheral
immune cells particularly activated ones rely on adhesion
molecules as well as chemokine molecules expressed by
endothelial cells to affect mechanosensory pathways (25–29),
because some signaling through adhesion molecules and
chemokines directly increase molecules related to the
mechanosensory pathways (25, 26, 30–32) and cytokines
expressed from the immune cells accumulated also indirectly
affect mechanosensory pathways (26–29). Because immune cells
interact with endothelial cells in the BBB and affect the BBB
structure and function, the status of the BBB is mechano-
sensitive (30).
GRAVITY AND ELECTRIC GATEWAY
REFLEXES

Space experiments have shown that gravity affects bone and
muscle density (31, 32) and indicate that the body transduces
gravity into mechanical signaling. We demonstrated that gravity
FIGURE 1 | Mechano-sensing receptors in endothelial cells. An illustration showing multiple mechano-sensing receptors, including mechanosensory ion channels
and adhesion molecules, that can respond to extracellular stimulations, such as pressure, gravity, acceleration, sound, tension, fluid flow, pain, light, temperature,
and blood pressure, to induce mechanotransduction in endothelial cells. The sensors shown include tyrosine kinase receptors (TK R), G protein-coupled receptors,
ion channels, junction proteins, integrins, the cell membrane (caveolae), and glycocalyx.
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regulates tissue-specific CNS inflammation by showing that
autoreactive CD4+ T cells invade the specific sites of the CNS
in experimental autoimmune encephalomyelitis (EAE), an
animal model of multiple sclerosis (33). EAE mice are an
invaluable tool for studying the pathogenesis of the BBB and
the accumulation of immune cells in the CNS. One of the most
popular murine models is EAE induced by a myelin-derived
antigen, myelin oligodendrocyte glycoprotein 35-55 (MOG35–
55), which is given emulsified in complete Freund’s adjuvant
(CFA) as a subcutaneous injection (34–37). The development of
encephalomyelitis is observed as an ascending paralysis that
begins with a drooping tail and progresses to paralysis of the
lower limbs. The adoptive transfer of MOG-specific CD4+ T cells
(pathogenic CD4+ T cells) from donor mice that were actively
immunized by the MOG peptide with CFA to naïve recipient
mice can also induce EAE. This adoptive transfer EAE model
allows study of the autoimmune CNS inflammation induced
specifically by pathogenic CD4+ T cells (38).

We found that in EAE mice transferred with pathogenic
CD4+ T cells, the cells accumulated in the dorsal vascular sites
of the fifth lumbar (L5) cord. Dorsal vascular endothelial cells of
the L5 cord in EAE mice show an inflammation status including
the expression of chemokines and growth factors followed by the
accumulation of immune cells and proliferation of tissue
nonimmune cells due to NFkB signaling. Pathogenic CD4+ T
cells, but mainly Th17 ones, accumulate in the vascular
endothelium and flow into the CNS using CCL20 as a
chemotactic factor. After pathogenic CD4+ T cell accumulates,
the BBB is breached due to various cytokines including NFkB
and STAT stimulators from pathogenic CD4+ T cells, resulting
in the accumulation of various immune cells from the blood to
the L5 cord. This accumulation increases mechanical stress
because of the increased cell density.

In a later experiment, we focused on sensory nerve input from
the soleus muscles. The main anti-gravity muscles are the soleus
muscles in both mice and human, and the sensory pathway from
soleus muscles connects to the L5 dorsal root ganglion (DRG),
which is the largest DRG and is activated by anti-gravity
responses (33). Indeed, when the same experiment was
performed on mice with their tails suspended to model a
microgravity environment on the hind legs, CNS inflammation
was induced in the cervical vessels but not the L5 vessels.
Furthermore, electrically stimulating the soleus muscles, which
mimics gravity stimulation, induced CCL20 at the L5 vessels.
Moreover, electrically stimulating the quadriceps, whose afferent
sensory nerves come from the L3 DRG, and the epitrochlearis/
triceps brachii, whose afferent nerves come from between the
fifth cervical and fifth thoracic DRG, caused CCL20 expression to
increase in the L3 vessels and between the fifth cervical and fifth
thoracic vessels, respectively.

