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Abstract 
In October 2020, 62 scientists from nine nations worked together 
remotely in the Second Baylor College of Medicine 
& DNAnexus hackathon, focusing on different related topics on 
Structural Variation, Pan-genomes, and SARS-CoV-2 related research.   
The overarching focus was to assess the current status of the field and 
identify the remaining challenges. Furthermore, how to combine the 
strengths of the different interests to drive research and method 
development forward. Over the four days, eight groups each designed 
and developed new open-source methods to improve the 
identification and analysis of variations among species, including 
humans and SARS-CoV-2. These included improvements in SV calling, 
genotyping, annotations and filtering. Together with advancements in 
benchmarking existing methods. Furthermore, groups focused on the 
diversity of SARS-CoV-2. Daily discussion summary and methods are 
available publicly at https://github.com/collaborativebioinformatics
 provides valuable insights for both participants and the research 
community.
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Introduction
Structural variants (SVs) comprise a number of genomic imbalances including copy number variations (CNVs),
insertions (INS), deletions (DELs), inversions (INVs), duplications (DUPs), and inter-chromosomal translocations.1–3

SVs have been implicated as clinically significant mutations with proven associations to multiple diseases.4,5 Despite
next-generation sequencing becoming increasingly common within the field of biomedical research, several practical
challenges exist for comprehensively detecting and evaluating SVs particularly in regard to the high false positive
or negative rate along with the accuracy of breakpoint prediction.6,7 While SV detection with genotyping arrays
remains the most commonly used method, the toolbox for SV detection is expanding to incorporate the advancements
in third generation sequencing technologies provided by Pacific BioSciences,8 Oxford Nanopore Technologies,9,10

optical mapping and NanoString11 to name a few. These advancements offer potential for solving previously unresolved
structural variants.

In October 2020, 62 scientists from nine nations worked together remotely in the Second Baylor College of Medicine &
DNAnexus hackathon, focusing on different related topics on SV, Pan-genomes, and SARS-CoV-2 related research.
Consequently, this international structural variation hackathon meeting focused on eight themes: 1.) efficiently genotyp-
ing vast quantities of SVs; 2.) mappingCNVs to SV types; 3.) detecting and validating SVs for SARS-CoV-2; 4.) filtering
high-confidence SV calls for clinical genomics; 5.) SV read-based phasing for haplotype analysis; 6.) genome graph
generation without a reference; 7.) machine learning approaches to predict lab-of-origin of a sample.; and 8.) gene-centric
data browsing for SV analysis.

Overall, this manuscript details our tools’ objectives, value-add, implementations, and applications and sets the
foundation for further concept development beyond. In this article we present 10 software tools that were the results
of this hackathon.

nibSV: efficient genotyping of SVs from short read datasets.Detection of SVs longer than a short-read (<500bp)DNA
trace is very challenging as the SV allele becomes split across multiple reads. To this end, long read sequencing
technology is preferential for overcoming this challenge however, although long read sequencing has proven more
accurate in SV identification, obtaining accurate allele frequencies across a population is important in order to rank and
identify potential pathogenic variations.

Thus, it is still important to genotype SV events in pre-existing short read datasets such as those provided by the 1000
genomes project, Topmed, CCDG, etc. Recently, two main approaches, Paragraph12 and VG,13 have achieved this with
high accuracy even for insertion SV events. However, these methods are computationally expensive particularly when
the number of SVs to be genotyped per sample increases. Furthermore, and maybe more crucially, both methods rely on
precise breakpoints that do not change in other samples, an assumption that is potentially flawed particularly over
repetitive regions. NibbleSV is a software package able to efficiently genotype vast quantities of SVs whilst also using a
kmer catalogue of SVs in order to circumvent the need for re-mapping the same dataset to different versions of the same
reference genome (e.g. hg19 vs. GRCH38 vs. CHM13), again aiding computational efficiency (Figure 1).

CNV2SV: supplement CNV calling in SV detection. Copy number variations (CNVs) are a subset of structural
variants (SVs) consisting of duplications and deletions. CNVs constitute an important part of humangenetic diversity
but are also known to be involved in the pathogenesis of multiple diseases, including 15% of breast cancers.14,15

In clinical NGS applications, CNVs are commonly detected using short-read sequencing. To this end, coverage changes
across the reference genome are interpreted by CNV callers as either putative duplication or deletion events. However,
short reads grant only limited insight into the larger structural context of the called CNVs. Recent advances in ultra-long
read sequencing have enabled projects such as the complete telomere-to-telomerere construction of a haploid human
cell line (T2T CHM13).16 This opens up the opportunity to better understand putative CNVs identified using short
reads in the light of the larger, distant or nested structural events as part of which theymay arise. To facilitate this, we have
developed CNV2SV, a method to automatically link CNV calls to corresponding SVs from a whole-genome alignment.
In turn, this may not only aid in improving our understanding of structural changes encompassing large CNVs but also in
the resolution of CNVs with complex breakpoints. We demonstrate CNV2SV for a dataset based on the haploid human
genomeT2TCHM13, using establishedmethods for CNVcalling using short reads and SVs called fromgenome-genome
alignment. Agraphical outline of the CNV2SV pipeline is shown in Figure 2.

CoronaSV: SV pipeline for SARS-CoV-2. While deletions have been reported in several SARS-CoV-2 genomes at

consensus level,17,18 the confidence in how these deletions are detected has not yet thoroughly been evaluated. Existing
methods for detecting SV at the individual read level often suffer from false positive calls.19,20 Additionally, analyses
with different variant calling pipelines often result in inconsistent calls.21,22 To examine the landscape and extent of SV
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across SARS-Cov-2 genomes, amethod for generating accurate and trustworthy SV calls is needed.With this inmind, we
developed the CoronaSV bioinformatics pipeline.

CoronaSV is a SVdetection and SVvalidation pipeline for SARS-CoV-2 that combines an ensemble SV calling approach
that relies on both long read and short read sequencing technologies (Figure 3). Both assembly-based and read based SV
detection methods are used by CoronaSV. By combining different sequencing technologies and variant detection
approaches, we can identify both a) confident SV call set and b) artifacts that may result from specific technologies +
computational approaches.

CleanSV: Filtering High-quality SVs. Short-read sequencing is performed within clinical genomics to both inform and
directly guide patient care. This has been immensely successful for various Mendelian disorders, where patients now
routinely have their genomes sequenced to detect high-quality variants. Indeed, this approach has been utilized within
clinical genomics for close to a decade,23 often to correct misdiagnoses (see24 for a recent example).

Within precision oncology, short-read sequencing (normally targeted sequencing or whole exome sequencing (WES))
has proved successful not only illuminating the nature of specific cancers, but also guiding novel drug development.
Today routine sequencing is used to apply therapies for specific cancer subtypes, and influence the treatment of individual
patients.25,26 For clinical work, samples from tumors are sequenced for somatic variants in well-studied oncogenes/tumor
suppressor genes. Bioinformaticians will then manually investigate the variant calls within IGV in order to validate how
accurate they are, and finally send reports summarizing these data to clinicians.

