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Abstract

Background: The creation of lymphoblastoid cell lines (LCLs) through Epstein-Barr virus (EBV) transformation of B-
lymphocytes can result in a valuable biomaterial for cell biology research and a renewable source of DNA. While
LCLs have been used extensively in cellular and genetic studies, the process of cell transformation and expansion
during culturing may introduce genomic changes that may impact their use and the interpretation of subsequent
genetic findings.

Results: We performed whole exome sequencing on a tetrad family using DNA derived from peripheral blood
mononuclear cells (PBMCs) and LCLs from each individual. We generated over 4.7 GB of mappable sequence to a
125X read coverage per sample. An average of 19,354 genetic variants were identified. Comparison of the two
DNA sources from each individual showed an average concordance rate of 95.69%. By lowering the variant calling
parameters, the concordance rate between the paired samples increased to 99.82%. Sanger sequencing of a subset
of the remaining discordant variants did confirm the presence of de novo mutations arising in LCLs.

Conclusions: By varying software stringency parameters, we identified 99% concordance between DNA sequences
derived from the two different sources from the same donors. These results suggest that LCLs are an appropriate
representation of the genetic material of the donor and suggest that EBV transformation can result in low-level
generation of de novo mutations. Therefore, use of PBMC or early passage EBV-transformed cells is recommended.
These findings have broad-reaching implications, as there are thousands of LCLs in public biorepositories and
individual laboratories.

Background
One of the goals of genetic studies is to characterize
genetic variation in individuals with specific conditions
in order to identify variants associated with disease or
efficacy of treatment modalities. Recently, massively par-
allel sequencing technology has made it possible for an
individual’s genome to be examined in fine detail. The
increased use of this technology, often called next-gen-
eration (NGS) or deep sequencing, paired with powerful
bioinformatic analyses of the resulting data, has facili-
tated the identification of novel disease-causing variants.

Targeted sequencing of the genome’s coding regions has
been used to identify genes associated with rare mono-
genic disease including Kabuki syndrome [1], familial
amyotrophic lateral sclerosis (ALS) [2], Miller syndrome
[3] and Van Den-Ende-Gupta syndrome [4]. Currently,
large sequencing projects, such as the 1000 Genomes
project (http://www.1000genomes.org/) [5], are using
this technology to characterize human genome variation
on a population-based scale. As the cost of deep sequen-
cing continues to decrease, the use of NGS technology
will surely increase.
As deep sequencing projects are completed, additional

DNA from study participants will be needed for replica-
tion and follow-up studies. While DNA derived from a
subject’s peripheral whole blood is a preferred source of
starting genetic material, continued access to the
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participant for additional venipuncture may not be pos-
sible, or DNA isolated from peripheral whole blood may
be available in limited quantities. Given these limita-
tions, lymphoblastoid cell lines (LCLs) provide a conve-
nient alternative. LCLs, created through the in vitro
infection of B-lymphocytes with the Epstein-Barr virus
(EBV), can provide an unlimited and lasting resource of
the patient’s genetic material. LCLs are well suited for
many types of studies including genome-wide associa-
tion [6,7], functional genomics [8], proteomics [9] and
pharmacogenomics [10,11]. Furthermore, LCLs and
their DNA can be made available to many investigators
worldwide through biorepositories [12,13].
Despite the frequent use of LCL for biological

research, concerns have been raised regarding potential
genomic changes that may be introduced during cellular
transformation and subsequent cell culturing. Several
investigations have addressed this issue. For example,
DNA copy number changes have been detected follow-
ing extensive passaging of cell cultures [14]. The fidelity
of genotype calls between DNA derived from LCLs and
PBMCs from the same individual also has been exam-
ined [15-17]. These studies used gene chips to compare
genotypes between the paired samples. Even though no
significant changes were observed, this approach only
interrogated the SNPs represented on the chips. Newly
induced mutations may be introduced during the crea-
tion of the LCLs and/or after subsequent expansion of
the derived cell lines. Recent studies have highlighted
the association of de novo mutations with common dis-
orders such as autism [18], schizophrenia [19] and men-
tal retardation [20]. Therefore, determining if these
mutations are real or an artifact of the starting material
is of great importance as false-positive results can be
introduced into the study design.
Recently, within the 1000 Genomes Project, the pre-