Sympathetic ganglions of the L5 level, but not other levels,
were activated by gravity responses in the soleus muscles, and
treatment with the norepinephrine antagonist atenolol
significantly suppressed CCL20 mRNA expression, NFkB
activation, and pathogenic CD4+ T cell accumulation around
the L5 vessels and abrogated EAE development. These
Frontiers in Immunology | www.frontiersin.org 3
experiments indicate that sensory nerves in the soleus muscles
that receive a gravity stimulus activate the sympathetic pathway
at the L5 level, resulting in the production of noradrenaline,
which upregulates CCL20 expression at the L5 dorsal vessels,
although a detail crosstalk between sensory-sympatheic pathway
in the L5 level has not been demonstrated. The resulting
chemokine expression triggered inflammation around the
vascular endothelium in the L5 cord, causing the accumulation
of pathogenic CD4+ T cells from the blood and the development
of neuroinflammation. These mechanisms, by which the nervous
system regulates CNS inflammation in response to gravity
stimulation or electric stimulation via the alteration of specific
vessels, have been named the gravity gateway reflex and electric
gateway reflex, respectively　(Figure 2) (33).

Gravity maintains the appropriate body state under healthy
conditions. However, depending on the immune status of the
individual, including the numbers of autoreactive T cells in the
blood, it may also allow immune cells to invade the CNS and
initiate autoimmune disease development via the gateway reflex.
The receptors of sensory nerves that perceive gravity stimuli are
still unclear, and the mechanosensory mechanism by which
gravity stimuli activate the sensory nerves needs further
investigation during both the gravity gateway reflex and
electric gateway reflex.
PAIN GATEWAY REFLEX

Two-thirds of patients with multiple sclerosis and particularly
those with a relapse-remittent type will experience flare-ups (39).
In contrast, in EAE mice transfected with pathogenic CD4+ T
cells, the symptoms disappear within 2-3 weeks. Normally, EAE
mice in remission show no relapse for more than 300 days after
the transfer, but if pain stimulation is added, the symptoms
relapse (40). The mouse trigeminal nerve is composed mainly of
sensory nerve (41). Trigeminal neuropathic pain causes
activation of the anterior cingulate cortex (ACC) and sensory
neurons in the thalamus (42). A positive correlation has been
reported between ACC activity, pain-induced sympathetic
vasoconstrictor reflexes, and sympathetic responses to pain in
humans, suggesting a functional link between the ACC, central
sympathetic pathways, and pain experience (43). In remission
EAE mice, trigeminal nerve ligation caused a relapse of the EAE
symptoms, but a sham-operation did not. Capsaicin stimulation
also induced the relapse, indicating that the pain-sensing TPRV1
channel activates sensory nerves and causes ACC activation. To
confirm this hypothesis, pain stimulation was performed in
TRPV1 knockout mice, but no relapse was observed. TRP
channels are MSCs but also activated by heat, which alters the
membrane tension and the status of intracellular cytoskeletal
molecules (13). These results suggested that not only pain but
also mechanical stimulations, such as compression, can induce
the relapse via a similar neural pathway.

Mechanistically, pain sensation caused an accumulation of
MHC2+CD11b+ myeloid cells at the ventral vascular blood
vessels of the L5 cord, which triggered the accumulation of
December 2021 | Volume 12 | Article 780451
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pathogenic CD4+ T cells in the blood and ultimately the
infiltration of other immune cells into the spinal cord after
breaching the BBB there. MHC class II+CD11b+ cells in EAE-
recovered mice expressed not only MHC class II molecules but
also co-stimulatory molecules, such as CD80, CD86, and
intercellular adhesion molecule-1 (ICAM-1), which is a ligand
of integrins and a mechano-sensing receptor. Importantly, MHC
class II+CD11b+ cells have the ability to stimulate pathogenic
CD4+ T cells without the addition of MOG peptide, suggesting
they presented self-antigen peptides that stimulated pathogenic
CD4+ T cells. We found that MHC2+CD11b+ cells increased the
expression of CX3CR1 and its ligand CX3CL1 from L5 vessels in
response to sympathetic noradrenaline. When CX3CL1 was
inhibited with a neutralizing antibody, the relapse symptoms
caused by pain stimulation were suppressed. Moreover, the
inhibition of sympathetic nerve function by a b1-adrenagic
receptor antagonist, atenolol, or the sympathectomy regent 6-
hydroxydopamine (6-OHDA) suppressed the upregulated
CX3CL1 expression and relapse, suggesting that not only the
TRPV1+ sensory pathway but also the sympathetic pathway is
critical for the pain gateway reflex (40).