However, SV calling using short-read data is marred by high false positive (FP) call rates, sometimes up to 90% with
modern callers.10,27,28 As a result, manual curation for each patient proves oppressively time-consuming for the needs of
modern precision care and is prone to human error. Even though aneuploidy has been long studied for its role in tumor
progression (see29 for a recent review), due to algorithmic uncertainties, routine inclusion of high-confidence SVs within
clinical reports is often infeasible today.

Therefore, there exists a pressing need within bioinformatics to develop methods to remove false positives from the
outputs commonly used SV callers, and benchmark their performance across a variety of assays (including a range of
sequencing depths and tumor purities). Individual SV callers rely upon specific strategies to detect SVs, which makes the
nature of the false positives algorithm-specific. Having access to a call set with a lower false positive rate would certainly
not eliminate the requirements of manual curation, but it would make the problem more tractable.

The goal of this project was to develop a set of publicly available filters tailored for cancer genomics which have been
measured to perform reliably across popular SV callers, as the filters must be specific to the SV caller used. Using a large
cohort of high-quality normal whole genome sequencing (WGS) samples, we perform systematic false positive filtering.
SVs labeled by the algorithm as somatic have evidence as actually being germline, while others are algorithmic artifacts.
With such filters, bioinformaticians would have access to a set of high-quality somatic calls to manually curate, which
could finally result in more robust clinical reports.

Sniphles: Phasing SVs with parallel programming. Phasing infers the correct cis or trans relationship between
different heterozygous variations facilitating accurate haplotype reconstruction.30 Protocols and programs utilizing
molecular phasing (chromosomal separation at the bench before sequencing), pedigree-based phasing (matching parental
and offspring genotypes to understand the haplotype), population-based phasing (using genotype data from large cohorts
to infer haplotypes), and read-based phasing (mapping sequencing reads with the same variants to construct a haplotype)
are all successful approaches to phasing next-generation sequencing data.31 The long-reads of third generation
sequencing have bolstered our ability to phase longer andmore comprehensive haplotype blocks.32More comprehensive
haplotype blocks increase our ability to accurately phase structural variants.

The goal of this project is to develop a wrapper script around the Sniffles SV caller10 to properly phase SV and augment
the ability of Sniffles to accurately call SV (Figure 5). This result is obtained by using phased reads generated by SNV
phasing tools such as WhatsHap or LongShot,30,33 and subsequently call SVs on the haploid phase blocks separately
using temporary files before finallymerging both haplotypes to obtain a single VCF file. As this algorithm processes each
phase block separately this is attractive for parallelization. Our wrapper script additionally makes Sniphles compatible
with alignments in the CRAM format.

Swagg: Structural VariationWithAnnotatedGraphGenomes (Swagg).Most graphical approaches to variant calling
only use genome graphs.While this information helps illustrate variation on a genomic level, it does not showvariation on
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the individual protein level. To help leverage the power of graph approaches for SV calling, we introduce a pipeline that
delivers both protein and genome graphs.

Swagg is a pipeline that enables the construction of genome graphs from read data (Figure 6). The input into the pipeline is
sequence reads with or without a reference genome(s). Reads can be short reads or preprocessed (basecalled) long reads.
These reads are then assembled into longer contigs which are mapped back to the reference genome to highlight
discrepancies with the reference genome. These discrepancies can be caused by realmutations or sequencing artifacts and
easily identified using SV tools, which output VCF files for each read set. These VCF files are taken together to make the
genome graph at the end of the pipeline. The overall pipeline and intertwinedmodules are shown below. In addition to the
pipeline for creating graph genome and graph proteins, we also have a module for simulating reads based on an input
reference genome.

PanOriginSV: detecting lab-of-origin. The advent of novel synthetic biologymethods and organic bench-top synthesis

toolkits like CRISPR34 has enabled rapid developments in genetic engineering. However, this progress has also
introduced biosafety concerns surrounding the intentional or unintentional misuse of these tools. In order to increase
accountability, the lab-of-origin studies attempt to map a set of plasmids to their lab-of-origin. Subsequently, the Genetic
Engineering Attribution Challenge (GEAC) was announced, inviting open source tools from the community that could
best predict the lab-of-origin.

Previous methods have employed machine learning or deep learning-based approaches that despite their promise, suffer
from sub-optimal accuracy, long training times as well as explainability issues. Recently, a new alignment based tool
PlasmidHawk35 reported higher accuracy than machine learning tools. PlasmidHawk relies on linear pangenome
constructs to align query sequences to a pangenome in order to best determine the Top-1 and Top-10 candidate labs.
Though PlasmidHawk has a higher accuracy, the runtimes to create the linear plasmid are non-scalable to larger datasets.
Another drawback being the linear pangenome doesn’t incorporate SV, which could be important to predict hard-to-
classify sequences. To address some of these challenges, we propose a tool PanOriginSV that combines machine learning
approaches with graphical pangenome based alignment to predict lab-of-origin (Figure 7).

PanOriginSV creates multiple pangenome graphs from similar training sequences using BCALM36 creating a variation
graph that incorporates SV and aligns the sequences back to the graph using GraphAligner.37 The most similar training
sequences for graph construction are clustered using MMSEQ2.36,38 After this, top alignments, scores to the pangenome
and sequence metadata are considered as features for a downstream machine learning model towards lab-of-origin
prediction.

GeneVar: SV Browser. Next-generation sequencing provides the ability to sequence extended genomic regions or a
whole-genome relatively cheaply and rapidly, making it a powerful technique to uncover the genetic architecture of
diseases. However, significant challenges remain, including interpreting and prioritizing the identified variants and
setting up the appropriate analysis pipeline to cover the necessary spectrum of genetic factors, which includes expansions,
repeats, insertions/deletions (indels), SV and point mutations. For those outside the immediate field of genetics, a group
that includes researchers, hospital staff, general practitioners, and increasingly, patients who have paid to have their
genome sequenced privately, the interpretation of findings is particularly challenging. Although various tools are
available to predict the pathogenicity of a protein-changing variant, they do not always agree, further compounding
the problem. Furthermore, with the increasing availability of next-generation sequencing data, non-specialists, including
health care professionals and patients, are obtaining their genomic information without a corresponding ability to analyse
and interpret it as the relevance of novel or existing variants in genes is not always apparent. Similarly SV analysis39,40

and its interpretation requires care in regard to sample and platform selection, quality control, statistical analysis, results
prioritisation, and replication strategy.

Here we present GeneVar, an open access, gene centric data browser for SV analysis (Figure 8). GeneVar takes as input a
gene name or ID and produces a report that informs the user of all SVs overlapping the gene and any non-coding
regulatory elements affecting expression of the gene. The tool is intended to have a clinical focus, informing the
interpretation of SV pertaining to a gene name provided by the user.

