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Abstract: Deep learning (DL) is a distinct class of machine learning that has achieved first-class
performance in many fields of study. For epigenomics, the application of DL to assist physicians
and scientists in human disease-relevant prediction tasks has been relatively unexplored until
very recently. In this article, we critically review published studies that employed DL models to
predict disease detection, subtype classification, and treatment responses, using epigenomic data.
A comprehensive search on PubMed, Scopus, Web of Science, Google Scholar, and arXiv.org was
performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
guidelines. Among 1140 initially identified publications, we included 22 articles in our review. DNA
methylation and RNA-sequencing data are most frequently used to train the predictive models. The
reviewed models achieved a high accuracy ranged from 88.3% to 100.0% for disease detection tasks,
from 69.5% to 97.8% for subtype classification tasks, and from 80.0% to 93.0% for treatment response
prediction tasks. We generated a workflow to develop a predictive model that encompasses all
steps from first defining human disease-related tasks to finally evaluating model performance. DL
holds promise for transforming epigenomic big data into valuable knowledge that will enhance the
development of translational epigenomics.

Keywords: deep learning; epigenomics; disease detection; subtype classification; treatment response
prediction; systematic review

1. Introduction

Deep learning (DL) is a neural-network-based method that has multiple hidden lay-
ers [1] and is considered among the best paradigms of machine learning (ML) approaches
for classification and regression [2]. DL has achieved great successes in handling the exten-
sive heave of high dimensional and complex structured data of various fields of studies [3].
Because of its outstanding ability to solve tasks with higher accuracy than conventional
methods, in the last decade, DL has emerged an important role in bioinformatics and
systems biology to gain insights from an exponentially increasing amount of omics data [4].

Epigenetics was first introduced by Conrad Waddington in 1942 and has been widely
accepted as “the study of changes in gene function that are mitotically and/or meiotically
heritable and that do not entail a change in DNA sequence” [5], since then it has been
considered as a novel approach to manage many complex diseases [6]. The epigenomic
status of a cell or a tissue depends on a wide range of events such as DNA and histone
modification, which are influent by environmental factors [7]. A comprehensive genome-
wide catalog of epigenetic control elements and how this could be changed in different cell
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states can provide critical insights into the relationships among environmental exposure,
genotype, and phenotype [6]. Existing evidence highlighted an important role of epigenetic
biomarkers in a wide range of human diseases in terms of early detection, subtype classifi-
cation, prognosis, and predicting response to therapy [8–10]. For this reason, translational
epigenomics that ultimately seeks to leverage associations between epigenomic marks and
clinical outcomes has received great concern in recent years [11].

The dramatic development of epigenomics poses challenges for traditional analy-
sis methods in solving human diseases-related classification and regression tasks due
to the large volumes of high-dimensional and high-throughput data. To overcome this
issue, DL has been applied to take advantages of epigenomic data to assist medical pro-
fessionals and researchers in improving understanding of human diseases. Although
there have been a number of review papers regarding DL and epigenomics, only a lim-
ited number of review papers mentioned applicability of DL and epigenomics to clinical
practices. In the last five years, ten comprehensive review articles have been published
to shed the light on applications of DL to epigenomics [3,4,12–19] as presented in Table 1.
Zhang et al. [3] and Min et al. [4] provided a useful guideline which allows researchers
from various backgrounds to understand and utilize DL to solve omics-related problems,
whereas Talukder et al. [12] attempted to unbox the black-box nature of DL, increasing the
interpretability of DL in epigenomics. Nevertheless, these works focused on biological
mechanisms and model structures rather than clinical outcomes of human diseases. In the
same manner, previous reviews targeting cancer and rare diseases highlighted the promis-
ing ability of DL to elucidate the involvement of epigenomics in pathophysiology of human
diseases, fostering novel diagnostic tools as well as therapeutic avenues [13,14,17–19].
Rauschert et al. [15] and Holder et al. [16] emphasized potential clinical applications of
epigenetics and ML; however, the former only reviewed DNA methylation data, and the
latter only provided a list of diseases or medical conditions without a comprehensive
discussion. To conclude, there is a current gap of knowledge about the applicability of DL
to solve human disease-related tasks using epigenomic data.

As a dramatically accelerating pace of development was witnessed in the field of DL
and epigenomics for the last decade [3,4], we could foresee an exploration in integration
of the two fields of studies in the near future to assist physicians in clinical practices. The
primary reason for the delay of this trend could be a lack of communication between the
two fields. In particular, epigenomics researchers who have a great deal of data get used to
conventional statistical methods and mostly have no idea about how to make the best use
of the data with DL, whereas DL researchers are in the opposite condition. We expect that
our review is able to not only suggest fruitful collaborations between researchers in the
two fields but also bridge the gap to a certain extent, and thus foster the applications of DL
in translational epigenomics. In particular, our main perspectives include:

• Providing a thorough review about DL-based predictive models in epigenomics for
disease detection, subtype classification, and treatment response prediction.

• Giving an insight into the main characteristics of the most common epigenomic data
types and potential data sources, especially several publicly available databases, which
could be used to develop the predictive models.

• Discussing data preprocessing flows, DL architectures, DL libraries, and model evalu-
ation metrics that were feasible for epigenomics.

• Proposing current practical challenges and future trends of the development of epige-
nomic data-based DL techniques for translational medicine.
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Table 1. Summary of previous reviews about DL and epigenomics.

Research Title Main Findings

Zhang et al. (2019) [3] DL in Omics: A Survey and Guideline

• The combination between DL and omics is a novel promising approach, thus requires further
investigation.

• This survey summarizes several applications of DL in genomics, epigenomics, transcriptomics,
and proteomics, then provided a guideline for this topic.

Min et al. (2017) [4] DL in Bioinformatics

• Network architectures that have been utilized in bioinformatics include DNNs (MLP, SAE or
DBN), CNNs, RNNs, and emergent architectures (DST-NNs, MD-RNNs, and CAEs).

• Limitations of DL in omics studies are (1) limited and imbalanced data, (2) black-box problem,
and (3) selection of DL architecture and hyperparameters.

Talukder et al. (2020) [12] Interpretation of DL in Genomics and Epigenomics

• Various studies about motif finding, epigenomics, chromatin interaction prediction, gene
expression prediction as well as ncRNA identification and regulation utilized DL feature
interpretation techniques.

• The most popular methods for CNN-based DNNs interpretation include (1) input
modification methods, deconvolutional methods, and (3) input reconstruction methods,
whereas RNN-based DNNs frequently used attention mechanism along with other
interpretation methods.

Arslan et al. (2021) [13] ML in Epigenomics: Insights into Cancer Biology and
Medicine

• The complexity, sparsity, high-dimensionality, and noise of epigenomic data pose great
challenges for analysis.

• This review discusses our major ML categories including (1) dimensionality reduction, (2)
unsupervised methods, (3) supervised methods, and (4) DL.

• Non-negative matrix factorization is a popular clustering and dimensionality reduction
method in epigenomics.

Brasil et al. (2021) [14] Artificial Intelligence in Epigenetic Studies: Shedding
Light on Rare Diseases

• Applications of ML in epigenomic data analysis contribute to the improvement of diagnosis
rate, discovery of biomarkers, and development of potential therapy for rare diseases.

• Future studies should avoid misinterpretation of data.
• The small number of studies found suggests that this is a novel field of study open

to expansion.
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Table 1. Cont.

Research Title Main Findings

Rauschert et al. (2020) [15] ML and Clinical Eepigenetics: A Review of Challenges for
Diagnosis and Classification

• This review provides an overview of epigenomics and promising applicability of ML in
clinical practices.

• Several challenges remain to combine epigenetics with ML including (1) cross-jurisdiction
collaboration is needed to generate huge datasets, (2) the number of variables is larger than
that of samples, (3) non-linear associations in DNA methylation datasets, (4) epigenetic
datasets should be publicly available, and (5) prediction bias.

• DL outperforms traditional ML in terms of classification tasks. However, DL should only be
used as an assistive tool until what happens in the “black box” is defined.

Holder et al. (2017) [16] ML for Epigenetics and Future Medical Applications

• ML can be used in medical records, population-based epidemiology, and identification of
molecular information to assist the diagnosis and treatment of a wide range of diseases.

• The authors propose a combination of active learning, imbalanced class learning, and DL as a
promising direction toward future medical applications.

Fan et al. (2018) [17] ML Methods in Precision Medicine Targeting Epigenetic
Diseases

• This review provides a workflow of ML in epigenetics research.
• Supervised learning methods are commonly used for prediction, whereas unsupervised

learning methods are mostly used for data cleaning and feature extraction.
• Although ML has gained outstanding achievements in epigenetics studies related to precision

medicine, clinical applications is still far from the goal.

Iestao et al. (2021) [18]
Role of Regulatory Non-Coding RNAs in Aggressive
Thyroid Cancer: Prospective Applications of Neural

Network Analysis

• ncRNAs can be potentially used as biomarkers for diagnosis of thyroid cancer as well as
prediction of tumor aggressiveness.

• This review suggests an approach using DNNs to predict ncRNA molecular for early detection
and prognosis of thyroid cancer.

Jovčevska et al.(2020) [19] Next Generation Sequencing and ML Technologies Are
Painting the Epigenetic Portrait of Glioblastoma

• Epigenetics in glioblastoma is a novel approach that holds potential for identification of
clinical biomarkers for diagnosis or discovery of drug targets.

• Training ML and DL algorithms using next generation sequencing data can produce
comparable and consistent diagnoses without human errors, but still need to be improved to
adapt their results to the nature of the disease.

DL, deep learning; DNN, deep neural network; MLP, multi-layer perceptron; SAE, stacked auto-encoder; DBN, deep belief network; DST-NNs, deep spatio-temporal neural networks; MD-RNNs, multi-
dimensional recurrent neural networks; CAEs, convolutional auto-encoders; CNN, convolutional neural network; RNN, recurrent neural network; ML, machine learning; ncRNA, non-coding RNA.
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2. Materials and Methods

We conducted this review following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [20].