sence of de novo mutations in two trio families was
described. The authors estimated that 0.61% of coding
variants identified were de novo [5]. Since this study
used DNA derived from LCLs, they were unable to
compare the results to DNA derived from PBMCs in
order to determine if these de novo mutations are real
or induced through the cell transformation and cultur-
ing process.
The aim of the present study was to determine if

DNA from EBV-transformed B-lymphocytes contains
new mutations when compared to DNA from untrans-
formed material. To address this, we performed whole
exome-sequencing using both PBMC- and LCL-derived
genomic DNA from a family of 4 individuals.

Results and Discussion
We performed whole exome sequencing on a tetrad
family consisting of parents and two siblings, where

DNA was derived from two sources, PBMCs and LCLs.
Targeted capture efficiency and genomic variants were
compared from the DNA derived from the two sources
(Figure 1).

Exome sequencing was performed to high-depth
We sequenced the exomes of 4 family members (Addi-
tional File 1) where the DNA from each individual was
derived from two sources, PBMCs and LCLs. High strin-
gency mapping parameters were used, which allowed for
a maximum of 2 mismatches. The sequence was aligned
to the hg19 genome build (UCSC). In total, an average
of ~94 million sequence tags were generated per sample
with 80.1% of the F3 tags and 67.1% of the F5 tags map-
ping to the genome (Table 1). This equated to an aver-
age of 5.97 GB of mappable sequence per sample.
Removal of reads that mapped to multiple locations and
outside of target regions resulted in an average of 80.4%
of F3 tags and 79.4% of F5 tags uniquely mapped to the
genome (Table 1). In total, an average of 4.77 GB of
sequence was uniquely mapped to the genome. This
represents an average read depth of 125X with 90.52%
of the targeted sequence covered at least 8 times (Table
1). The targeted exomic capture was performed with

• Raw sequence data mapped to the hg19 reference
genome

• Default setting of the Bioscope software (Table 1)

• High stringency parameters for variant calling
(Table 2):

– SNPs-minimum coverage of 8X, minimum mapping
quality of 40 and at least 20% of the reads to have the
novel allele (Supplemental file 2)

– Indels mapped to both strands, minimum indel mapping
quality of 50, minimum mapping quality of 20 for the non-
indel (anchor) tags, at least an average of 10 bp from the
end and a minimum coverage of 8X (Supplemental file
3)

• Does EBV transformation and/or expansion of B-
lymphocytes induce de novo mutations?

– Determination of concordance of variants between the
paired samples (Figure 2 and Table 2)

– Validation of discordant variants by Sanger sequencing
(Figure 3)

Alignment of
reads to the

genome

Variant
calling

Interpretation
of results

Figure 1 Summary of the bioinformatic workflow followed. The
raw sequence data was aligned to the hg19 human genome build
(UCSC). Following the alignment of the sequence data, high-
stringency parameters were used to make SNP and indel calls.
Following the identification of genetic variants, the interpretation of
our results included comparing the two-paired samples sequenced
to determine if de novo mutations arise following EBV-
transformation of B-lymphocytes.
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similar efficiencies regardless of the initial DNA source
(PBMC or LCL). A vast amount of robustly mapped
sequence was generated. This suggests that targeted
genomic capture and subsequent NGS can be performed
successfully regardless of the source of the DNA.