SVTeaser: simulated data for SV benchmarking. SV detection tools often have a large number of wrongly detected

variations19,27 requiring benchmarking to assess method quality before finalizing a workflow. Few tools are currently
available to simulate data for SV benchmarking. SVTeaser is a tool for rapid assessment of SV calling fidelity with two
main use-cases: 1) genotyping a set of pre-ascertained SVs and 2) benchmarking a new algorithm against pre-existing
tools across a range of parameters. Users simply supply SVTeaser with a reference sequence file (.fasta) and, optionally,
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a set of SVs (.vcf). SVTeaser outputs simulated reads across a range of read lengths and depths and provides a
downstream dataframe based analysis framework for evaluating accuracy (Figure 9). SVTeaser achieves rapid assess-
ment by downsampling the full reference to a subset of numerous 10kb samples to which it adds SVs.

XSVLen: haplotype-resolved assemblies for benchmarking SVs. Since the development of a “gold standard” SV set,
sequencing technologies and assembly algorithms have improved to enable nearly complete haplotype-resolved
assemblies of human genomes. XSVLen is a framework (Figure 10) to use haplotype-resolved assemblies for bench-
marking SVdetection algorithms. Each variant callmay be considered an operation to be applied to the reference genome.
Our framework for benchmarking SV callsets is to apply SV operations to the reference genome and compare the
modified reference against the haplotype-resolved assemblies. This approach allows for SV calls that are different but
produce similar sequences due to the repetitive nature of the genome to be scored as valid. In this manner, all variants in a
region that is accurately assembled in both haplotypes may be benchmarked using this approach. We demonstrate the
effectiveness of this approach by scoring SV calls generated fromOxford Nanopore reads on the HG002 genome41 using
CuteSV42 and comparing against gold-standard calls by Truvari (https://github.com/spiralgenetics/truvari). This
approach can be extended to use any haplotype-resolved assembly to benchmark SV callsets in additional genomes,
enabling benchmarks as a distribution across call sets.

Methods
Implementation
nibSV:NibbleSV is a lightweight, scalable and easy to apply method to identify the frequency of SV events across short
read data sets. As such, nibSV extracts kmers that are informative if an SV is present or if an SV is absent given the
breakpoints of the previous predicted SV. Subsequently, nibSV scans the short read bam or fastq file for the presence of
these k-mers and counts their number of occurrences. In the end, nibSV extends the VCF file with tags holding
information about the number of times an SV is supported by kmers or not (Figure 1).

Figure 1. Overview of the NibbleSV software package workflow. Overview of NibbleSV workflow that utilises an
input reference genome and file containing variant calls to generate a list of genotyped alleles using a kmer based
strategy.
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CNV2SV: CNV2SV is a tool for connecting CNVs identified using short-read sequencing to structural variations (SVs)
from awhole-genome alignment (Figure 2). As input, CNV2SV requires twoVCF files containing the CNV and SV calls
to be linked, respectively, as well as the reference genome sequence for which CNVs were called (.fasta). For each CNV,
we identify matching SVs representing putative tandem duplication or translocation events. After validating each
putative link through pairwise sequence alignment, the details for each CNV-SV match are saved in a .tsv file along

Figure 2. A graphical overview of the CNV2SV pipeline.CNV2SV software pipeline that utilises both short and long
read data as input to calculate the frequency of copy number variants across complete genomes.
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with summary statistics. The output can then be further visualized using a circular plot showing the genomic positions for
each discovered link. The results of CNV2SV may be interpreted in order to better understand the structural changes
underlying individual CNV calls as well as evaluating and potentially improving the accuracy of break point detection
for structural events of different sizes and complexities.

CoronaSV: CoronaSV is a method developed for generating accurate and trustworthy SV calls across SARS-Cov-2
genomes. The tool utilises available SRA data from SARS-CoV-2 isolates that have been sequenced with both Illumina
andONTplatforms. CoronaSVutilizes a combination of three different approaches: read-based SVdetectionwith paired-
end Illumina reads and ONT long-reads, as well as assembly-based SV detection using both short and long-reads
(Figure 3). All the software packages used by CoronaSV can be installed via the Conda package manager (https://github.
com/conda/conda).

CleanSV: The goal of the hackathon project was to develop filters and QC checks to remove false positive calls from
commonSV callers. Currently, within clinical genomics, it’s exceptionally difficult to categorize true positives from false
positives, thus making accurate diagnoses virtually impossible. The situation is even more complicated within clinical
oncology, as researchers need to precisely separate true somatic calls from false positives and (potential) germline calls. In
order to aid with precision SV calling, the team wrote a set of scripts to be used with short-read SV callers, allowing
researchers to better generate a set of high-quality SVs to further investigate manually (Figure 4).

For cancer genomics, groups normally develop in-house filters to improve the precision of SV calling. The scripts
developed for this project accept as input GRIDSS,43Manta,44 DELLY,45 and SvABA46 calls from short-readWGS data,

Figure 3. Illustration of CoronaSV software implementation. Illustration of the CoronaSV package workflow that
takes SARS-CoV-2 short and long read data types alongwith a SARS-CoV-2 reference genome as input and generates
a set of commonly found SVs.
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along with a manually-curated reference set of calls designated as ground truth. The reference set was curated using a
paired melanoma and normal lymphoblastoid COLO829 cell lines using four different technologies (Illumina HiSeq,
Oxford Nanopore, Pacific Biosciences and 10x Genomics), along with extensive external validation.47 Using the
reference set, we proceeded to investigate the presence and nature of false positives from the initial callsets. (Note that
we focused onWGS for this hackathon, but a similar approach could be applied to other assays such asWES.) Samplot48

visualization of read data allowed manual curation of parameters associated with FP calls, and associations between
AnnotSV48,49 annotated parameters and FPR helped identify additional FP-associated SV parameters (Figure 4). Along
with the manually-curated reference set, the panel of normal (PON) used for further filtering was generated from a

Figure 4. An illustration of the approach used by CleanSV to generate and implement filtration of SV calls.
CleanSV pipeline highlighting methods used to generate adequate filters that can be utilised by clinicians to filter
false positive and mislabeled SV calls from short-read cancer datasets.
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compiled set of high-quality germline calls using 3,782 normal samples freshly-sequenced at a median depth of 38x by
the Hartwig Medical Foundation.50,51

Sniphles:Themain idea is to phase the identified SVs.We use two approaches; the first is to extract the tagged reads from
the bam file and use these reads to phase the SVs if not conflicted. The second approach is to split the haplotype bam file
based on the haplotype tag, using each split bam file to call SVs separately, this method called (Sniphles). Sniphles utilize
information impeded in haplotypes, bam file and reads info support SVs. This method phases structural variants and
augments the ability of Sniphles to accurately call SVs (Figure 5). Sniphles is implemented in Python 3, and it takes a
haplotyped bam, and a SV VCF file as input and produces a phased VCF file as output.