2.1. Search Strategy

A comprehensive search strategy on the PubMed, Web of Science, and Scopus databases
was developed to identify relevant articles published up to September 2021 without any
data restrictions. The search queries combined key words relating to DL (e.g., common
neural network architectures such as multi-layer perceptron, convolutional neural network,
recurrent neural network, and autoencoder) and epigenomic data (i.e., DNA methylation,
histone modification, and non-coding RNA). To identify additional relevant studies, we
also performed a manual search on Google Scholar and arVix.org as well as checked the
bibliography of the selected studies and key reviews.

2.2. Study Selection and Eligibility Criteria

After importing initially identified articles to EndNote X9, we removed duplicates
and then screened titles, abstracts, and full texts based on eligibility criteria as follows:

(1) DL models or predictive models that utilized DL as a component to solve human
diseases-related tasks;

(2) Prediction tasks directly targeted clinical outcomes of human diseases (i.e., dis-
ease detection, subtype classification, prognosis, and treatment response predic-
tion). We excluded articles that addressed biological mechanisms of diseases such
as genes and gene sets prediction, characterization of chromatin states, and miRNA-
disease associations.

(3) We focused on prediction applicability of epigenomic data including DNA methyla-
tion, histone modification, and non-coding RNA. Models using other omics data such
as genomics, proteomics, transcriptomics, or multi-omics data were deleted;

(4) Only original works were included. Reviews, commentaries, and editorials were excluded;
(5) Publications with unavailable full texts were discarded.

For works that were improved and published more than once, we selected the latest
publication only. Any disagreements among authors were solved by discussion until a
consensus was reached.

2.3. Data Extraction

We qualitatively synthesized the following data extracted from the included studies:
names of the first author, years of publication, countries, target diseases, prediction tasks,
types of data, data sources, data preprocessing methods, network architectures, validation
schemes, and model performance.

3. Results
3.1. Selection Results

The flow for study selection is presented in Figure 1. A total of 1806 studies were
initially identified. After removing 666 duplicates, at the title and abstract screening
step, we excluded 1016 articles that did not comply with the eligibility criteria. Full texts
of 124 articles were extracted and screened for further detail. We eventually included
22 studies in our review.
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3.2. An Overview of DL in Translational Epigenomics

Applications of DL to assist physicians and scientists in clinical settings using epige-
nomic data have been relatively unexplored until very recently. Except for one paper
published in 2016, 21 out of 22 papers reviewed were published in the last 5 years and a
majority of the models were developed by USA and China research teams [21–42]. This
suggests a novel field of study that gains an increasing interest. Among human disease-
related tasks, disease detection, subtype classification, and treatment response prediction
received great concerns. Existing evidence indicated that DL models in epigenomics for
solving the human disease-related tasks outperformed [23,24,29,41] or at least competitive
to traditional ML models [37]. Some predictive models in previous studies utilized DL as a
powerful component of a multi-step process [28–31,38,39]. About the epigenomic data type,
DNA methylation and RNA-sequencing (RNA-seq) data are most frequently used. Various
network architectures were employed such as multi-layer perceptron, autoencoder and its
variants, convolutional neural network, and deep belief network. Reviewed models yielded
high accuracy ranged from 88.3% to 100.0% for disease detection tasks [23,24,28–31], from
69.5% to 97.8% for subtype classification tasks [32,33,35–38,40], and from 80.0% to 93.0%
for treatment response prediction tasks [41,42].

3.2.1. DL in Epigenomics for Disease Detection

Until now, the predictive models using epigenomic data for disease detection pri-
marily aim to differentiate subjects with health problems from healthy controls. Table 2
summarizes the main characteristics of DL in epigenomics for human disease detection.
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Table 2. Comparison of DL models for disease detection using epigenomic data.

Research Country Target
Disease

Data Type Epigenomic Data
Source

Validation
Scheme

Predictive
Model

Evaluation Metrics

AUC Sensitivity Specificity Accuracy Precision F1-Score

Afshar et al.
(2019) [21] Iran Colorectal

cancer miRNA 50 CS and 150 NS
(GSE59856–GEO)

15% of the
dataset ANN 1.000 0.900 0.970 1.000 – –

Alizadeh
et al. (2020)

[22]

Iran Pancreatic
cancer miRNA

GSE113486;
GSE59856;
GSE85589;
GSE106817;
GSE112264;

GSE124158 (GEO)

5-fold CV on
training and
testing sets

ANN + PSO – 0.930 0.920 0.930 – –

Amor et al.
(2021) [25] Spain Breast

cancer DNAm
GSE32393;
GSE57285;

GSE50220 (GEO)

10% of the
dataset VAE – – – 0.993 – –

Bahado-
Singh et al.
(2020) [23]

USA Coarctation
of the aorta DNAm 24 cases and 16

controls

10-fold CV on
training set
(80% of the

dataset)

DNN 0.970 0.950 0.980 – – –

Bahado-
Singh et al.
(2020) [24]

USA Concussion DNAm 17 cases and 18
controls

10-fold CV on
training set
(80% of the

dataset)

DNN 0.989 0.950 0.912 – – –

Duan et al.
(2017) [26] China Lung

cancer DNAm 200 CS and 200 NS –
Back-

propagation
NN

0.760 – – – – –

Elias et al.
(2017) [27] USA Ovarian

cancer miRNA 179 human serum
samples

51 independent
clinical samples MLP 0.900 – 1.000 – 0.913 –

Liu et al.
(2019) [28]

China
Pan-cancer
(27 types)

DNAm
(CpG

markers) 10,140 CS and 3386
NS (TCGA and

GEO)

370/4840 CS,
201/1742 NS

Two
multi-layer

feedforward
NNs

0.989 0.928 0.901 0.924 – –

DNAm
(Promoter
markers)

0.985 0.898 0.811 0.883 – –
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Table 2. Cont.

Research Country Target
Disease

Data Type Epigenomic Data
Source

Validation
Scheme

Predictive
Model

Evaluation Metrics

AUC Sensitivity Specificity Accuracy Precision F1-Score

Si et al.
(2016) [29] China Breast

cancer DNAm 113 CS and 23 NS
(GSE32393–GEO) – Auto-encode

DNN + SOM – – – 0.971 – –

Xia et al.
(2019) [30]

China LUAD

DNAm

460 CS and 32 NS
(TCGA)

5-fold CV on
the whole
datasets

CNN based
ensemble

model

0.998 – – 0.994 – –

LIHC 379 CS and 50 NS
(TCGA) 0.994 – – 0.988 – –

KIRC 320 CS and 160 NS
(TCGA) 0.999 – – 0.996 – –

Zhang et al.
(2020) [31] China Schizophrenia DNAm 54 cases and 18

controls

10-fold CV on
the whole

dataset

Attention-
based FC +

DAE + SVM
– 0.998 0.988 0.991 – –

DNAm, DNA methylation; ncRNA, non-coding RNA; miRNA, microRNA; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; CV, cross-validation; CNN, convolutional neural network; DAE,
deep autoencoder; MLP, multilayer perceptron; LSTM, long short-term memory; ANN, artificial neural network; VAE, variational autoencoder; DBN, deep belief network; AUC, area under the receiver operator
characteristics curve; –, not available.
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Afshar et al. [21] and Alizadeh [22] proposed prediction toolboxes for colorectal and
pancreatic cancer diagnosis, respectively, using miRNA expression profiles. To select the
most important features for artificial neural networks (ANNs), Afshar et al. [21] calculated
miRNA scores by artificial neural network units [43], while Alizadeh [22] performed
particle swarm optimization (PSO). The two models achieved high performance, suggesting
that miRNAs can be used as a sensitive and specific diagnostic marker.

Bahado-Singh et al. [23,24] recently proved that deep neural networks (DNNs) ac-
curately predicted pediatric coarctation and concussion using DNA methylation data
obtained from blood samples. These models outperformed five other frequently used
ML approaches including random forest (RF), support vector machine (SVM), linear dis-
criminant analysis, prediction analysis for microarrays, and generalized linear model.
Interestingly, DL models using a combination of epigenomic and clinical markers yielded
higher predictive accuracy.

Amor et al. [25] and Si et al. [29] developed two-stage models to identify cancer
samples among normal samples using DNA methylation data. In both models, the dimen-
sionality reduction was performed using autoencoder (AE) structures which allowed to
extract features automatically. Si et al. [29] grouped extracted the features into cancer or
non-cancer using k-means, Gaussian mixture method, and self-organizing map (SOM),
while del Amor et al. [25] proposed a novel approach called deep embedded refined clus-
tering (DERC) that trained end-to-end optimizing the dimensionality reduction and the
unsupervised classification in the same step. These studies [25,29] found the followings:

• DNN-based extracted features were more effective for clustering analysis than those
extracted from the principal component analysis (PCA) and non-negative matrix
factorization (NMF),

• DNN and SOM outperformed previous probabilistic mixture methods [44–46],
• DERC achieved higher accuracy in breast cancer classification in comparison with

other models under the same conditions.

Duan et al. [26] indicated that using the relative telomere length along with three
gene promoter methylation levels, a back-propagation neural network predicted lung
cancer with an accuracy higher than that of the Fisher discrimination model. The statistical
analyses also strengthened associations between the four biomarkers and lung cancer.

Elias et al. [27] combined sequencing of circulating miRNA with a neural network for
diagnosis of epithelial ovarian cancer. The model showed several advantages over CA125,
a traditional diagnosis biomarker. In addition to outstanding performance in the prediction
regardless of patient age, histology, or stage, biologic relevance of the model was tested,
showing an intra-tumoral concentration of relevant miRNA.

Liu et al. [28] utilized the “moderated t-statistics” method [47] to discover 2000 CpG
markers and 2000 promoter markers with the most differential methylation-related expres-
sion before employing two ML strategies, least absolute shrinkage and selection operator
and RF, to identify final markers for each type. Two groups of methylation markers were
then separately used as input data for two multi-layer feedforward neural networks. Pre-
diction results show that cancer samples can be accurately distinguished from normal
samples by both types of markers. This also suggests that the studied sets of methylation
markers might be used for efficient and precise liquid biopsy of pan-cancers.