Exome sequencing identified high quality genomic
variants
The sequence data was used to identify and characterize
genetic variants within the genome. High stringency
SNP calling parameters were used (see Methods). This
allowed us to identify variants with high confidence
while reducing the possibility of false-positive results. In
total, an average of 19,354 variants (SNPs and indels)
were identified per sample (Table 2, Figure 2) with
7.39% being novel. Comparison between the paired sam-
ples, showed a 95.69% concordance rate.
In total, an average of 17,672 SNPs were identified per

sample, with 2.75% of the SNPs being novel (Table 2
and Additional File 2). The majority of the identified
SNPs (55.40%) were within the coding regions of the
genome. These variants included synonymous SNPs and
SNPs with potential functional impact on the gene’s
expression (Additional File 2). Additional SNPs located
in known microRNAs were classified, although the func-
tional effect of these SNPs is not known. The remaining
SNPs (44.6%) were located within intronic or intergenic
regions. These intergenic regions may represent pseudo-
genes, other non-characterized genes or additional
regions coding for small non-coding RNAs.
An average of 1,682 indels was identified. Insertions

ranging from 1-3 bp and deletions up to 11 bps were
identified (Additional File 3). Of these, only a small per-
centage was within the coding region of the genome
and the remaining variants were in intronic and inter-
genic regions. The finding that the number of indels in
coding regions was small may be explained by the fact
that the majority of these would result in frameshift
mutations that would likely alter the protein product,
including causing a premature stop.

Fidelity of Variant Calls between different tissue sources
To examine the discordant calls, three steps were per-
formed. First, the sequence quality of the discordant
variants was examined to determine if the variant was
not called in one of the two samples because it did not
pass the variant-calling parameters. Second, discordant
variants were examined in the context of the family ped-
igree. Finally, a subset of discordant SNPs was subjected
to Sanger DNA sequencing analysis to confirm their
presence.
Examining the variant-calling parameters (see Meth-

ods) revealed that the majority of discordant calls were
due to the filtering parameters. Nearly 50% of these

discordant variants were recovered by reducing from 20
to 15 percent the reads required to call a novel variant.
Similarly, reducing the minimum read coverage from 8X
to 5X recovered an additional 25% of the variants.
Taken together, these results suggest that variant-calling
parameters can be optimized to decrease discordant
SNPs. By changing both the percentage of reads and
read coverage settings, the concordance rate between
sample types was increased from 96.33% to 99.82%.
While the vast majority of variant discrepancies was

due to sequencing artifacts and variant calling para-
meters, we did identify variants that were present in
only one of the two-paired samples (Figure 2). These
differences represented variants that were present in
one of the two DNA samples (PBMC or LCL) for each
subject. Together, a total of 183 variants were identi-
fied as being discordantly observed. Further examina-
tion of these SNPs revealed that 104 were both present
in multiple samples, and represented within either the
dbSNP or 1000 Genomes datasets, suggesting that they
are not de novo variants. Interestingly, the remaining
79 variants were all observed in only a single LCL
sample, and were not represented in dbSNP or 1000
Genomes (Additional File 4). Furthermore, we did
identify a range of all 12 different types of nucleotide
changes that can occur (Additional File 5) with C to T
changes being the most common (~25%). Fifteen of
these variants were selected for confirmation as being
present in the LCL sample using Sanger sequencing,
which confirmed their presence in the LCL samples
only (Figure 3). Taken together, this result suggests
that a small number of de novo mutations arose during
the EBV-transformation process and/or subsequent
culturing.
While we did identify variants that were present in the
PBMC sample and not the LCL (Figure 2), several lines
of evidence suggest that these are not de novo muta-
tions. First, all of these variants were present within
multiple family members, in particular parents and chil-
dren. Second, recent studies of de novo mutations sug-
gested that they were novel and not previously
characterized; this was not the case here and in fact
these variants have been characterized as being common
(MAF >5%) based upon HapMap allele frequencies.
While we would have expected to identify such variants
within the PBMCs, the lack of de novo variants may be
due to the targeting of only a small fraction of the gen-
ome for which no de novo mutations are present. Taken
together, our results suggest an average concordance
rate of 99.82% between the two-paired samples, leaving
a de novo mutation rate of 0.18%. It should be noted
that this de novo mutation rate is for the small portion
of the genome sequenced and additional variants may
be present in the rest of the genome.