Swagg: Structural Variation with Annotated Graph Genomes (SWAGG) is a pipeline to make genome graphs from
read data. The input into the pipeline is reads either with or without reference genome(s). Reads can be short-reads or
preprocessed (basecalled) long-reads. Reads are assembled into longer contigs, and contigs are mapped back to the
reference genome to look for discrepancieswith the reference genome. These discrepancies can be either realmutations or
sequencing artifacts, and are found using structural variant toolswhich outputVCF files for each read set. TheseVCF files
are taken together to make the genome graph at the end of the pipeline (Figure 6).

PanOriginSV: This tool is a lab-of-origin prediction tool that combines machine learning approaches with graphical
pangenome based alignment to predict lab-of-origin (Figure 7). PanOriginSV is implemented in Python 3 and uses the
scikit-learn package for deploying machine learning models. PanOriginSV also relies on MMseqs2 for clustering,
BCALM for graph construction andminigraph for graph alignment. Given a training set of engineered plasmids and their
source labs, this software can predict the lab of origin of a test set of plasmids.

GeneVar: The GeneVar tool was developed to help inform the clinical interpretation of structural variants pertaining to a
user-provided gene. This software is an open access, gene-centric data browser for SV analysis. GeneVar is a web page

Figure 5. Illustration of methodology utilized by Sniphles to produce a phased structural variant call set. An
overview of the Sniphles pipeline demonstrating how a haplotyped input bam file is used to generate a
phased structural variant call set.
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application (Figure 8). After entering the gene name (HGNC, Ensembl gene (ENSG), or transcript (ENST) identifier) in
the search box on the homepage, the user is directed to the summary of the gene-specific page. GeneVar is available on
GitHub (https://github.com/collaborativebioinformatics/GeneVar). The repository provides detailed instructions for tool
usage and installation. A bash script for automated installation of the required dependencies is also provided.

SVTeaser: SVTeaser is a tool for rapid assessment of SV call fidelity created for geneticists designing experiments to
genotype a set of pre-ascertained SVs and bioinformaticians benchmarking a new algorithm against pre-existing tools
across a range of parameters (Figure 9). Users are required to supply SVTeaser with a reference sequence file (.fasta) and,
optionally, a set of SVs (.vcf). SVTeaser outputs assorted statistical metrics across a range of read lengths and depths.
SVTeaser achieves rapid assessment by downsampling the full reference to a subset of numerous 10kb samples to which
it adds SVs.

XSVLen: This software is a framework for benchmarking SV detection algorithms against haplotype-resolved assem-
blies in which variants are validated by comparing sequence content rather than comparing breakpoints of variants
(Figure 10). XSVLen validates a VCF file with sequence-resolved variants including those produced by cuteSV or

Figure 6. Outline of the SWAGG software packageworkflow. Illustration of the SWAGG pipeline that utilises both
long and short read datasets for the construction of graph genomes.
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Sniffles 10) by creating a test sequence for each variant defined by extracting the region around a variant, and applying the
SV operation (insertion or deletion). The test sequences are mapped to the haplotype-resolved assemblies, and high-
identity alignments validate calls. All methods are open-source licensed and have been made available on GitHub:
https://github.com/collaborativebioinformatics.

Operation
nibSV: nibSV requires a reference genome and VCF file that includes all the SV that should be genotyped (Figure 1).
Next, allele kmers for the reference and alternative are extracted. The extraction process includes each site’s flanking

Figure 7. Implementation strategy of the PanOriginSV software package. Pipeline demonstrating the PanOr-
iginSV software package that’s implementation determines that lab-of-origin input sequencing data.
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regions. Subsequently, the occurrence of these k-mers in the reference fasta file are counted. This step is necessary to
prevent k-mer miscounting between reference vs. alternative allele. To enable scaling of nibSV for large data sets, the
results of these two steps are written into a temporary file, which is all that is needed for the actual genotyping step. During
the genotyping step, nibSV uses this small temporary file and the bam/cram file of the sample and identifies the presence/
absence of the reference and alternative k-mer across the entire sample. This is very fast and requires only minimal
resources of memory as the number of k-mers is limited. On completion of nibSV a scanning of the bam/cram file is
carried out reporting which SV have been re-identified by adding a tag in the output VCF file of this sample (Figure 1).
The VCF per sample can then be merged to obtain population frequencies. The VCF per sample can then be merged to
obtain population frequencies. nibSV requires 4Gb of memory, a single core and around 2GB hard disk space to store its
index from e.g. GIAB HG002.

CNV2SV: To link copy number variant calls to matching structural variants, CNV2SV requires three input files: The
VCF file containing the CNVs (typically called from short reads), the VCF file with the structural variants (typically
called from a genome-genome alignment) as well as the reference sequence(.fasta) that the CNVs were called for. CNVs
are then linked to matching SVs in two steps: First, individual CNVs are queried against an interval tree structure
containing all SVs from the genome-genome alignment to find adjacent CNV-SV pairs (<1000 bp apart, putative tandem
duplication events). For CNVsthat had no match identified in this way, the search is successively extended to the whole
genome (putative translocation events). Next, all putative CNV-SV links are evaluated by pairwise sequence alignment
using mappy (Python binding for minimap252), with a standard sequence identity threshold of 0.8. The main output
comprises detailed information about the discovered links for each CNV. This includes the number of best matched SV,
its genomic coordinates and CNV-SV sequence alignment as well as summary statistics useful for evaluating e.g. the
quality/resolution of breakpoints identified by the CNV callers. Furthermore, all additionally identified adjacent and
distant SVs are reported separately for each CNV. The raw output can be further visualized toshow the CNV-SV links
identified across the genome in a circular plot, as well as summary statistics for the linking results. For the results
presented in theuse cases section, we applied CNVnator53 and dip call to generate CNV and SV calls for the T2TCHM13
data set and GRCh38, respectively. A quick-start example for the CHM13 and GRCh38 data is available on our GitHub
page. In addition, we hosted a detailed description of the output data on the GitHub page. The output data can be further
visualized using the additionally provided scripts, which include circular plots to display the positions of each discovered
CNV-SV link. System requirements (see GitHub for more information): CNV2SV has been tested to work on a desktop
system on the CHM13 data set with an Intel® i7-6700K Processor (4.00 Ghzquad-core), 32GB RAM (less may be
required), 50GB free disk space and running Unix-like operating system (e.g. Ubuntu-based distribution) or Windows
subsystem for Linux running Ubuntu. The initial genome-genome alignment (CHM13vs GRCh38) was computed on a
cloud-based platform (DNANexus). CNV2SV requires Python (3.8 or newer) and prerequisite Python packages include
interval tree, mappy and pyfaidx. For visualization of the discovered CNV-SV links in acircular plot, R and the R package
circlize are additionally required. A full list of package dependencies is available on the GitHub page.