Thus, pain induction first causes an accumulation of MHC
class II+CD11b+ cells at the ventral vessels of the L5 cord via
sensory-sympathetic crosstalk. Then, an MHC class II+CD11b+
Frontiers in Immunology | www.frontiersin.org 4
cell-mediated accumulation and activation of pathogenic CD4+
T cells in the blood occurs, leading to EAE relapse. Because the
activated pathogenic CD4+ T cells in the L5 cord express various
cytokines, including NFkB and STAT3 stimulators like IL-17,
TNFa, and IL-6, the chemokines were induced in the L5 ventral
vessels by activation of the IL-6 amplifier, a local chemokine
inducer in endothelial cells (44). In other words, pain induction
causes sympathetic activation via the sensory pathway, which
depends on TRPV1 channels, and noradrenaline produced by
the sympathetic nerves induces local inflammation in the L5 cord
by accumulating immune cells (Figure 3).
STRESS GATEWAY REFLEX

Stress is involved in many diseases. We have identified a stress-
related nerve circuit that causes gastrointestinal failure and
sudden death when pathogenic CD4+ T cells migrate to the
CNS from the blood (45). We again employed transfer EAE mice
under two stress conditions that have no obviously significant
negative effect on the body: light sleep and wet bed
environments. Severe gastrointestinal inflammation and heart
failure were observed in mice with either stress in the presence of
pathogenic CD4+ T cells. A mechanistic analysis showed that the
FIGURE 2 | Light gateway reflex. The light gateway reflex. Photopic light stimulates a high expression of noradrenaline and adrenaline to downregulate a1A-
adrenoceptor (a 1AAR) expression on the retinal vessels in mice with autoreactive T cells against photoreceptors. The downregulation of a1AAR inhibits the
noradrenaline-mediated activation of NFkB and STAT3, suppressing the IL-6 amplifier and retinal inflammation.
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stress stimulation activated noradrenergic neurons in the
paraventricular nucleus of the hypothalamus (PVN), which
relates to stress and projects to two specific blood vessels
surrounded by the third ventricle, dentate gyrus and thalamus,
establishing the gateways for the pathogenic CD4+ T cells (45).
We named this phenomenon the “stress gateway reflex”.
Considering that the dentate gyrus and PVN are stress-related
brain regions (46, 47), the stress gateway reflex could play a role
even under the steady state. We hypothesized permeability
around the specific vessels was increased even in the absence
of pathogenic CD4+ T cells, i.e. in the physiological condition
that suppresses stress responses, by the activation of neurons in
the dorsomedial hypothalamic nucleus (DMH)/anterior
hypothalamic nucleus (AHN) (48).

On the other hand, during the stress gateway reflex in the
presence of pathogenic CD4+ T cells in the blood, PVN-derived
noradrenergic neurons upregulate CCL5 expression at the blood
vessels in a manner dependent on noradrenaline-mediated NFkB
activation, thus recruiting pathogenic CD4+ T cells and MHC
class II+ monocytes from the blood followed by the activation of
pathogenic CD4+ T cells there. Cytokines expressed by activated
pathogenic CD4+ T cells accelerated the NFkB activation in
endothelial cells and triggered micro-inflammation via the IL-6
amplifier (45). Locally, adenosine triphosphate (ATP) produced
by the micro-inflammation functioned as a neurotransmitter (49,
50). Indeed, ATP directly activated neurons in the DMH/AHN
to activate neurons in the dorsal motor vagal nucleus (DMX)
(45). The enhanced activation of the efferent vagus nerve
projected to the upper gastrointestinal tract from the DMX to
Frontiers in Immunology | www.frontiersin.org 5
yield severe gastrointestinal inflammation via massive
acetylcholine secretion followed by hyperkalemia with sudden
death (45) (Figure 4).

Because the accumulation of immune cells including
pathogenic CD4+ T cells at brain-specific vessels should
increase the density and pressure between cells followed by an
increase of the mechanistic signaling, not only ATP signaling but
also mechanical stress activates NFkB in the blood vessels and
stimulates the neural pathway to the DMH/AHP.
LIGHT GATEWAY REFLEX