Londin et al. BMC Genomics 2011, 12:464
http://www.biomedcentral.com/1471-2164/12/464

Page 3 of 9



ND02537

ND02538

ND02539

ND02540

19,932 variants
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306 variants
(PBMC only)

434 variants
(LCL only)

17,456 variants
95.82%

Concordance

274 variants
(PBMC only)

456 variants
(LCL only)

18,879 variants
95.42%

Concordance

427 variants
(PBMC only)

438 variants
(LCL only)

19,509 variants
95.24%

concordance

386 variants
(PBMC only)

542 variants
(LCL only)

A
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G

20,638 variants
99.84%
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15 variants
(PBMC only)

19 variants
(LCL only)

18,143 variants
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23 variants
(PBMC only)

20 variants
(LCL only)

19,692 variants
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20,383 variants
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H

FilteredRaw

Figure 2 Comparison of all variants identified from DNA derived from PBMCs and LCLs. Venn diagrams showing the distribution of
variants (SNPs and indels) identified for the DNA samples (A, B) ND02537, (C, D) ND02538, (E, F) ND02539 and, (G, H) ND02540. The dark blue
represents the total variants that were in concordance between the paired samples. The light blue and red regions represent the total variants
that were identified in only the LCL or PBMC sample respectively. A, C, E and F represent the initial concordance rates between the two paired
samples, and B, D, F and H represent the concordance rates following the examination of discordantly identified variants.
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NDUFB9, R158G
Ch8- bp 125,562,065

NLRP3, V200M
Ch1- bp 247,587,343

SLC2A4, G122W
Ch17- bp 7,187,097

COL27A1, R1688Q
Ch15- bp 117,068,924

A B C D

DEPDC6, G158E
Ch8- bp 120,977,519

OR10V1, Y291H
Ch11- bp 59,480,448

SLC7A2, S79T
Ch8- bp 174.701.083

MNDA, T178I
Ch1- bp 158,813,875

E F G H

MYO6, T544I
Ch6- bp 76,572,397

MCPH1, K355N
Ch8- bp 6,302,308

CDK5RAP3, I45T
Ch17- bp 46,050,966

I J K

OTOP1, R420P
Ch4- bp 4,199,302

L

MYH8, G186D
Ch17- bp 10,318,881

ULK2, H135R
Ch17- bp 19,720,214

C14orf153, T146M 
Ch14- bp 104,053,622

M N O

Figure 3 Validation of identified variants, which were observed in only one of the DNA samples. Each set of sequence chromatograms
represents a different variant that was examined by Sanger sequencing. For each, the top panel is the sample with the SNP (highlighted with
the red arrow), and the bottom is the corresponding sample with the non-variant allele. Below each chromatogram are the gene, putative
amino acid change, and chromosome and bp location on the chromosome.
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Conclusion
The aim of this study was to determine if lymphoblas-
toid cell lines were an acceptable source of DNA for
deep sequencing studies. While previous studies have
examined fidelity of known SNPs represented on gene
chips [15-17], they did not explore the frequency of de
novo mutations in LCL-derived DNA when compared to
PBMC-derived DNA. We thoroughly examined this
question using NGS technologies and performed whole-
exome sequencing on a tetrad family where DNA was
available from both PBMCs and LCLs. We explored the
impact of variant-calling parameters and determined the
effects of EBV transformation and culturing on the
exome.
We did not observe significant differences in the over-