Figure 8. Methodology used by GeneVar for the production of summary report made available through
genome browser. A graphical representation of the pipeline used by GeneVar in order to provide clinicians with
a comprehensive summary of SVs associated with a user provided gene name.
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System requirements (see GitHub for more information): CNV2SV has been tested to work on a desktop system on the
CHM13 data set with an Intel® i7-6700K Processor (4.00Ghz quad-core), 32GBRAM (less may be required), 50GB free
disk space and running Unix-like operating system (e.g. Ubuntu-based distribution) or Windows subsystem for Linux
running Ubuntu. The initial genome-genome alignment (CHM13 vs GRCh38) was computed on a cloud-based platform
(DNANexus). CNV2SV requires Python (3.8 or newer). A full list of package dependencies is available on the
GitHub page.

CoronaSV:All software packages used by CoronaSV can be installed via the Conda packagemanager. Additionally, the
CoronaSV workflow is defined using Snakemake. Running the CoronaSV.smk snakemake pipeline handles

Figure 9. An illustration of the methodology implemented by the SVTeaser software package. SVTeaser
software implementation showing how by using a reference genome a set of SVs can be simulated to benchmark
SV calling tools to inform experimental design decisions prior to analyses.
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downloading all specified data and processing of sequencing data to variant calls. Each step of the CoronaSV pipeline
(Figure 3) has a defined conda environment with exact versions of software specified for easy installation. CoronaSV
utilizes three approaches that includes 1) read-based SV detection with paired-end Illumina reads, 2) ONT long-reads and
3) assembly-based SV detection. Illumina paired-end short-reads are trimmed using trimmomatic52 and mapped to the
SARS-CoV-2 reference using bwa mem.53 After mapping, PCR duplicates are removed with Picard MarkDuplicates
(http://broadinstitute.github.io/picard). Structural variants are identified then using Delly,45 Manta,44 Lumpy,54 and
Tardis.55 Nanopore long-reads are filtered using Nanofilt and mapped to SARS-CoV-2 reference using minimap2 with
default parameters. SVs are then called using Sniffles, SVIM, and CuteSV. Read quality assessment is carried out by
NanoPlot. In order to integrate assembly based methods, de novo SARS-CoV-2 assemblies were generated using
Unicycler for short-read sequencing. NucDiff and SVanalyzer tools are used for assembly-to-assembly comparisons.
Followup comparative analyses across callsets is implemented by SURVIVOR56 (Figure 3).

System requirements: CoronaSV is tested on Linux-based systems with multiple illumina and nanopore sequencing data
(see GitHub for full list of the testing data). The RAM usage of CoronaSV depends on the size of input data. Peak RAM
usage appears during de novo assembly usingUnicycler, and 16GB of RAM is sufficient for the pipeline to run on 8 CPU
cores with additional 50Gb of disk space. CoronaSV requires python (version 3.6 or newer) and snakemake. Required
tools and package dependencies can be found on GitHub page.

CleanSV: The methods adopted to construct the CleanSVs filtration protocols are shown in Figure 4. In order to
generate the data required to develop adequate filters for the applicationwithin clinical ontology, structural variants (SVs)
were called on Illumina short reads using novoalign hs37d5 HG002 BAM (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz) and Illumina short-read HiSeqX Ten hg19
COLO829 BAM (https://nextcloud.hartwigmedicalfoundation.nl/s/LTiKTd8XxBqwaiC?path=%2FHMFTools-Resources%
2FGRIDSS-Purple-Linx-Docker) using GRIDSS,43 Delly,45 and Manta.44 44 (Note we chose HG00241, the son of
the“Ashkenazim Trio”, as it has been extensively characterized to serve as areliable reference in human genomics). The set
of curated SVs based on HG002 [Cite: https://www.nature.com/articles/s41587-020-0538-8] was used to determine the false
positive (FP) SV calls in the short read dataset. AnySV calls that were found outside of the truthset Tier1 bed regionswere then
filtered. In the sample COLO829, the SV truthset was used to determine the FP SV calls in the short-read dataset. Calls were
inspected throughmanual curation by Samplot.57 Generated samplots were annotated with UCSC table browser repeat tracks
and converted using vcfanno as well as GC content calculated by BEDOPS file conversion with the function.

We then compiled a set of high-quality germline calls using 3,782 normal samples freshly-sequenced at amedian depth of
38x by the Hartwig Medical Foundation.50,51 We intiial hypothesized that such a large cohort could be used to both
perform systematic FP filtering and possibly detect calls simply incorrectly labeled as somatic. The calls were filtered if a
match within 2bp of the breakpoint was found in the PON. System requirements: The scripts to filter SV calls with either
VCF or BEDPE format require R version 3.6.0 or higher, which is available for Linux, Mac OS, and Windows. The

Figure 10. Implementation pipeline of XSVLen software package. A graphical representation of the XSVLen
software pipeline showing the utilisation of haplotype-resolved de novo assembly and a VCF file to benchmarking SV
detection algorithms.
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analyses within were run on R version 4.0.3, with Biocondcutor version 3.12. For running SV callers, it is recommended
to use a HPC environment on Linux.

Sniphles: The Sniphles workflow (Figure 5) requires the following dependencies: Python >= 3.6, Pysam (Version
0.16.0) (https://github.com/pysam-developers/pysam), Cyvcf2 (Version 0.30.2),58 Sniffles (Version 1.12),10,42 SUR-
VIVOR (Version 1.0.7),56 Mosdepth (Version 0.2.6),59 Bcftools (Version 1.9),60 tabix (Version 1.8).61 The workflow
partitions reads in the bam file into groups based on phase blocks and phase status, which enables parallel analysis of the
data. The read coverage at each block and each phase is computed withMosdepth and used to estimate the parameters for
calling SVs by Sniffles. Next, the identified SVs per haplotype are concatenated using bcftools. SVs of two haplotypes are
combined using SURVIVORwith option “1000 1 0 0 0 0” to merge SVswithin 1 kbp between each other and to allow for
different types of variants to be considered on different haplotypes. SVs are then force called with Sniffles using this
combined vcf file. Force called SVs from each haplotype are combined with SVs of unphased regions as the final output
(Figure 5). To facilitate workflow testing, Princess (https://github.com/MeHelmy/princess) was used to align, detect and
phase SNVs and SVs from PacBio HiFi reads. The produced Bam from the previous step is the input for Sniphles, where
pysam was used for alignment.

Swagg: The minimal system requirements for SWAGG are 8Gb RAM, 1 CPU and 10Gb of storage. Figure 6
demonstrates the implementation and operation of the SWAGG software package. Protein graphs are generated using
a multiple sequence alignment of the proteins, then using the tool msa_to_gfa (https://github.com/fawaz-dabbaghieh/-
msa_to_gfa) after which this multiple sequence alignment is converted into a graph file in GFA format, with the original
sequences embedded as paths in the graph for visualization. This tool is tested with Python 3 and does not require any
extra libraries or dependencies. New sequences can be aligned to these graphs using Partial Order Alignment algorithm
for example.