Xia et al. [30] proposed a convolutional neural network (CNN) based multi-model
ensemble method using DNA methylation data to predict lung adenocarcinoma, liver
hepatocellular carcinoma, and kidney clear cell carcinoma. Due to a small dataset scale
and high-dimensional samples, a t-test was first applied to select significantly different
methylation points. The selected features were subsequently fed into the first stage clas-
sification of five classical ML classifiers including Naïve Bayesian Classifier, k-Nearest
Neighbor, Decision Tree, RF, and Gradient Boosting Decision Tree. Because no classifier
outperformed the others in all the aspects, a CNN consisting of two convolution layers,
a max-pooling layer, and a fully-connected layer was constructed to stack the prediction
results of the multiple methods in the next step. The experiment results indicate that the
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proposed method is capable of uncovering the intricate relationship among the classifiers
automatically and achieve superior performances.

Zhang et al. [31] introduced an attention-based DL method to classify schizophre-
nia patients from healthy controls. Similar to the model proposed by Si et al. [29], DNA
methylation data were processed through a three-step flow that contains (1) feature sub-
set selection by an attention-based fully-connected network which is able to learn the
most important part of input data, (2) dimensionality reduction using deep autoencoder
(DAE), and (3) schizophrenia detection using linear SVM. Good performance of the pro-
posed method suggests a potential for schizophrenia classification on a real-world DNA
methylation dataset.

LUAD, lung adenocarcinoma; LIHC, liver hepatocellular carcinoma; KIRC, kidney
clear cell carcinoma; miRNA, microRNA; DNAm, DNA methylation; CS; cancer samples;
NS, normal samples; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus;
CV, cross-validation; NN, neural network; ANN, artificial neural network; PSO, particle
Swarm Optimization; DNN, deep neural network; VAE, variational autoencoder; MLP,
multi-layer perception; SOM, self-organizing map; CNN, convolutional neural network;
FC, fully-connected; DAE, deep autoencoder; SVM, support vector machine; AUC, area
under the receiver operator characteristics curve; –, not available.

3.2.2. DL in Epigenomics for Disease Subtype Classification

A majority of the predictive models for subtype classification have dealt with cancer.
This is partly due to the public availability of large datasets such as The Cancer Genome
Atlas (TCGA) and the Gene Expression Omnibus (GEO). Several research groups have
investigated the use of variational autoencoders (VAEs) for unsupervised feature learning
and dimensionality reduction as the first step in the subtype classification workflow. Table 3
presents applications of DL in epigenomics for disease subtype classification.

Al Mamun et al. [32] employed four DNNs (multi-layer perceptron (MLP), long short-
term memory, CNN, and DAE) to explore the capability of long non-coding RNA (lncRNA)
in classifying eight cancer types. CNN achieved the highest performance, while MLP
achieved the poorest performance. In general, good classification results obtained from
all models suggest that lncRNA expression is a significant feature to differentiate multiple
types of cancer.

Deep2Met model [33] received preprocessed DNA methylation beta-values as input
for a CNN consisting of five layers to predict whether cancer metastasized or not in a patient
with colorectal cancer. The proposed model achieved the area under the precision-recall
curve (AUPR), which was critical to estimate performance based on data with imbalanced
classes, of 96.99%, as well as high values of sensitivity, specificity, accuracy, precision, and
F-score. The results showed a promise for Deep2Met to diagnose colorectal cancer based
on the methylation profiles of individual patients.

A class-incremental learning approach called Deep Generative Feature Reply was
proposed for cancer classification tasks with superior accuracy [34]. The model is composed
of an incremental feature selection for selecting the most significant CpG sites and a scholar
network in which a VAE acted as a generator for generating pseudo data without accessing
past samples and a neural network classifier acted as a predictor for cancer types.

Laplante et al. [35] developed a DNN classifier with the first layer consisting of
1046 input neurons for each stem-loop miRNA count and the final layer consisting of
27 neurons for each different type of cancer. Tumors in 20 anatomical sites were classified
with 96.88% of accuracy, demonstrating the potential of miRNA data for an accurate
cancer localization.
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Table 3. Comparison of DL models for disease subtype classification using epigenomic data.

Research Country Target
Disease

Data Type Epigenomic Data
Source

Validation
Scheme

Predictive
Model

Evaluation Metrics

AUC Sensitivity Specificity Accuracy Precision F1-Score

Al Mamun
et al. (2019)

[32]
USA 8 types of

cancer
long

ncRNA
UCSC xena

(TCGA)

–

MLP – 0.929 – 0.937 0.932 0.939

LSTM – 0.952 – 0.956 0.951 0.951

CNN – 0.976 – 0.978 0.977 0.976

DAE – 0.959 – 0.964 0.961 0.960

Albaradei
et al. (2019)

[33]

Kingdom
of Saudi
Arabia

Colorectal
cancer DNAm 300 samples

(TCGA)
15% of the

dataset CNN – 0.967 0.958 0.962 0.904 0.947

Batbaatar
et al. (2020)

[34]

South
Korea

12 types of
cancer DNAm 2728 samples

(TCGA) –

An
incremental

feature
selection + a

scholar
network

– – – 0.932 – –

Laplante
et al. (2020)

[35]
Canada 27 types of

cancer
miRNA

stem-loops 8573 cases (TCGA) 15% of the
dataset ANN – 0.969 – 0.969 0.969 0.969

Levy et al.
(2020) [36] USA 32 types of

cancer DNAm 8891 samples
(TCGA)

20% of the
dataset VAE + MLP – 0.970 – 0.970 0.970 0.970

Smolander
et al. (2019)

[37]
Finland Lung

cancer ncRNA
62 cases and 62

controls
(GSE40419–GEO)

10-fold CV on
the whole

dataset
DBN 0.968 1.00 0.936 0.968 – –
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Table 3. Cont.

Research Country Target
Disease

Data Type Epigenomic Data
Source

Validation
Scheme

Predictive
Model

Evaluation Metrics

AUC Sensitivity Specificity Accuracy Precision F1-Score

Titus et al.
(2018) [38]

USA

Breast
cancer

DNAm

86 normal-adjacent
samples (TCGA)

Training/
validation =

90/10

VAE +
Logistic

regression
classifiers

– – – 0.961 – –

86 basal-like
samples (TCGA) – – – 0.944 – –

31 Her2 samples
(TCGA) – – – 0.961 – –

285 Luminal A
samples (TCGA) – – – 0.695 – –

124 Luminal B
samples (TCGA) – – – 0.843 – –

Wang et al.
(2019) [39]

China Lung
cancer

DNAm

507 LUAD samples
(TCGA) Training/

validation =
90/10

VAE +
Logistic

regression
classifiers

– 0.990 – – 0.920 0.960

412 LUSC samples
(TCGA) – 0.960 – – 0.990 0.970

Zheng et al.
(2020) [40] USA 18 types of

cancer DNAm 7339 samples
(TCGA)

10-fold CV on
training set
(60% of the

dataset)

MLP – 0.926 0.997 – 0.950 –
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MethylNet [36] is a DNA methylation-based DL method that is capable of automati-
cally constructing embeddings, making predictions, generating new data, and uncovering
unknown disease heterogeneity. With regard to its structure, first, VAE was used to pre-
train the DL model, which was to extract biologically meaningful features for clustering in
the unsupervised setting. Second, prediction layers were included to fine-tune the encoder
for tasks of multi-output regression and classification. Third, hyperparameter scans for
the feature extraction network and the prediction layers were performed to optimize the
model parameters. Eventually, predictions from MethylNet can be interpreted with two
approaches including (1) Shapley Feature Attribution methods (SHAP) based on the con-
tribution of the CpGs to each prediction and (2) comparing learned clusters of embedded
methylation samples with corresponding subtypes for biological plausibility.

Smolander et al. [37] are pioneers in using non-coding RNAs beyond miRNAs for the
classification of lung cancer patients with a deep belief network (DBN) and three state-of-
the-art ML methods. The DBN was developed following an unsupervised pre-training
phase with a restricted Boltzmann machine (RBM) and a supervised fine-tuning phase
using the stochastic gradient descent either in combination with the basic backpropagation
algorithm or the resilient backpropagation algorithm. Three main findings of this study
were; (1) a competitive performance of the DBN to other classifiers, (2) an outweighed
performance of the non-coding RNAs over coding RNAs, and (3) a negative effect of feature
selection on the classification performance.

Titus et al. [38] and Wang et al. [39] developed a similar pipeline for the classification of
breast cancer and lung cancer, respectively, using DNA methylation data. In further details,
after employing Tybalt, a VAE model, to learn latent features of input data, the authors
conducted dimensionality reduction using the t-distributed stochastic neighbor embedding
(t-SNE), and then trained logistic regression classifiers to classify samples into one of their
subtypes. The two studies demonstrated that the VAE provided a promising avenue for
subtypes identification in precision medical research when the volume of publicly available
methylation data is growing dramatically.

Zheng et al. [40] introduced a DNN-based classifier for cancer origin prediction using
DNA methylation data. Performance of the proposed model was evaluated using four
strategies including (1) 10-fold cross-validation, (2) hold-out testing data of 1468 patients,
(3) 143 metastasized cancer patients with 12 origins, and (4) an independent dataset
of 581 samples with 10 origins. All experiment results consistently showed a higher
performance than existing pathology and gene expression-based techniques (Table 3). In
addition, the DNA methylation-based DNN classifier had not only advantages of easy
implementation in clinical settings but also potential for diagnosis of both unknown
primary cancer and cancer cell types of circulating tumor cells.

3.2.3. DL in Epigenomics for Treatment Response Prediction

Treatment response prediction allows better personalized treatment, enhancing the
development of precision medicine. DL model using epigenomic data has seldom been
applied to predict treatment response, but interest in this approach has increased in re-
cent years.

Chang et al. [41] investigated the pathogenic mechanism and biomarkers for hepatitis
B virus drug development using a systematic approach based on big data mining and
genome-wide RNA-seq data. As a part of this approach, a fully-connected neural network
was employed to predict drug–target interactions. It outperformed three traditional ML
methods including RF, k-Nearest Neighbor, and SVM with an accuracy of 92.6% (Table 4).
In further detail, the network consisted of an input layer, four hidden layers, and an output
layer with only one neuron which predicted the probability of a relationship between a
drug and a target. This allowed the authors to focus on specific interactions, and thus to
filter promising drugs based on pharmacological properties of the predicted drugs such as
drug sensitivity, toxicity, and regulation ability.
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Table 4. Comparison of DL models for treatment response prediction using epigenomic data.