all coverage and the targeted exome capture efficiencies
between samples derived from PBMCs or LCLs. Use of
high stringency parameters resulted in an average
96.33% concordance rate of SNP calls between the two
DNA sources (Table 2). Using lower stringency para-
meters resulted in a variant concordance rate of over
99%; and, furthermore, lowering the minimum mapping
quality from 40 to 30 did not have a significant effect
on the concordance rate. However, reducing the
requirement of the number of novel allele counts from
20% to 15% had the greatest effect on increasing the
variant concordance rate between the two DNA sources.
Thus, the parameters used to identify variants in deep
sequencing studies can greatly impact the results, and
care should be taken with the interpretation of such
results. Further examination of a subset of the remain-
ing discrepant variants by Sanger sequencing confirmed
(Figure 3) the presence of variants in one of the paired
samples, suggesting up to a maximum of 1% of the dis-
crepant variants may be the result of de novo mutation
caused by EBV transformation and/or cell expansion.
We did observe a higher variability in the concordance

rate among indels rather than SNPs. The short sequence
reads produced make it challenging to identify indels
from the sequence data. Since each sequence read is
independently aligned to the reference genome (hg19),
reads that may span an indel close to the ends of a read
are difficult to align with gaps and can potentially be
misaligned resulting in false SNPs. Furthermore, reads
with indels may be aligned with multiple mismatches to
the genome rather than a gap [21]. This greater diffi-
culty in correctly mapping reads with indels to the refer-
ence genome may have resulted in the higher
discordance rate observed between the two-paired
samples.
De novo mutations have been identified as a cause for

disorders such as autism [18], intellectual disability [20]
and schizophrenia [19]. These studies highlight the
importance of accurately identifying mutations when

using exome sequencing. While we did not detect any
de novo mutations in the siblings, we did identify differ-
ences between the two DNA sources. It is feasible that
additional de novo mutations could be present within
regions of the genome not covered in our sequencing.
Our results are similar to those previously observed in
the 1000 Genomes Project, which speculated that 0.61%
of coding variants are de novo. In contrast to the 1000
genomes project, we were able to directly compare
DNA derived from two sources from the same indivi-
dual. While the number of de novo variants identified is
a very small fraction of the total variants identified
within the LCLs (an average of 0.18%), this rate repre-
sents only those within the targeted exome. Whole-gen-
ome sequencing experiments would no doubt identify
additional variants. Thus, the presence of these variants
may introduce false-positive findings into an experiment
and further validation and replication of experimental
results in additional samples would be required.
There are several limitations to this study. First, our

approach focused on the exome, examining 1.22% of
genome, and additional mutations may exist outside
these regions. A more comprehensive approach, such as
whole genome sequencing would allow for the interro-
gation of these regions. Second, LCLs from which the
DNA was derived were in the pre-immortal state [9,22].
This represents the cell material commonly banked in
biorepositories. In the pre-immortal stage, the EBV-
transformed cells are actively proliferating and usually
have normal diploid karyotypes without tumorigenic
properties. After extensive population doublings (typi-
cally 160), LCLs reach a proliferative crisis in which pre-
immortal cells die and post-immortal cells remain.
These cells are often aneuploid and are able to differ-
entiate indefinitely [9,22]. Thus, this study did not
examine the effects that additional cell passaging may
have on the genome. Third, it is possible that additional
changes, such as copy number and loss-of-heterozygos-
ity may be present in LCL-derived DNA; neither of
which was examined here. This work suggests that LCLs
are useful as a surrogate for DNA from PBMCs and an
acceptable source material for disease association studies
using exome sequencing. However, given the presence
of a low level of de novo mutations occurring within
LCLs, it is important to validate and confirm the results
in independent sample sets to rule out the possibility of
false-positive findings.

Methods
Subjects
A family of 4 individuals obtained from the NINDS
Repository at the Coriell Institute for Medical Research
(http://ccr.coriell.org/NINDS) was examined. This family
(Family NINDS0254) consists of two parents (ND02538
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and ND02539) and two siblings (ND02537 and
ND02540). Subject ND02537 was diagnosed with idio-
pathic generalized epilepsy, with no seizures beginning
at 3 years of age. All other members are unaffected. All
subjects were collected under local IRB-approved proto-
cols and submitted to the Repository as de-identified
subjects.