PanOriginSV: PanOriginSV has three additional open source dependencies which are MMseqs2 (for clustering),
BCALM (pangenome creation) and GraphAligner (for sequence-to-graph alignment). MMseqs2 is the most memory
intensive step, and MMseqs2 requires roughly 1 byte per sequence residue. An overview of the pipeline utilised by this
tool is highlighted in Figure 7. PanOriginSV performs lab-of-origin prediction in three distinct steps. Firstly, during the
training phase PanOriginSV clusters similar sequences using MMseqs2. Further, the most similar clusters having a
predefined number of representative lab labels are selected for the pangenome creation. Second, in order to incorporate
SV information into the pangenome a graphical pangenome is created using BCALM for each of the clusters identified in
the first step. These pangenomes reflect sequence-level structural variation that reveal important differences in highly
similar sequences that could belong to different labs thereby reducing the possibility of false positives. The training
sequences are then mapped back to their corresponding pangenome graph to obtain important alignment information
including but not limited to number of hits and percentage identity of alignment. These are then collated and embedded
into a feature vector that is passed on to a machine learning model for prediction.

Thirdly, features from the alignment steps are combined with sequence metadata and input into a random forest classifier
that is trained to predict lab-of-origin in a multiclass classification task. Both the top-1 and top-10 predictions are output
and compared to previous literature and Genetic Engineering Attribution Challenge (GEAC) benchmarks.

GeneVar: Figure 8 shows the different components of GeneVar, which is a web browser application. The webpage,
including data storage, requires only one core with 1 Gb RAM and requires less than 1 Gb of storage. After entering the
gene name (HGNC, Ensembl gene (ENSG), or transcript (ENST) identifier) in the search box on the homepage, you will
be directed to the gene-specific page containing: 1) Gene-level summary with number of SVs, number of clinical SVs or
SVs overlapping clinical SNVs, 2) Links to the gene's page on OMIM, GTEx, gnomAD, 3) A dynamic table with the
annotated variants overlapping the gene, 4) A graphwith the distribution of the allele frequency for variants matchedwith
gnomAD-SV (50% reciprocal overlap). The profile of the SV to consider, such as type and size range, can be specified on
the side bar. Each column in the dynamic table can be "searched" into or reordered dynamically. All data used by the app
will be available for download in tab-delimited files. By default, allele frequency is reported based on dbVar62 and
gnomAD genomes and exomes. Furthermore, GeneVar utilises dbVar database and links SV to genes and annotate gene
impact, allele frequency, and the overlap with clinically-relevant SVs, SNVs and indels. All data, are available for
download in a tab-delimited file. Each variant has been extensively annotated and aggregated in a customizable table.
GeneVar is available on GitHub (https://github.com/collaborativebioinformatics/GeneVar). The repository provides
detailed instructions for tool usage.

SVTeaser: SVTeaser generates regions from a user provided reference and adds in a structural variant into each region
using one of two methods - 1) a call to SURVIVOR simSV56 which generates random, simulated SVs by introducing
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variation (deletions (DEL) and insertions (INS) type of SV breakpoints) in DNA sequences, or 2) automatic spike-in of a
known SV from an input SV VCF file. Resultant altered reference sequences are then used for Illumina short-read
simulation using ART.63 Parameters controlling simulated sequencing read-length, insert-size, and depth parameters can
be altered. Simulated reads can then bemapped to the original, unaltered referencewith anymapper of choice; here, BWA
was used. Resultant BAM files can then be used to detect SVs using any mapping-based SV caller of choice; here,
Parliament264 was used to generate calls with manta, breakseq,60 cnvnator, and lumpy. The resultant VCFs are then
matched to the simulated SVs’ VCFs using Truvari and output is parsed into a pandas dataframe for report generation.
SVTeaser requires installation of Python 3.7, Truvari, SURVIVOR,56Vcftools andART read simulator. The components
of SVTeaser are shown in Figure 9.

XSVLen:TheXSVLenworkflow requires Python3,Minimap2, Nextflow, andR>=3.5.0. As demonstrated in Figure 10,
XSVLen takes as input a haplotype-resolved de novo assembly, and a VCF file (generated by cuteSV42 or sniffles10) of
variants including only insertion and deletion calls. For each insertion or deletion call within the vcf file, a modified
reference genome is generated. This modified reference will contain a 1.5kb flanking sequence that either has the
sequence removed if a deletion call, or the alternate sequence added between the flanking sequences if an insertion call.
The resulting ‘query’ sequences are then mapped using minimap2 to both haplotypes. Each aligned query gives rise to a
map of aligned bases P={(q1,t1),… , (qn,tn)}. To score each variant call, we find two indexes i, j. These index the end of
the prefix, and beginning of the suffix in the query.When the call is valid, (P [j][0] - P [i][0]) - (P [j][1] - P [j][0]) is equal to
0. To account for differences in alignment, we iteratively search for an (iopt, jopt) combination, with iopt≤ i and j≤ jopt that
gives the smallest difference. Variants are reported as valid if the difference is less than 10 bases or the intervals defined
between P [iopt] and P [jopt] are within 95% length in either haplotype. A summary report is then produced using an R
script.

Use Cases
nibSV:

We benchmarked nibSV over the GIAB HG002 SV call set.65 In summary, this call set was created using multiple long
and short read technologies and underwent manual validation across multiple groups to ensure an overall high quality and
accuracy. Using an Illumina data set from (2x250 GIAB HG002) we benchmarked true positives (i.e. SV that should be
present), false positives (i.e. parental only SV that should not be present in the proband HG002), and false negatives
(i.e. SV that should be present in HG002 but were not found). Using only chr 22 from HG002, nibSVwith a kmer size of
23 takes around 2-4 minutes on a single thread with a 80gb bam file and the provided VCF file. We assessed our recall at
different k-mer sizes which increases with the kmer size. For example, k=21 (2min 3sec) achieves 0.59 recall with a
precision of 0.83. Interestingly, for insertions the recall rate increases to 0.86 with a precision of 0.86.

CNV2SV:

Figure 11a shows the best links (based on the alignment identity score) between CNVs identified by CNVnator and
duplication SVs inferred from the dipcall alignment of CHM13 and GRCh38. The genomic areas surrounding four
selected adjacent duplication events are further highlighted using dot plots, revealing the architecture of the correspond-
ing variation in the context of the genome-genome alignment. In Figure 11b, all CNV-SV links meeting a default
alignment identity threshold are shown, further revealing events corresponding to putative copy number increases of
greater than two. We further explored the reason why some CNV and SV could not be linked, through statistical analysis
of the raw SV calls as shown in Figure 12.