Research Country Target
Disease

Data Type Epigenomic Data
Source

Validation
Scheme

Predictive
Model

Evaluation Metrics

AUC Sensitivity Specificity Accuracy Precision F1-Score

Chang et al.
(2020) [41] Taiwan Hepatitis B RNA-seq GSE101575 (GEO)

10-fold CV on
the whole

dataset

FC neural
network 0.990 – – 0.926 – –

Morilla
et al. (2018)

[42]
France

Ulcerative
colitis

miRNA 47 samples
Leave-one-out
and K-fold CV
on 29 samples

DNN

– – – – – –

Steroids 0.910 – – 0.930 – –

Infliximab 0.820 – – 0.840 – –

Cyclosporine 0.790 – – 0.800 – –

miRNA, microRNA; RNA-seq, RNA sequencing; GEO, Gene Expression Omnibus; CV, cross-validation; DNN, deep neural network; FC, fully-connected; AUC, area under the receiver operator characteristics
curve; –, not available.
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Morrila et al. [42] developed a DNN-based classifier to predict responses to steroids,
cyclosporine, or infliximab in patients with acute severe ulcerative colitis using miRNA
expression profiles in colon tissues. Classification prediction of responders and non-
responders to each treatment was achieved from nine miRNAs and five clinical factors that
were routinely collected at the time of hospital admission with high accuracy as presented
in Table 4.

3.3. An Insight into Epigenomic Data Used to Train Predictive Models for Human Diseases
3.3.1. Types of Epigenomic Data

DNA methylation has been the most investigated epigenetic mechanism because of
its roles on gene expression regulation including X-chromosome inactivation and allele-
specific silencing of imprinted genes that are preferentially expressed from only one
of the parental copies [48,49]. Integration between traditional biochemical methodolo-
gies and novel bioinformatic analysis methods such as DL extended our understand-
ing for DNA methylation patterns in various types of human diseases such as can-
cer [25,26,28–30,33,34,36,39,40], concussion [21], schizophrenia [28], and cardiovascular dis-
eases [20]. Profiling DNA methylation at a genome-wide level could be conducted using
various types of sequencing technologies. Currently, the DNA methylation level is repre-
sented as beta-value, which is the ratio of methylation intensity to total methylation and
unmethylation intensities [50]. The beta-value of each CpG locus is calculated using the
following formula:

β =
max(IM, 0)

max(IM, 0) + max(IU , 0) + α
(1)

where IM and IU are the signal intensities representing methylation and unmethylation,
respectively; α is an arbitrary offset that is usually set equal to 100 to deal with the case
when fluorescent intensities are low [50]. According to this equation, the beta-value ranged
between 0 and 1, corresponding with the completely unmethylated and methylated CpG
site, respectively.

MicroRNAs (miRNAs) are endogenous small non-coding RNA molecules
(21–25 nucleotides) that can regulate gene expression [51]. In further detail, when a miRNA
interacts with its target messenger RNA (mRNA), usually in the 3′ untranslated region
(UTR), the miRNA induces degradation or translational repression of the target RNAs
depending on complete or incomplete complementarity, respectively. miRNAs are closely
related to small interfering RNAs that have been shown to be involved in two profound
epigenetic mechanisms, DNA methylation and histone modification [51]. Recent stud-
ies also found that miRNAs can be involved in establishing DNA methylation [52] and
regulate chromatin structure by regulating key histone modifiers [51]. For these reasons,
miRNAs can be considered to be important players in the epigenetic control of gene ex-
pression [53]. Reviewed studies proved their potential efficacy as non-invasive, specific,
and sensitive biomarkers for disease diagnosis [21,22,27], subtype classification [35], and
treatment response prediction [42].

As another class of non-coding RNAs, lncRNA is a single-stranded RNA with more
than 200 nucleotides that is frequently transcribed by RNA polymerase II. Although
lncRNAs biochemically resemble mRNAs, those molecules are not translated to protein,
but coordinate and manage genetic regulatory outputs [54]. lncRNAs were regarded as junk
in the past, but their molecular biological functions have received great concerns in recent
years [55]. This is attributable to two primary reasons; first, misexpression of lncRNAs can
cause changes in expression profiles of various target genes involved in human diseases,
especially cancer [56]; second, lncRNAs are stable in body fluids due to their secondary
structures [54]. With regard to the mechanism for how lncRNAs interfere with selective
regions of the genome, there are three primary hypotheses about their functions including,
(1) decoys that titrate away DNA-binding proteins (e.g., transcription factors), (2) scaffolds
that bring two or more proteins into a complex or spatial proximity, and (3) guides that
recruit proteins to DNA (e.g., through RNA–DNA interactions or RNA–DNA binding
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protein interactions) [54]. Taking the concept of lncRNAs as disease markers, Mamun et al.
used lncRNA expression data for eight cancers (bladder urothelial carcinoma, cervical
squamous cell carcinoma and endocervical adenocarcinoma, colon adenocarcinoma, head-
neck squamous cell carcinoma, kidney renal papillary cell carcinoma, low-grade glioma,
liver hepatocellular carcinoma, and lung adenocarcinoma) to develop DL models that were
able to differentiate multiple cancer types with high accuracy, from 94% to 98% [32].

Because histone proteins are tightly wrapped by double-stranded DNA in the nucleus
to compress DNA into chromatin, interaction between histones and DNA is crucial for
gene activity [57]. In further detail, since DNA binds to an octamer structure of the histone
complex, (H3, H4)2(H2A, H2B)2, histones may release or capture DNA to turn-on or turn-
off gene expression, respectively. Furthermore, post-translational modification on histone
proteins may change ionic charge around histone residues, affecting the histone–DNA inter-
action. Existing evidence proved that many human diseases are caused by mis-regulation
of histone markers [58]. Taking advantage of this, coupled with the advancements in
chromatin immunoprecipitation sequencing, several ML models were developed using
histone modification data to discover biological mechanisms of diseases [13]. However, to
the best of our knowledge, little has been known about applications of histone modification
to predict clinical outcomes.

3.3.2. Epigenomic Data Sources

Along with the rapid development of technologies profiling genome-wide sequencing,
epigenomic data has exploded over the past decade. Table 5 presents data sources most
frequently used to extract epigenomic data available for DL models.

Table 5. Comparison of epigenomic data sources used for training predictive models for translational epigenomics.

Characteristics
Common Public Databases

Private Dataset
The Cancer Genome Atlas Gene Expression Omnibus

Target disease Cancer only Various diseases Various diseases

Data type

Clinical, gene copy number, DNA,
imaging, methylation,

microsatellite instability,
microRNA, messenger RNA

expression, protein expression

Gene expression, non-coding RNA,
chromatin immunoprecipitation,
DNA methylation, real-time PCR,
genome variation profiling, single
nucleotide polymorphisms arrays,
serial analysis of gene expression,

protein array

Depends on study objective

Data format Raw, normalized, integrated data Both raw and processed data
submitted by the researchers Raw data

Data source Specific studies Samples collected directly
from patients

Epigenomic data sources can be grouped into public datasets (i.e., publicly available
and open access), which were contributed by specific studies, and private datasets (i.e.,
obtained from patients recruited in a specific study and for internal use only). Compared
with private datasets which offer researchers full right to access data, open access databases
have a limitation to access personal clinical data of interest which, in some cases, play
an important role in understanding epigenomic status of patients. Additionally, private
datasets are purpose-specific, whereas public datasets possibly lack data for several dis-
eases. On the other hand, due to limited resources, private datasets could be deficient
in diversity and number of patients compared to public databases. Because generalizing
biological interpretation in human diseases is crucial within age groups, cultural, and racial
variances, results from public datasets could have more reliable biological meaning than
private databases.
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DL researchers may collect epigenomic data from single or multiple data sources. The
most two common public databases for epigenomic data are TCGA and GEO. The TCGA
database was made by a joint effort of the National Cancer Institute and the National Hu-
man Genome Research Institute to generate comprehensive and multi-dimensional maps
of genomic changes on more than 11,000 cancer cases from 33 different cancer types [59].
A vast amount of DNA methylation and RNA-seq data are accessible to researchers be-
longing to the cancer research community through the Genomic Data Commons data
portal (https://portal.gdc.cancer.gov/ accessed on 27 October 2021). TCGA provides
three levels of data that are defined in terms of processing level (raw, normalized, or
integrated). Specifically, level 1 typically indicates raw and un-normalized data; level 2
typically indicates normalized and/or intermediately processed data; and level 3 typically
indicates integrated, normalized, and/or segmented data. The results of integrative or
pan-cancer analyses are sometimes referred as level 4. Of these, level 1 data account for the
vast majority.

The GEO database was launched in 2000 by the National Center for Biotechnology
Information (NCBI) as an international public repository for high-throughput genomic
datasets [60]. It accepts both raw and processed data obtained using a wide range of tech-
nologies, including DNA microarrays, high-throughput nucleic acid sequencing, protein
or tissue arrays, serial analysis of gene expression, and reverse transcription polymerase
chain reaction. Although approximately 90% of the data in GEO are gene expression data,
this database also provides comprehensive data sets for DNA methylation, RNA-seq, and
other types of omics.

Other online data platforms provide a number of qualified genome-wide and clinical
datasets. For instance, the current release of Epigenome-Wide Association Study (EWAS)
Data Hub (https://bigd.big.ac.cn/ewas/datahub accessed on 27 October 2021) provides a
collection of DNA methylation data from 75,344 samples, involving 67 diseases [61]. In
addition, appearance of novel web tools for genome-wide research would induce qualified
and user-friendly programs which might help extend researchers’ understanding about
epigenomic mechanisms of human diseases. For example, SurvivalMeth links clinical data
to DNA methylation of patients [62]. MethDB provides web analyzing tools for DNA
methylation; however, the site was barely updated [63].

3.4. A Workflow for Developing a Predictive Model in Translational Epigenomics

We summarized the reviewed models to generate a workflow for developing a pre-
dictive model that is able to solve human disease-related tasks using epigenomic data in
Figure 2. In this section, we focused on preprocessing methods, network architectures, DL
libraries, and evaluation metrics.