We showed that photopic light stimulation suppresses the
establishment of experimental autoimmune uveroretinitis
(EAU), a model of uveroretinitis, in mice (51–53). We noticed
a pathological difference between mice kept in photopic light and
in mesopic light conditions. A gateway at retinal vascular
endothelial cells can be established by NFkB-mediated
chemokine expression in retinal endothelial cells to accelerate
the infi ltration of pathogenic CD4+ T cells against
photoreceptors through the blood-retina barrier from the
blood (51). EAU mice kept in mesopic light showed more
CD4+, CD8+ and CD11b+ cells in the retina than mice kept in
photopic light (51). Similar to the other four gateway reflexes, the
light gateway reflex includes the activation of sympathetic/
noradrenergic neurons in its nerve pathway. Exposure to
photopic light downregulated the noradrenergic pathway in
retinal vessels by excessive noradrenaline and adrenaline levels
FIGURE 3 | Gravity gateway reflex. Gravity stimulation induces the activation of sensory nerves in the soleus muscles, which connects the fifth lumbar vertebra (L5)
dorsal root ganglion, followed by the activation of L5 sympathetic ganglion neurons. Norepinephrine (also known as noradrenaline) from the sympathetic nerves
induces the IL-6 amplifier and the infiltration of autoreactive T cells into the spinal cord by upregulating CCL20 at the dorsal vessels of the L5 cord.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Matsuyama et al. Gateway Reflex and Mechanotransduction
from neural terminal in the retina, disrupting the expression of
a1A-adrenagic receptor (a 1AAR) and subsequently suppressing
NFkB activation in the retinal vessels (51) (Figure 5). The light
gateway reflex can be observed not only in uveitis and retinitis,
but also in autoimmune intraocular diseases such as retinal
vasculitis and ischemic retinopathy. Moreover, activation of the
sympathetic pathway can also be observed in autoimmune
diseases that present intraocular inflammation such as human
leukocyte antigen-B27 (HLA-B27) spondyloarthropathies,
sarcoidosis, and juvenile chronic arthritis (54–56). These
findings suggest that excessive activation of the sympathetic
pathway suppresses the establishment of the gateways for
autoreactive T cells in the blood-barrier including in blood-
retina one by downregulating adrenergic receptors on the vessels,
thus inhibiting tissue-specific inflammation.

Finally, during the pathology of EAU, we noticed an
abnormal spatial alignment of neural terminal in the retina
due to an accumulation of immune cells and proliferation of
retinal nonimmune cells, including fibroblasts. This abnormal
alignment likely caused an increase in tension and/or pressure in
Frontiers in Immunology | www.frontiersin.org 6
the retinal lesion. Thus, the mechanosensory pathway affects the
pathogenesis of retinal inflammation.
CONCLUDING REMARKS

In summary, we here focused on the gateway reflex, in which
mechanical forces, such as gravity, changes the microvascular
structure of blood barriers to allow immune cells to invade
associated organs, such as the CNS and retina. Inflammation
caused by the gateway reflex is different from whole organ
inflammation, because autoreactive T cells invade from specific
blood vessels in the organs. Pain stimuli induces the accumulation
ofMHCclass II+CD11b+myeloid cells at specific ventral vessels of
the L5 cord via activation of TPRV1 receptor-positive sensory
nerves to cause relapse of CNS-inflammation (pain gateway
reflex). Although other peripheral-derived CD11b+ myeloid cells
in theCNSdonot showanyobvious functionafter thepathogenesis,
environmental stimuli, including pain sensation, can accumulate
them via the activation of specific neural circuits by changing the
FIGURE 4 | Pain gateway reflex. Pain-induced sensory nerve activation stimulates the anterior cingulate cortex (ACC), which activates specific sympathetic nerves
distributed at two ventral vessels of the spinal cord. Because there are many major histocompatibility complex (MHC) class II+ monocytes around the L5 cord,
norepinephrine secretion at the ventral blood vessels of the fifth lumbar vertebra (L5) cord stimulates the production of CX3CL1 from endothelial cells via the IL-6
amplifier. CX3CL1 accumulates MHC class II+ monocytes and increases the permeability of blood vessels. Autoreactive T cells in the blood flow accumulate at the
vessels to induce experimental autoimmune encephalomyelitis relapse.
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status of specific blood vessels. Regarding, tissue-specific
autoimmune diseases, the adaptive immune system, such as T
cells and B cells in the blood, plus neural circuits activated by
environmental stimulations are critical for the gateway reflex.
Autoimmune diseases always commence with the accumulation
of immune cells at specific vessels, which increases pressure and
tension on the tissue cells as well as the immune cells themselves.
Therefore, it is reasonable thatmechanotransduction contributes to
these diseases. Further elucidation of this transduction as well as
immune cells is important for understanding the pathogenesis of
various diseases and establishing new treatments.
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