DNA extraction from peripheral blood
DNA was isolated by the Coriell Cell Repositories.
DNA was isolated from 5-10 ml of peripheral blood
mononuclear cells (PBMC) using the Gentra Puregene
Blood Kit (Qiagen, Valencia, CA), according to the
instructions of the manufacturer per Coriell Cell Repo-
sitories standard operating procedures (http://ccr.cor-
iell.org/). Genomic DNA was examined for identity
and relatedness using a set of 6 highly polymorphic
microsatellites (THO, VWA31, D22s417, D5S592,
D10S526, and FES/FPS).

Establishment of and maintenance of lymphoblastoid cell
lines (LCLs)
LCLs were established and maintained by Coriell Cell
Repositories. Briefly, cell lines were established from
freshly isolated lymphocytes using standard Epstein-Barr
virus (EBV) transformation protocols that include
mononuclear cell separation by gradient centrifugation
and induced lymphocyte divisions by the mitogen Phy-
tohemagglutinin (PHA). Briefly, peripheral blood was
diluted with an equal volume of RPMI 1640 with 0.02
M HEPES, layered onto a Histopaque-1077 HybriMax
(Sigma-Aldrich, St. Louis, MO) gradient, and centrifuged
for 30 min at 400 X g at 18-200 C. The lymphocyte layer
was harvested and washed twice in RPM1 1640 (Sigma-
Aldrich, St. Louis, MO) with 0.02 M HEPES (Sigma-
Aldrich, St. Louis, MO) and re-centrifuged. The result-
ing cell pellet was resuspended in 8 ml of cell culture
medium and transferred to a 25-cm2 cell culture flask
containing 1 ml of EBV (prepared at Coriell Institute for
Medical Research from a transformed marmoset cell
line B95-8) and 1 ml of PHA reagent (Sigma-Aldrich,
St. Louis, MO). The cells were incubated at 370 C in 5%
(v/v) carbon dioxide, with medium changes twice each
week. When a 4 x 106 total viable cell count was
reached, the flask was subcultured and further expan-
sions were obtained (1 x 108 total viable cells. All cell
lines were established and grown in the absence of anti-
biotics. After transformation, the cells were cryopre-
served to store the initial transformation. Resurrection
of subsequent cultures starts with a cryopreserved pri-
mary passage with culturing performed to expand the
culture and/or generate cells for DNA isolation. DNA
was extracted from 4 x 107 cells by using the Gentra
Puregene Blood Kit (Qiagen, Valencia, CA).

Library generation and SOLiD sequencing
Three μg of genomic DNA was used for whole exome
capture using the AB/Life Technologies SOLiD opti-
mized SureSelect Human All Exon Target Enrichment
System (Agilent Technologies). This kit performs in-
solution hybridization with RNA oligonucleotides,
enabling the specific targeting of approximately 38 Mb
of the human genome (1.22% of the genome) covering
~18,000 genes. Following hybridization, 500 picomoles
of the enriched exome library were used for emulsion
PCR, to produce single DNA molecules on glass beads,
which are then deposited onto a glass slide. Sequencing
was performed on the SOLiD 4 instrument (Life Tech-
nologies Foster City, CA). Paired-end sequencing was
performed. In this method, two ends of the same DNA
fragment are sequenced in opposing directions which
spans an inserted sequence of ~180 bp [23]. The two
sequenced fragments are 50 bp (F3 tag) and 35 bp (F5
tag). When mapped back to the genome, the two-paired
sequences should map to the same region and separated
by a distance of the inserted fragment.