3.4.1. Data Preprocessing

Although DL models are capable of automatically learning the features of data, proper
preprocessing of the data can greatly improve the accuracy and speed of the DL model.
Data preprocessing includes several steps including importing data, summarizing and
plotting row data, imputing missing values, normalizing and standardizing, handling
outliers, analyzing data, and interpretation validating. The most commonly used prepro-
cessing methods for epigenomic data include data cleaning, normalization, dimensionality
reduction, and feature selection. A flow for raw data processing is presented in Figure 3.

https://portal.gdc.cancer.gov/
https://bigd.big.ac.cn/ewas/datahub
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Data cleaning improves the quality of data by detecting and removing errors and
irregularities caused by inconsistencies or misspellings during data entry, missing infor-
mation, and the integration of heterogeneous data sources [64]. In particular, with regard
to the DNA methylation data, researchers should consider missing data, gender-specific
methylation bias, and potential confounding factors. First, there are some solutions to
handle missing values such as filtering, replacing missing values by zero, replacing by
the mean or median value, and employing K-nearest neighbor imputation or expectation-
maximization. For the private datasets, missing values are mostly caused by a low level
of methylation (i.e., below the detection limit), and thus they are generally replaced with
half of the minimum value in the original data [23]. For the public datasets, the CpG sites
with missing values were deleted [28,31,33,39]. Second, to avoid potential gender-specific
methylation bias related to significant CpG sites on sex chromosomes, CpG probes on the
X and Y chromosomes were also removed [23,24,38,39,65]. Third, potential confounding
factors were minimized by excluding the CpG probes which have known single nucleotide
polymorphisms (SNPs) between 0 and 10 base pairs distance [23,24,38,39] because SNPs
near or within the probe sequence may influence corresponding methylated probes [66].
In relation with miRNA stem-loop counts obtained from public databases, high correla-
tions could be produced among some of the datasets. In such cases, the highly correlated
datasets were grouped together based on anatomical site [35]. Furthermore, for the miRNA
expression level, Afshar et al. [21] removed miRNAs with signal-to-noise ratio smaller
than or equal to 2.5, whereas Elias et al. [27] selected a detection threshold at 10 tags per
million read.
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Normalization and standardization are employed to adjust the measurements in order
to properly compare the samples. Data normalization involves the transformation of fea-
tures into a common range for greater numeric feature values not to dominate the smaller
numeric feature values, and thus minimizes the bias of these features [67]. There are two
types of normalization for epigenomic data including, (1) between-array normalization
removes technical artifacts which could be produced among the same samples on differ-
ent arrays and (2) within-array normalization corrects for intensity-related biases which
could be produced concentration-dependent [50]. To guarantee a correct normalization,
researchers should consider assumptions that go along with the normalization methods.
Among various methods for DNA methylation data, quantile normalization is one of
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the most commonly used techniques [26,68,69]. Following its popularity, many quantile
normalization-based variations such as subset-quantile within array normalization, strat-
ified quantile normalization, and beta-mixture quantile method have been developed;
however, all these methods assume that global methylation does not vary between sam-
ples [70]. On the other hand, RNA-seq data are frequently normalized by library size
(e.g., reads per kilobase million), by distribution (e.g., quantile normalization), by testing
(e.g., PoissonSeq), or by controls (e.g., housekeeping genes) [71]. Alizadeh et al. [22] and
Laplante et al. [35] utilized Min–Max Normalization, which transforms the minimum,
maximum, and remaining values into 0, 1, and decimals between 0 and 1, respectively, to
normalize the miRNA expression level.

The extremely high dimension of the epigenomic data yield many practical problems
in training DL models. First, various conventional dimensionality reduction methods
based on a Gaussian distribution assumption such as PCA [72] and NMF [73] cannot adapt
to epigenomic data which follow a non-Gaussian distribution. Second, a combination
of the high dimensionality and small sample sizes due to high cost and limitation of
experiment environment to obtain epigenomic data raises a great concern about the curse
of dimensionality [74] as well as overfitting problem [31], all of which can deteriorate
the performance of a DL model. Dimensionality reduction is the transformation of high-
dimensional data into low-dimensional data, which ideally correspond to the intrinsic
dimensionality of the data. The t-SNE method, a nonlinear dimensionality reduction
technique, is commonly used to compress features and visualize epigenomic data in two-
or three-dimensional spaces using a scatter plot [75]. Unsupervised hierarchical clustering
was then conducted on the t-SNE features for subtype classification [39].

Selecting a subset of features helps to decrease training time, increase model in-
terpretability, and generalize performance on the test set. There are three categories
of commonly used supervised feature selection methods including filter, wrapper, and
embedded [31]. For example, t-test, Wilcoxon rank sum, and F-test with a threshold of
p-value were applied to filter significant biomarkers [25,27,30,42]. Subsequently, the p-value
was adjusted using the Benjamini–Hochberg correction for false discovery rate [23,24,28].
Si et al. [29] and Batbaatar et al. [34] selected features based on variance-based filtering
techniques. Interestingly, an attention-based fully connected network for feature selection
was proposed to generate a sparse representation of the input features [31].

In recent years, several DL models such as autoencoder and its variants have been em-
ployed for both dimensionality reduction and feature selection [25,29,31,36,38,39]. Several
convenient high-throughput preprocessing workflows for epigenomic data were developed
to simplify and accelerate data preparation for training DL models. For example, PyMethyl-
Process, a preprocessing pipeline for DNA methylation data built using Python version 3.6,
allows users to control data quality (i.e., bead number, background correction, detection
p-value, and outlier), remove non-autosomal and SNP sites, normalize and impute data,
and eventually select appropriate features [74].

Following the above-mentioned steps, the dataset is randomly split into two groups
including a training set and a test set which, in most cases, contains 80% and 20% of the
study subjects, respectively. There are two common ways to select a validation set from the
training set to tune hyperparameters and select a model with the highest performance. The
first method is extracting 20% of data through random selection of the training set. The
second method is using cross-validation, a resampling technique that is the gold standard
for error estimations to avoid bias [76]. In specific, the training set is divided into k-folds
whereby (k-1) folds are used for training and one fold is used for testing.

3.4.2. Loss Function

The primary purpose of training a DL model is to minimize the loss function (i.e.,
the difference between the predicted value and the actual value) [77]. This task is done
using an algorithm, e.g., backpropagation, which propagates the prediction error of a
neural network backward, from the output layer to the input layer, so that weights of
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each connection can be adjusted [77,78]. There are heaps of loss functions for regression
and classification tasks. As all existing DL models for translational epigenomics dealt
with the latter [21–42], this section covers the most commonly used binary and multi-class
classification loss functions.

A prime representative of the classification loss functions is cross-entropy loss function
which was originated from the idea of entropy from information theory (i.e., the number of
bits required to transmit a randomly elected event from a probability distribution). It refers
to a measure of the difference between two probability distributions for a given random
variable or set of events and can be calculated as follows [79].

Loss = − ∑
xεclasses

P(x)· log(Q(x)), (2)

where P(x) is the true probability distribution, Q(x) is the predicted probability distribution.
Binary cross-entropy separately deals with each individual output whose value is

either 0 or 1, while categorical cross-entropy is designed for multi-class classification
with one-hot vector ground truth, meaning that only target class receives value 1 and all
remaining classes receive value 0. For instance, the output layer of the network proposed
by Laplante et al. [35] was composed of 27 neurons corresponding with 27 types of cancer.
A categorical cross-entropy loss function, coupled with sigmoid activation function which
generated the probability of a specific class, was employed to train the model.

As a side note, in the case that the classes are mutually exclusive and integer encoded,
a sparse categorical cross-entropy can be considered to be more beneficial than categorical
cross-entropy in terms of training time, memory, and computation.

In spite of being less common than the aforementioned multi-class classification loss
functions, Kullback–Leibler (KL) divergence loss, which is also known as relative entropy,
was also utilized in training DL models in epigenomics [25].

3.4.3. Network Architectures

An ANN is composed of nodes that are grouped into connected layers and take
the output from the last layer’s neurons through weighted connections [80]. The weight
matrix is optimized during the training procedure to minimize the difference between
the predicted values and the ground truths [81]. A DNN is basically an ANN of multiple
non-linear layers that is typically composed of an input layer, multiple hidden layers, and
an output layer. Each layer contains a number of computational units carrying out the
transformation of the data received from the previous layer, then passing the results to the
next layer. There are a wide variety of DNNs that have been applied in epigenomics to
solve human disease-related tasks, some of which are illustrated in Figure 4.

An MLP is also known as a multi-layer neural network that fully connects multiple
layers in a directed graph, meaning that the signal path through the nodes is always
feed-forward. Training an MLP involves constantly adjusting for weights of the network
using a backpropagation learning algorithm as a supervised learning technique so that an
optimized network can be established between the input and output layers [82]. Similar to
other pure supervised learning method, MLP requires a large amount of labelled data for
training. MLP is widely used when features are not related in time or space in epigenomic
studies. Mamun et al. [32] and Zheng et al. [40] employed MLP for classifying multiple
cancer types using lncRNA and DNA methylation data, respectively.
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Figure 4. DL architectures that have been applied in epigenomics to solve some human diseases-related prediction tasks.
(A) Multi-layer perceptron, (B) Autoencoder, (C) Variational autoencoder, (D) Convolutional neural network, (E) Deep
belief network.

An AE is a type of ANN that is typically designed for dimensionality reduction and
feature representation learning in an unsupervised manner before using other ML or DL
methods for prediction [83]. A basic AE is composed of encoding and decoding stages (also
known as encoder and decoder, respectively), which are separated by the central bottleneck.
While the encoder produces a code which is a low-dimensional latent representation of the
original input data, the decoder attempts to reconstruct the input from the code [84]. For
example, Zhang et al. applied a DAE, which is formed by stacking several AEs to reduce
the dimension of the features, then passed the vector output to a linear SVM for disease
classification [31].

A VAEs is an unsupervised learning model, which learns latent representations of
input data through data compression and nonlinear activation functions [85]. VAE models
are stochastic and learn the distribution of explanatory features over samples during
training. Tybalt, a commonly used VAE model trained on the TCGA data by Way et al. [86],
is capable of generating meaningful latent spaces for image and text data. It consists of
an Adam optimizer, Rectified Linear Unit (ReLU), and batch normalization in the encoder,
and a sigmoid activation in the decoder.