CoronaSV: We processed more than 200 SARS-CoV-2 SRA runs with CoronaSV, and Figure 13 shows the high
confidence SVs generated with SURVIVOR56 by taking a majority vote across multiple SV callers. We also looked for
shared SVs acrossmultiple samples. There were only a few inversions identified that were consistently and reliably called
between samples. The inversions are likely related to the transcriptional landscape of SARS-CoV-2.66 These inversions
are small (less than 1Kb), and five of them were found in ORF1ab and one on ORF M.

CleanSV: We investigated filtering SV calls using both the curated reference set and a high-quality panel of normals
(PON). The PON was created using GRIDSS calls from 3,782 normal samples freshly-sequenced at a median depth of
38x by the Hartwig Medical Foundation.50,51 Using this PON consisting of GRIDSS calls from 3,792 freshly-sequenced
normalWGS samples, we explored how the percentage of calls from short-read SV callers whichwere incorrectly labeled
as true somatic calls, either due to being algorithmic artifacts or germline calls. Our results show the promise of such an
approach. (Figure 14). Note that this is not only a check for false positives: we know a priori that many calls from somatic
SV callers are mislabeled as somatic when they’re actually germline. This is a known algorithmic error: SVs are normally
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first called in the normal sample and labeled as “germline”, and then the resulting SVs called using the tumor sample
(separately or jointly with against the normal) are labeled as “somatic”. While such an approach is common for short-read
SV callers, this frequently leads to mislabeled results, often for the simple reason that the normal sample is sequenced at a
much lower coverage than the tumor sample.

Figure 11. Relationship between the CNV calls and identified SVs across the CHM13 genome. CNV2SV results
using CHM13 in comparison to GRCh38. (A) The diagram connects the genomic location of individual CNV calls on
GRCh38 (broad ends) to the location of their linked SV identified in the GRCh38-CHM13 genome-genome alignment
(thin ends). The diagram reveals a number of underlying putative translocation events identified for the called CNVs.
Adjacent CNV-SV links (putative tandem duplications) are shown as streaks at the respective genomic position. For
four select CNV-SV links, the genome-genome alignment for the underlying SV is further shown as a dot plot on the
outside of the diagram. Only the best matching SV link (thin end) identified for each CNV call (broad end), as
determined by sequence alignment score between both events, is shown here. (B) Similar to A, but displaying all
potential CNV-SV links that meet the default alignment identity threshold of 0.8. CNVs with multiple matching
duplication SV events identified in the genome-genome alignment can be explained by copy numbers greater than
two occuring in distant locations, and alternatively may suggest the involvement of complex genomic rearrange-
ments including transposable elements.
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In order to release these filters/thresholds to the larger community for general usage, these filters need to be tailored
specifically for specific assays. The optimal approach would be to focus on a particular use of SV calling (e.g. therapeutic
oncology) with a particular assay of a certain average coverage and tumor purity. We suspect generating filters per SV

Figure 12. Summary the linkage statistics showing the characteristics of disparities between the CNV calls
and SVs. In terms of linkage statistics, the majority of the CNVs identified have not been linked to a SV event, as
indicated by A. One of the main reasons for the unsuccessful linking is the length disparity between the called CNV
events and SV events as shown in B. Overall, among linked CNV and SV events, the distribution of three major
categories are shown in C: adjacent events, distant events, and events spanning multiple chromosomes. Distant
events are called in the case when the linked SV is at least 1Kbp away from the CNV call (either upstream or
downstream). Details of the distribution of the adjacent and distant events per CNV call are given in D and E shows
that alignment quality is better for adjacent matches when compared to more distant SV matches. While most links
for a single CNV event are unanimously distant or adjacent, we observed an event in which a CNVwas linked to both
an adjacent and a distant SV which occurs on chromosome 7 (F: adjacent: chr7:100997804 length 8325 and distant:
chr7:100994092 length 3249).
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caller for general use would result in minimal quality control; this is especially true within cancer genomics in terms of
calling somatic and germline SVs accurately.

We plan to continue to explore whether the false positives found exhibit distinct features which we could use for future
filters to distribute to the community. With these insights, given that clinical genomics still overwhelmingly relies upon
short-read sequencing, our goal would be to also apply filters to all variants (e.g. the case of Mendelian diseases).

Sniphles:We used Princess (https://github.com/MeHelmy/princess) to align, detect and phase SNVs and SVs from
PacBio HiFi reads 32x coverage. The resulting haplotyped bam is the input for Sniphles, where pysam (https://github.
com/pysam-developers/pysam)was used for alignment. For each phase blockwe used themosdepth59 to detect coverage.
Later, we called SVs using Sniffles10,42 with the adequate numbers of reads to support SV. The identified SVs per phase

Figure 13. An analysis of size and number of identified SARS-CoV-2 SVs. Histogram showing size of the SVs and
the total number of SVs across multiple Nanopore and Illumina datasets. The y-axis of the histogram is log
compressed.

Figure 14. Filtering somatic SV calls using a Panel of Normals. Using a cohort of 3,792 freshly-sequenced WGS
normal samples to create a Panel of Normals (PON) from GRIDSS calls and a set of curated calls from sample
COLO829 to classify false positives, we discover that a sizeable number of false positives were foundwithin the panel
of normals, suggesting that these were miscategorized due to algorithmic errors. PON filtering based on GRIDSS
calls is effective for the modern callers such as GRIDSS, Manta and SvABA which (partially) rely upon localized
assembly.

Page 22 of 60

F1000Research 2021, 10:246 Last updated: 28 SEP 2021

https://github.com/MeHelmy/princess
https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam


block were sorted and concatenated using bcftools version 1.9,67 and both the haplotypes were merged using SURVI-
VOR. Sniphles is a prototype of the idea we introduced in the manuscript and so it is still under development.

Swagg: The main results from the Swagg package includes the development of the graph module and the protein
graphical application (Figure 15). The graph module is able to retrieve basic statistics from a pangenome graph in GFA
format from either reference-based (fasta + VCF) or a set of assemblies (fasta), followed by conducting a pairwise
comparison of all paths in the graph, and outputting a matrix in TSV format with the path names and corresponding
samples in the first position. After creating the pairwise matrix, the module can plot an SV pileup over any path in the
graph, counting the number of other paths that contain an SV overlapping each position. In addition to utilizing the
pairwise comparisons where hotspots are references to a given sample, this approach also allows for graphs derived from
vcf files. The objective from the protein graph mapping application was to show if the variants introduce new amino
acids or stop a stop codon. Similarly, a pangenome graph can be constructed fromDNA sequences as panproteome graphs
can be built from different amino acid sequences of a protein. These graphs can then help visualize the variants between
the sequences and show the paths each sequence take through the graph. Another layer of information can be added to
the nodes, e.g. does a node represent a conserved or a non-conserved side, does a path divergence in the graph has
any significant phenotypic characteristics, relating genome-wide association studies to these proteins graph.68 Therefore,
when aligning a new sequence to the graph, one can check the path the new sequence took in the graph and what
information are related to this path.69 Figure 15 shows an example of an annotated graph of the Nucleocapsid
Phosphoprotein in SARS-COV-2.