Bioinformatics Pipeline
The AB SOLiD bioscope v1.3 software (Life Technolo-
gies, Foster City, CA) was used for data analysis, follow-
ing three distinct steps (Figure 1). First, the color space
reads were mapped to the hg19 reference genome
(http://genome.ucsc.edu/) using an iterative mapping
approach. Sequence coverage was determined as the
proportion of targeted regions that was covered by at
least one uniquely aligned read. Bases that aligned to
the genome, but not in targeted regions were not con-
sidered for further analysis. Additionally, only regions
that had greater than 8X coverage were considered for
further analysis.
The second step of the bioinformatic pipeline was to

identify genomic variants including SNPs and small
insertion deletion variants (indels). SNPs were identified
using the diBayes algorithm [24]. To determine the effi-
ciency of variant calling, two separate stringency para-
meters were used. The first setting (high stringency)
required variant calls on each strand with each base
having a minimum coverage of 8X, a minimum base
quality of 40, a strand minimum mapping quality of 40,
and at least 20% of the reads to have the novel allele.
Indels were detected using the SOLiD Small Indel Tool.
Parameters for the identification of indels included that
they be mapped to both strands, had a minimum indel
mapping quality of 50 and minimum mapping quality of
20 for the non-indel (anchor) tags, at least an average of
10 bp from the end read position, and a minimum cov-
erage of 8X.
SNPs and indels were annotated based upon their

location within the hg19 reference genome. Variants
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were considered novel if they were not represented in
either dbSNP build 132 and/or the 1000 Genomes pro-
ject [5]. Variants were further characterized as being
non-coding (intronic or intergenic) or coding (within an
exonic region). These variants were characterized based
upon their location or putative effect on the encoded
protein: synonymous, non-synonymous, nonsense,
splice-site, 5’ or 3’ UTR. Variants that were located
within 50 bp from the start of a gene ("near gene”) or in
a microRNA also were characterized. Indels were char-
acterized based upon the length of the inserted or
deleted sequence, whether it was intronic, intergenic or
exonic. The putative effect of the indel on the protein
product was characterized using SeattleSeq Annotation
(http://snp.gs.washington.edu/SeattleSeqAnnotation131/
index.jsp) and examined for frameshift and changes in
protein sequence.
The final step of the analysis included interpretation

of the sequence results. Interpretation involved compari-
son of the identified variants between the DNA from
both sources for each sample. The identified variants
were compared to determine the (concordance rate or
percentage of variants that were in common between
the two DNA sources. Variants that were determined to
be discordant were further examined to determine the
source of discrepancies. Additionally, family inheritance
patterns of the identified variants were examined.

Variant validation
Variants for validation were chosen based upon three
criteria: 1) being present in an LCL but not the corre-
sponding PBMC sample; 2) the variant being observed
in DNA from a child without being observed in either
parent (i.e., not displaying a family inheritance pattern);
and, 3) being present within a coding region and pre-
dicted to alter the protein product (non-synonymous,
splice site or nonsense mutations). A total of 15 variants
were chosen forward for validation. The validation was
performed using standard Sanger sequencing methods
and analyzed on an AB 3730 DNA Analyzer (Applied
Biosystems). PCR primers (Additional File 6) were
designed to flank the regions under question and
sequencing was performed from both strands.

Additional material

Additional file 1: Family NINDS02540. Pedigree of family NINDS0254
used for exome sequencing.

Additional file 2: SNPs identified through exome sequencing. Table
listing the SNPs identified through exome sequencing in the four family
members.

Additional file 3: Summary of insertion-deletion variants identified.
Table listing insertions-deletions identified through exome sequencing in
the four family members.

Additional file 4: SNPs identified to be de novo in LCL samples.
Table listing the 79 variants identified as being de novo.

Additional file 5: Characterization of the types of nucleotide
changes observed. The table lists the type of observed nucleotide
changes.

Additional file 6: SNPs selected for validation by Sanger
sequencing. Table listing the variants chosen for follow-up with primer
sequences used for PCR and Sanger sequencing.
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LCL: lymphoblastoid cell line; EBV: Epstein-Barr virus; PBMC: peripheral blood
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