A CNN is also a feedforward neural network that uses convolution in place of general
matrix multiplication in at least one of layers [77]. A CNN typically consists of three com-
ponents including, (1) parallel convolution operations to produce a set of linear activations,
(2) a nonlinear activation function, and (3) a pooling function to modify the output of the
layer [87]. In further detail, convolution is central to any CNN and involves combining
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an input matrix with a kernel to produce an output feature map. Three most important
attributes of convolution include sparse interactions (i.e., making the kernel smaller than
the input), parameter sharing (i.e., using the same parameter for more than one function in
a model), and equivariant representations (i.e., if the input changes, the output changes in
the same way). The pooling function replaces the output of a net at a certain location with
a summary statistic of the nearby outputs, and thus, reduces the training parameters as
well as the degree of overfitting (i.e., the condition that a model fails to fit data properly or
predict future observations reliably because of excessive fitting of the training data). For
example, max pooling technique reports the maximum value within a rectangular cluster
of neurons in a feature map.

DBN that typically consists of several RBM layers for unsupervised pre-training and
one backpropagation layer for tuning parameters using labeled data (i.e., supervised fine-
tuning). Smolander et al. [37] compared the classification performance of different versions
of DBN with SVMs, decision trees, and RF for lung cancer using RNA-seq data and found
that DBN performed at least competitively to these ML classifiers.

A recurrent neural network (RNN) is a distinct class of ANNs characterized by the
existence of cycles in the networks that is typically due to edges that connect adjacent
time steps (recurrent edges). Nodes with incoming recurrent connections can receive as
input not only the current data point but also the values of hidden units from previous
time steps. This makes RNNs suitable to model data that are sequential in nature, such as
natural language or time series. For this reason, RNN has not been widely employed on
epigenomic data.

3.4.4. DL Libraries

Back to 1986 when DL was first being introduced, building a DL model was difficult
due to objective and subjective reasons including unabundant data, inadequate hardware
infrastructure, and numerous algorithmic details of a neural network that needed to
be considered [88]. The explosion of big data and advancement of hardware such as
graphics processing unit (GPU) have fostered the application of DL in the last decades.
To support researchers from various fields of study without a computing background to
take advantage of DL, numerous open-source and freely available DL libraries that are
capable of simplifying the process of developing a DL model have been created. Table 6
briefly describes several libraries for training the DL models that are widely adopted
in epigenomics. They are diverse in terms of function, programming language, neural
network type supported, and applicable operating system.

3.4.5. Model Evaluation Metrics

Existing DL-based predictive models for human disease-related tasks including dis-
ease detection, subtype classification, and treatment response prediction primarily dealt
with classification tasks whose outcome is basically a discrete variable [21–42]. Table 7
summarizes the main characteristics of common metrics used to evaluate the classification
performance of a DL model.
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Table 6. Comparison of libraries used for training a DL model.

Library Brief Description Creator Programming Language Operating System Links
(accessed on 27 October 2021)

Deeplearning4J Supports all the needs of the based
DL application Skymind Python, Java, Scala, C++, C,

CUDA Linux, Win, OSX, Android deeplearning4j.org

Keras Focuses on enabling fast
experimentation Franois Chollet Python, R, CUDA Linux, Win, OSX

keras.io
cran.r-

project.org/web/packages/keras/

H2O

The scalable open-source machine
learning platform that offers

parallelized implementation of
many supervised and

unsupervised learning algorithms

Erin LeDell et al. R, Java Win, OSX, Ubuntu cran.r-project.org/web/
packages/h2o

PyTorch
An optimized tensor library for DL

using graphics processing units
and central processing units

Facebook Python, CUDA, C++ Linux, Win, OSX pytorch.org

TensorFlow Has a comprehensive and flexible
suite of tools Google Python, C++, GO, Java, R,

CUDA Linux, Win, OSX, Android tensorflow.org
tensorflow.rstudio.com

Scikit-learn
Provides many supervised and

unsupervised learning algorithms
via a consistent interface

David Cournapeau et al. Python, C, C++, Cython Linux, Win, OSX scikit-learn.org

DL, deep learning.
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Table 7. Strengths and limitations of common evaluation metrics for classification performance of a DL model.

Evaluation Metric Definition Strength Limitation

Accuracy

Fraction of correctly classified instances in the
test set. A complement to the error-rate that
measures fraction of the instances from the
test set that are misclassified by the learning
algorithm.

Summarize the overall performance.

Not relevant when either the performance on
different classes is of varying importance or
the distribution of instances in the different
classes of the test data is skewed.

True positive rate (Sensitivity or recall) Proportion of actual positives which are
correctly identified.

Ameliorates the effect of class imbalance
arising in the accuracy or error-rate
measurements thereby skewing these
estimates.

In the case of a multiclass classification
problem, this would lead to as many metrics
as there are classes, making it difficult to
interpret.True negative rate (Specificity) Proportion of actual negatives which are

correctly identified.

Positive predictive value (Precision)
Proportion of relevant examples (true
positives) among all of the examples which
were predicted to belong in a certain class.

Gives an insight into how reliable the
class-wise predictions of a classifier is.

Might not provide enough information for a
concrete judgment call on the superiority of
the classifier in one case or the other.

F-score

An even weighted harmonic mean of
precision and recall.
The most commonly used metric is F1-score
that weights the recall and precision of the
classifier evenly.

Leaves out the true-negative performance of
the classifier.

Ignores true negatives and thus is misleading
for unbalanced classes.
Appropriate weights for combining the
precision and recall are generally not known.

Receiver operator characteristics (ROC) curve
A plot which takes true positive rate as the
vertical axis and false positive rate as the
horizontal axis.

Visualizes the performance of classifiers over
their operating ranges.

Unable to quantify the comparative analysis
that can facilitate decision making with regard
to the suitability or preference of one classifier
over others in the form of an objective scalar
metric.

Area under the ROC curve (AUC) Entire two dimensional area underneath the
entire ROC curve.

Provides an aggregate measure of
performance across all possible classification
thresholds.

Loses significant information about the
behavior of the learning algorithm over the
entire operating range.
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4. Challenges and Future Research Directions

In recent years, following the great successes of DL in bioinformatics, numerous
researchers have applied DL methods to epigenomics to solve problems related to human
diseases. However, this research topic is still in an early stage with target diseases primarily
focusing on cancer and prediction models mostly dealing with disease detection and
subtype classification tasks. Further investigation on other chronic diseases and prediction
tasks related with prognosis and treatment response should be taken into consideration.

One of the biggest challenges for developing a DL model in epigenomics is the limited
and imbalanced data because sufficient and balanced data are required to achieve a well-
performed model with a tremendous number of weight parameters [89]. This challenge can
be alleviated by increasing the sample size. However, it does not hold in the epigenomic
field because complex and expensive data acquisition processes cause difficulties in getting
reliable and big data on demand. For this reason, potential alternative methods are divided
into three main groups including (1) data preprocessing which typically provides a better
dataset, (2) cost-sensitive learning which replaces the objective loss function based on data
classes during training, and (3) algorithmic modification which accommodates the learning
algorithm to increase their suitability [89]. Of these, the currently reviewed models for
human diseases cover mostly applied feature selection, which is a data preprocessing
method, to alleviate curse of dimensionality and overfitting problem, and thus to improve
the performance.

In this review, we did not deal with multi-omics data because of challenges in combin-
ing heterogeneous data which were obtained using different processing methods. Existing
evidence suggests that DL models combining data in various formats could hold great
promises in predicting disease diagnosis, classification, and treatment outcomes. For
example, DNA methylation, miRNA, and gene expression data can be used to predict
paclitaxel response among patients with breast cancer [90], survival in liver cancer [91],
and metastasis status of various types of cancers [92]. Park et al. [93], Hira et al. [94], and
Baek et al. [95] found that prediction models for Alzheimer’s disease, ovarian cancer, and
prognosis for different cancer types, respectively, using multi-omics data yielded higher
accuracy compared with prediction models solely using DNA methylation data. These
results were consistent with findings obtained from DL models using DNA methylation
data with clinical data [23,24]. Nevertheless, it is worth noting that there may raise a
question about the interpretation of the prediction results with regard to contribution of
each type of data.

Although DL produces outstanding performance in predicting disease detection, sub-
type classification, and treatment response, little has been known about how prediction
results are generated, raising a great concern about a lack of interpretability [4]. This
black-box nature of DL limits its application to health-related problems because for clin-
ical practices, understanding mechanisms of how to produce good prediction results is
as important as producing them [96]. Furthermore, despite an extensive use of public
epigenomic datasets, validating a published model in terms of reproducibility, replicability,
and generalizability seems to be impossible due to a lack of code sharing. For these reasons,
transition from research to clinical setting of the reviewed models requires careful con-
sideration and adequate descriptions for validation. Recently, great effort has been made
to transform DL from a black-box into a white-box using visualization approaches [97].
Zheng et al. [40] suggested that a hybrid approach combining existing pathological ex-
aminations with epigenomic data-based prediction may offer both high interpretability
and high prediction power. In addition, discovering biomarkers that are able to explain
pathogenic mechanism for drug response may partially contribute to the applicability of DL
model to pharmacology, as described in the work of Chang et al. [41]. To a certain degree,
MethylNet is capable of interpreting prediction results using two approaches including (1)
SHAP and (2) comparing learned clusters of embedded methylation samples with corre-
sponding subtypes [36]. Even so, the interpretation of DL models towards applicability to
medicine is still far from the goal.
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Selecting an appropriate DL architecture that fits input data characteristics and re-
search objectives is of primary importance to obtain robust and reliable results. However,
up to now, a detailed methodology for model selection remains as a practical issue that
requires further investigation. This issue may be partially addressed by comparing per-
formance of several published models with diverse types of architectures in respect of
solving similar tasks. More importantly, even when a DL architecture is selected, there
are a great number of hyperparameters needed to be set beforehand. However, tuning
hyperparameters is mostly subjective and rarely thorough, highlighting an important role
of DL experts. This inhibits researchers in the field of epigenomics who may only have
basic computational expertise to optimize DL models. Therefore, automatically optimizing
hyperparameters is attracting great attention [98]. Furthermore, although having numerous
learning parameters is a great advantage of DL to improve the performance, it poses a
risk for overfitting, especially when the number of parameters is large and the dataset is
small [99]. Another issue with regard to parameters and hyperparameters that should be
taken into consideration is that a drastic increase in training and inference times of DL, com-
pared with those of traditional ML models, emphasizes an urgent need for DL acceleration.
Fortunately, advanced developments of DL algorithms and GPU-based implementation
have enabled DL to run in a much shorter time. However, as epigenomic data is growing
at a fast pace, novel DL frameworks should be further investigated to improve training
efficiency and prediction accuracy.

5. Conclusions

In this article, we systematically reviewed 22 DL-based predictive models for human
disease detection, subtype classification, and treatment response prediction using epige-
nomic data. Our summaries and comparisons in terms of prediction tasks, data types,
data sources, neural network architectures, model structures, and prediction performance
could be useful for interested researchers to develop and/or improve their models properly.
Such pioneer models outperform traditional ML models, holding a great potential for their
applicability in the clinical settings in the future. However, actual applications are still far
from the reality due to a lack of validation replicated and insufficient interpretability. There
is still room for improving predictive models by increasing the interpretability of DL and
developing a detailed methodology for model selection. This review may strengthen the
bridge between DL and epigenomics, and thus foster the applications of DL in translational
epigenomics in the near future.

Author Contributions: Conceptualization, T.M.N. and J.H.K.; methodology, T.M.N.; study selection
and data synthesis, T.M.N., N.K., D.H.K., and H.L.L.; writing—original draft preparation, T.M.N.;
writing—review and editing, J.H.K., M.J.P., and S.-J.U. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Ministry of Education, Republic of Korea (grant numbers:
2019R1I1A2A01050001 and 2019H1A2A1076515).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank Tu-Anh Tran (the University of Tokyo) for comments on
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.



Biomedicines 2021, 9, 1733 28 of 31

References
1. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep con-

volutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.
[CrossRef]

2. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach.
Intell. 2013, 35, 1798–1828. [CrossRef]

3. Zhang, Z.; Zhao, Y.; Liao, X.; Shi, W.; Li, K.; Zou, Q.; Peng, S. Deep learning in omics: A survey and guideline. Brief. Funct. Genom.
2019, 18, 41–57. [CrossRef] [PubMed]

4. Min, S.; Lee, B.; Yoon, S. Deep learning in bioinformatics. Brief. Bioinform. 2017, 18, 851–869. [CrossRef] [PubMed]
5. Wu, C.; Morris, J.R. Genes, genetics, and epigenetics: A correspondence. Science 2001, 293, 1103–1105. [CrossRef]
6. Zoghbi, H.Y.; Beaudet, A.L. Epigenetics and human disease. Cold Spring Harb. Perspect. Biol. 2016, 8, a019497. [CrossRef]
7. Tollefsbol, T.O. Chapter 1—An Overview of Epigenetics. In Handbook of Epigenetics, 2nd ed.; Academic Press: Cambridge, MA,

USA, 2017; pp. 1–6.
8. Jung, M.; Pfeifer, G.P. CpG Islands. In Brenner’s Encyclopedia of Genetics, 2nd ed.; Academic Press: San Diego, CA, USA,

2013; pp. 205–207.
9. Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. miRNAs

as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020, 9, 276. [CrossRef]
10. Garcia-Gimenez, J.L.; Seco-Cervera, M.; Tollefsbol, T.O.; Roma-Mateo, C.; Peiro-Chova, L.; Lapunzina, P.; Pallardo, F.V. Epigenetic

biomarkers: Current strategies and future challenges for their use in the clinical laboratory. Crit. Rev. Clin. Lab. Sci. 2017,
54, 529–550. [CrossRef]

11. Replogle, J.M.; De Jager, P.L. Epigenomics in translational research. Transl. Res. 2015, 165, 7–11. [CrossRef] [PubMed]
12. Talukder, A.; Barham, C.; Li, X.; Hu, H. Interpretation of deep learning in genomics and epigenomics. Brief. Bioinform. 2020,

22, bbaa177. [CrossRef]
13. Arslan, E.; Schulz, J.; Rai, K. Machine learning in epigenomics: Insights into cancer biology and medicine. Biochim. Biophys. Acta

Rev. Cancer 2021, 1876, 188588. [CrossRef] [PubMed]
14. Brasil, S.; Neves, C.J.; Rijoff, T.; Falcao, M.; Valadao, G.; Videira, P.A.; Dos Reis Ferreira, V. Artificial intelligence in epigenetic

studies: Shedding light on rare diseases. Front. Mol. Biosci. 2021, 8, 648012. [CrossRef]
15. Rauschert, S.; Raubenheimer, K.; Melton, P.E.; Huang, R.C. Machine learning and clinical epigenetics: A review of challenges for

diagnosis and classification. Clin. Epigenet. 2020, 12, 51. [CrossRef] [PubMed]
16. Holder, L.B.; Haque, M.M.; Skinner, M.K. Machine learning for epigenetics and future medical applications. Epigenetics 2017,

12, 505–514. [CrossRef]
17. Fan, S.; Chen, Y.; Luo, C.; Meng, F. Machine learning methods in precision medicine targeting epigenetic diseases. Curr. Pharm.

Des. 2018, 24, 3998–4006. [CrossRef] [PubMed]
18. Iesato, A.; Nucera, C. Role of regulatory non-coding RNAs in aggressive thyroid cancer: Prospective applications of neural

network analysis. Molecules 2021, 26, 3022. [CrossRef]
19. Jovcevska, I. Next generation sequencing and machine learning technologies are painting the epigenetic portrait of glioblastoma.

Front. Oncol. 2020, 10, 798. [CrossRef] [PubMed]
20. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Grp, P. Preferred reporting items for systematic reviews and meta-analyses: The

PRISMA statement. Bmj-Brit. Med. J. 2009, 339, b2535. [CrossRef]
21. Afshar, S.; Afshar, S.; Warden, E.; Manochehri, H.; Saidijam, M. Application of artificial neural network in miRNA biomarker

selection and precise diagnosis of colorectal cancer. Iran Biomed. J. 2019, 23, 175–183. [CrossRef]
22. Alizadeh Savareh, B.; Asadzadeh Aghdaie, H.; Behmanesh, A.; Bashiri, A.; Sadeghi, A.; Zali, M.; Shams, R. A machine learning

approach identified a diagnostic model for pancreatic cancer through using circulating microRNA signatures. Pancreatology 2020,
20, 1195–1204. [CrossRef]

23. Bahado-Singh, R.O.; Vishweswaraiah, S.; Aydas, B.; Yilmaz, A.; Saiyed, N.M.; Mishra, N.K.; Guda, C.; Radhakrishna, U. Precision
cardiovascular medicine: Artificial intelligence and epigenetics for the pathogenesis and prediction of coarctation in neonates. J.
Matern.-Fetal Neonatal Med. 2020, 4, 1–8. [CrossRef] [PubMed]

24. Bahado-Singh, R.O.; Vishweswaraiah, S.; Er, A.; Aydas, B.; Turkoglu, O.; Taskin, B.D.; Duman, M.; Yilmaz, D.; Radhakrishna,
U. Artificial intelligence and the detection of pediatric concussion using epigenomic analysis. Brain Res. 2020, 1726, 146510.
[CrossRef] [PubMed]

25. Del Amor, R.; Colomer, A.; Monteagudo, C.; Naranjo, N. A deep embedded refined clustering approach for breast cancer
distinction based on DNA methylation. Neural Comput. Appl. 2021. [CrossRef]

26. Duan, X.R.; Yang, Y.L.; Tan, S.J.; Wang, S.H.; Feng, X.L.; Cui, L.X.; Feng, F.F.; Yu, S.C.; Wang, W.; Wu, Y.J. Application of artificial
neural network model combined with four biomarkers in auxiliary diagnosis of lung cancer. Med. Biol. Eng. Comput. 2017,
55, 1239–1248. [CrossRef] [PubMed]

27. Elias, K.M.; Fendler, W.; Stawiski, K.; Fiascone, S.J.; Vitonis, A.F.; Berkowitz, R.S.; Frendl, G.; Konstantinopoulos, P.; Crum,
C.P.; Kedzierska, M.; et al. Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer. Elife 2017,
6, e28932. [CrossRef] [PubMed]

http://doi.org/10.1109/TPAMI.2017.2699184
http://doi.org/10.1109/TPAMI.2013.50
http://doi.org/10.1093/bfgp/ely030
http://www.ncbi.nlm.nih.gov/pubmed/30265280
http://doi.org/10.1093/bib/bbw068
http://www.ncbi.nlm.nih.gov/pubmed/27473064
http://doi.org/10.1126/science.293.5532.1103
http://doi.org/10.1101/cshperspect.a019497
http://doi.org/10.3390/cells9020276
http://doi.org/10.1080/10408363.2017.1410520
http://doi.org/10.1016/j.trsl.2014.09.011
http://www.ncbi.nlm.nih.gov/pubmed/25445204
http://doi.org/10.1093/bib/bbaa177
http://doi.org/10.1016/j.bbcan.2021.188588
http://www.ncbi.nlm.nih.gov/pubmed/34245839
http://doi.org/10.3389/fmolb.2021.648012
http://doi.org/10.1186/s13148-020-00842-4
http://www.ncbi.nlm.nih.gov/pubmed/32245523
http://doi.org/10.1080/15592294.2017.1329068
http://doi.org/10.2174/1381612824666181112114228
http://www.ncbi.nlm.nih.gov/pubmed/30421670
http://doi.org/10.3390/molecules26103022
http://doi.org/10.3389/fonc.2020.00798
http://www.ncbi.nlm.nih.gov/pubmed/32500035
http://doi.org/10.1136/bmj.b2535
http://doi.org/10.29252/ibj.23.3.175
http://doi.org/10.1016/j.pan.2020.07.399
http://doi.org/10.1080/14767058.2020.1722995
http://www.ncbi.nlm.nih.gov/pubmed/32019381
http://doi.org/10.1016/j.brainres.2019.146510
http://www.ncbi.nlm.nih.gov/pubmed/31628932
http://doi.org/10.1007/s00521-021-06357-0
http://doi.org/10.1007/s11517-016-1585-7
http://www.ncbi.nlm.nih.gov/pubmed/27766520
http://doi.org/10.7554/eLife.28932
http://www.ncbi.nlm.nih.gov/pubmed/29087294


Biomedicines 2021, 9, 1733 29 of 31

28. Liu, B.; Liu, Y.; Pan, X.; Li, M.; Yang, S.; Li, S.C. DNA methylation markers for pan-cancer prediction by deep learning. Genes
2019, 10, 778. [CrossRef] [PubMed]

29. Si, Z.; Yu, H.; Ma, Z. Learning deep features for DNA methylation data analysis. IEEE Access 2016, 4, 2732–2737. [CrossRef]
30. Xia, C.; Xiao, Y.; Wu, J.; Zhao, X.; Li, H. A convolutional neural network based ensemble method for cancer prediction using DNA

methylation data. In Proceedings of the 2019 11th International Conference on Machine Learning and Computing, Zhuhai, China,
22–24 February 2019; pp. 191–196.

31. Zhang, M.; Pan, C.; Liu, H.; Zhang, Q.; Li, H. An attention-based deep learning method for schizophrenia patients classification
using DNA methylation data. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 172–175. [CrossRef]

32. Al Mamun, A.; Mondal, A.M. Long non-coding RNA based cancer classification using deep neural networks. In Proceedings of
the ACM-BCB 2019—10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics,
Niagara Falls, NY, USA, 7–10 September 2019; p. 541.

33. Albaradei, S.; Thafar, M.; Van Neste, C.; Essack, M.; Bajic, V.B. Metastatic state of colorectal cancer can be accurately predicted
with methylome. In Proceedings of the 2019 6th International Conference on Bioinformatics Research and Applications, Seoul,
Korea, 19–21 December 2019; pp. 125–130.

34. Batbaatar, E.; Park, K.H.; Amarbayasgalan, T.; Davagdorj, K.; Munkhdalai, L.; Pham, V.H.; Ryu, K.H. Class-incremental learning
with deep generative feature replay for DNA methylation-based cancer classification. IEEE Access 2020, 8, 210800–210815.
[CrossRef]

35. Laplante, J.F.; Akhloufi, M.A. Predicting cancer types from miRNA stem-loops using deep learning. In Proceedings of the 2020
42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada,
20–24 July 2020; pp. 5312–5315. [CrossRef]

36. Levy, J.J.; Titus, A.J.; Petersen, C.L.; Chen, Y.; Salas, L.A.; Christensen, B.C. MethylNet: An automated and modular deep learning
approach for DNA methylation analysis. BMC Bioinform. 2020, 21, 108. [CrossRef]

37. Smolander, J.; Stupnikov, A.; Glazko, G.; Dehmer, M.; Emmert-Streib, F. Comparing biological information contained in mRNA
and non-coding RNAs for classification of lung cancer patients. BMC Cancer 2019, 19, 1176. [CrossRef]

38. Titus, A.J.; Bobak, C.A.; Christensen, B.C. A new dimension of breast cancer epigenetics applications of variational autoencoders
with DNA methylation. In Proceedings of the BIOINFORMATICS 2018—9th International Conference on Bioinformatics Models,
Methods and Algorithms, Proceedings; Part of 11th International Joint Conference on Biomedical Engineering Systems and
Technologies, BIOSTEC 2018, Funchal, Portugal, 19–21 January 2018; pp. 140–145.

39. Wang, Z.; Wang, Y. Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders. BMC Bioinform.
2019, 20, 568. [CrossRef] [PubMed]

40. Zheng, C.; Xu, R. Predicting cancer origins with a DNA methylation-based deep neural network model. PLoS ONE 2020,
15, e0226461. [CrossRef] [PubMed]

41. Chang, S.; Wang, L.H.-C.; Chen, B.-S. Investigating core signaling pathways of hepatitis b virus pathogenesis for biomarkers
identification and drug discovery via systems biology and deep learning method. Biomedicines 2020, 8, 320. [CrossRef] [PubMed]

42. Morilla, I.; Uzzan, M.; Laharie, D.; Cazals-Hatem, D.; Denost, Q.; Daniel, F.; Belleannee, G.; Bouhnik, Y.; Wainrib, G.; Panis, Y.; et al.
Colonic microrna profiles, identified by a deep learning algorithm, that predict responses to therapy of patients with acute severe
ulcerative colitis. Clin. Gastroenterol. Hepatol. 2019, 17, 905–913. [CrossRef] [PubMed]

43. Zhu, W.; Kan, X. Neural network cascade optimizes microRNA biomarker selection for nasopharyngeal cancer prognosis. PLoS
ONE 2014, 9, e110537. [CrossRef] [PubMed]

44. Ma, Z.; Teschendorff, A.E.; Leijon, A.; Qiao, Y.; Zhang, H.; Guo, J. Variational bayesian matrix factorization for bounded support
data. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 876–889. [CrossRef]

45. Taghia, J.; Leijon, A. Variational inference for watson mixture model. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1886–1900.
[CrossRef]

46. Ma, Z.; Leijon, A. Bayesian estimation of beta mixture models with variational inference. IEEE Trans. Pattern Anal. Mach. Intell.
2011, 33, 2160–2173. [CrossRef]

47. Gentleman, R.; Carey, V.; Huber, W.; Irizarry, R.; Dudoit, S. Bioinformatics and Computational Biology Solutions Using R and
Bioconductor; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006.

48. Acurzio, B.; Verma, A.; Polito, A.; Giaccari, C.; Cecere, F.; Fioriniello, S.; Della Ragione, F.; Fico, A.; Cerrato, F.; Angelini, C.; et al.
Zfp57 inactivation illustrates the role of ICR methylation in imprinted gene expression during neural differentiation of mouse
ESCs. Sci. Rep. 2021, 11, 13802. [CrossRef]

49. Paulsen, M.; Ferguson-Smith, A.C. DNA methylation in genomic imprinting, development, and disease. J. Pathol. 2001,
195, 97–110. [CrossRef]

50. Siegmund, K.D. Statistical approaches for the analysis of DNA methylation microarray data. Hum. Genet. 2011, 129, 585–595.
[CrossRef] [PubMed]

51. Humphries, B.; Wang, Z.; Yang, C. MicroRNA regulation of epigenetic modifiers in breast cancer. Cancers 2019, 11, 897. [CrossRef]
52. Wang, S.; Wu, W.; Claret, F.X. Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics 2017,

12, 187–197. [CrossRef] [PubMed]
53. Chuang, J.C.; Jones, P.A. Epigenetics and microRNAs. Pediatr. Res. 2007, 61, 24–29. [CrossRef] [PubMed]

http://doi.org/10.3390/genes10100778
http://www.ncbi.nlm.nih.gov/pubmed/31590287
http://doi.org/10.1109/ACCESS.2016.2576598
http://doi.org/10.1109/embc44109.2020.9175934
http://doi.org/10.1109/ACCESS.2020.3039624
http://doi.org/10.1109/embc44109.2020.9176345
http://doi.org/10.1186/s12859-020-3443-8
http://doi.org/10.1186/s12885-019-6338-1
http://doi.org/10.1186/s12859-019-3130-9
http://www.ncbi.nlm.nih.gov/pubmed/31760935
http://doi.org/10.1371/journal.pone.0226461
http://www.ncbi.nlm.nih.gov/pubmed/32384093
http://doi.org/10.3390/biomedicines8090320
http://www.ncbi.nlm.nih.gov/pubmed/32878239
http://doi.org/10.1016/j.cgh.2018.08.068
http://www.ncbi.nlm.nih.gov/pubmed/30223112
http://doi.org/10.1371/journal.pone.0110537
http://www.ncbi.nlm.nih.gov/pubmed/25310846
http://doi.org/10.1109/TPAMI.2014.2353639
http://doi.org/10.1109/TPAMI.2015.2498935
http://doi.org/10.1109/TPAMI.2011.63
http://doi.org/10.1038/s41598-021-93297-3
http://doi.org/10.1002/path.890
http://doi.org/10.1007/s00439-011-0993-x
http://www.ncbi.nlm.nih.gov/pubmed/21519831
http://doi.org/10.3390/cancers11070897
http://doi.org/10.1080/15592294.2016.1273308
http://www.ncbi.nlm.nih.gov/pubmed/28059592
http://doi.org/10.1203/pdr.0b013e3180457684
http://www.ncbi.nlm.nih.gov/pubmed/17413852


Biomedicines 2021, 9, 1733 30 of 31

54. Rinn, J.L.; Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166. [CrossRef]
55. Shi, T.; Gao, G.; Cao, Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis. Mark.

2016, 2016, 9085195. [CrossRef] [PubMed]
56. Cheetham, S.W.; Gruhl, F.; Mattick, J.S.; Dinger, M.E. Long noncoding RNAs and the genetics of cancer. Br. J. Cancer 2013,

108, 2419–2425. [CrossRef]
57. Armeev, G.A.; Kniazeva, A.S.; Komarova, G.A.; Kirpichnikov, M.P.; Shaytan, A.K. Histone dynamics mediate DNA unwrapping

and sliding in nucleosomes. Nat. Commun. 2021, 12, 2387. [CrossRef]
58. Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 2010, 28, 1057–1068. [CrossRef]
59. Chang, K.; Creighton, C.J.; Davis, C.; Donehower, L. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 2013,

45, 1113–1120. [CrossRef]
60. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.;

Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res. 2013, 41, D991–D995. [CrossRef]
[PubMed]

61. Xiong, Z.; Li, M.; Yang, F.; Ma, Y.; Sang, J.; Li, R.; Li, Z.; Zhang, Z.; Bao, Y. EWAS Data Hub: A resource of DNA methylation array
data and metadata. Nucleic Acids Res. 2020, 48, D890–D895. [CrossRef] [PubMed]

62. Zhang, C.; Zhao, N.; Zhang, X.; Xiao, J.; Li, J.; Lv, D.; Zhou, W.; Li, Y.; Xu, J.; Li, X. SurvivalMeth: A web server to investigate the
effect of DNA methylation-related functional elements on prognosis. Brief. Bioinform. 2021, 22, bbaa162. [CrossRef] [PubMed]

63. Grunau, C.; Renault, E.; Rosenthal, A.; Roizes, G. MethDB—A public database for DNA methylation data. Nucleic Acids Res. 2001,
29, 270–274. [CrossRef]

64. Rahm, E.; Do, H. Data Cleaning: Problems and current approaches. IEEE Data Eng. Bull. 2000, 23, 3–13.
65. Wang, C.; Li, J. Deep learning framework identifies pathogenic noncoding somatic mutations from personal prostate cancer

genomes. Cancer Res 2020, 80, 4644–4654. [CrossRef]
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