PanOriginSV: It became apparent that the quality and representation of the clusters was a main factor in prediction
accuracy. To this end, we tested PanOriginSV on a range of clusters of at least 500 sequences and only considered cases
where the test sequence had a training representative in the assigned cluster. The CPU time used by PanOriginSV was
10-50x less than the linear model constructed by Plasmidhawk (depending on the cluster).We observed a range of results,
with the linear prediction model outperforming PanOriginSV by up to 5% in some clusters and PanOriginSV out-
performing the linear model by up to 6% in others (Table 1). With deeper analysis of the input data, we hope to achieve

Table 1. Summary of PanOriginSV prediction accuracy. Benchmarking results on large clusters obtained from
MMseqs2. For a single cluster, 25% of sequences were held out and used as the testing set. The accuracy of the top
predicted labwas consistently higher in PanOriginSV compared toPlasmidHawk, however theaccuracywhen testing
against the top 5 predictions for both tools was comparable.

Cluster Train
Sequences

Test
Sequences

Test
accuracy
(Linear)

Top 5 test
accuracy
(Linear)

Test
accuracy
(Graph)

Top5 test
accuracy
(Graph)

J7OEM 2870 714 0.96 0.99 0.97 0.99

3PTDM 2397 571 0.82 0.93 0.81 0.93

O3GQU 1046 275 0.65 0.88 0.71 0.83

48073 973 205 0.71 0.89 0.71 0.87

WA905 639 149 0.87 0.94 0.87 0.97

GIGX0 604 119 0.71 0.87 0.79 0.93

Figure 15. SARS-COV-2 nucleocapsid protein graph. Protein graph with paths representing the original sample.
This graph here is a directed acyclic graph of anMSA of 26 “N” gene (Nucleocapsid Phosphoprotein) generated from
26 SARS-COV-2. Visualized using gfaviz.70
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better clusters and thus better prediction results with the graph model. It is also worth noting that our graph construction
method can be improved using more recent pangenome graph construction tools.

GeneVar: Databrowser. Upon querying a gene or transcript, the data browser will visualize a rare-variant burden test,
allele frequency distribution, and variant level information for known SVs within dbVar. The data browser does not have
a login requirement and integrates multiple public resources (Figure 16). To illustrate whether a particular gene/transcript
or exon has been adequately covered to detect variation, the average depth of coverage is graphically represented. An
additional panel shows gene expression levels across all general tissues included in GTEx.71Report summary. Analysis
results are enriched with information from several widely used databases such as ClinVar72 and gnomAD,73 as well as

Figure 16. User interface of GeneVar data browser. A description of the elementary transcript details for the gene
of interest. This includes the Ensembl transcript ID, Ensembl Gene ID, number of exons and genomic coordinates as
described in the GRCh38 build.
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graphical visualization utilities integrated in the pipeline as part of GeneVar. Resulting variants are reported in a tab
delimited format to favor practical use of worksheet software such as iWork Number, Microsoft Excel or Google
Spreadsheets. All information can be downloaded in tabular form.

SVTeaser: SVTeaser was able to simulate SV data on average 14 min per sample when tested on chromosome two.
SVTeaser output includes organized VCF results of true positive, false positive, and false negative from evaluated SV
callers. Furthermore, performance scores are reported alongside automated plots for quick visual evaluation of SV callers
(Figure 17). SVTeaser is able to simulate sequencing for known deletions and insertions with various coverage, read
length, and insert length. This enabled thorough evaluation for understanding the strengths and boundaries of the SV
callers in question (Figure 18).

XSVLen: A diploid assembly of HG002 fromWenger et al74 was used to benchmark variants. The assembly has an N50
of 16.1 and 18.0 Mb per haplotype. Variants were called using 50-fold coverage of ONT reads using CuteSV version

Figure 17. Summary report output of SVTeaser. A report generated from benchmarking a real HG002 Manta 30x
Illumina sample against GIAB Tier1 SVs. A) Counts of SVs by SVType and their intersection state with GIAB Tier1
benchmark SVs. B) Summary table of benchmarking performance. C) Proportions of SV intersection states with the
benchmark by SV size bin.
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v1.0.8. The number of INS and DEL per SV size can be observed in Table 2. The number of INS/DEL overlapping with
the haplotype-resolved assemblies are shown in Table 2 as well as a comparison of assembly-based calls and gold-
standard Truvari calls.

Conclusion
The results of the 2020 Baylor College of Medicine/DNANexus hackathon described here represent novel work that
pushes the field forward for human genome SV detection but also for Covid related research. Both are needed to further
current findings about diversity and the complexity of organisms and their genotypes. To further facilitate this progress in
a FAIR-compliantmanner, 80 people came together from across theworld inOctober 2020 completed 10 groundbreaking

Figure 18. Acomparisonof simulatedDELsacross SV callers andsequencing coverages.Count of FalsePositives,
FalseNegatives, and True Positives from four SV callers (columns) against chromosome 2deletions throughmultiple
simulated coverages (rows). SV callers: breakseq, lumpy, manta, cnvnator. Coverages: 10x, 20x, 30x.

Table 2. Summary: Insertion anddeletion events are compared according to structural variant size andnumber and
overlapswith the haplotyped assembly used in their performed evaluation. Truvari classification for the overlapping
calls are shown as well as TP and FP found in the haplotyped assembly.

SVType Insertions Deletions

SVLen <50 >=50 <50 >=50

Number of insertion/deletion calls by cuteSV 20007 14942 38331 10926

Number of these calls that overlap assembly contigs 16054 12075 30494 4074

Number of truvari
TP/FP/no-call (NP)

3351 FP
7200 TP
15974 NP

368 FP
4348 TP
7359 NP

1842 FP
18 TP
28634 NP

117 FP
1137 TP
2820 NP

Number of assembly calls
TP/FP/no-call (NP)

5220 FP
10834 TP

8979 FP
8502 TP

23202 FP
7292 TP

3444 FP
3031 TP
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prototypes. Hackathons like these not only represent short bursts of prototype development, but are essential to form
groups and communities, inspire communication across countries and research institutions, and form novel collaboration
networks. As such, this year’s hackathon not only sparked the projects described here, but also highlighted the need for
unified databases for SVs and other genomic features hosted on DNAnexus, Anvil, and other platforms as well as larger
standards and references (e.g. GIAB, UKBB). This is essential to ensure quality standards for benchmarking and
comparability, which will further advance the science and medical research.

Rapidly switching to a completely remote hackathon that enabled increased international participation was made
necessary by the COVID-19 pandemic. This allowed for an open science effort across an even more diverse population
of individuals and professional backgrounds. That diversity made it possible to complete 10 projects, which spearheaded
novel insights in the understanding of structural variants in humans, as well as COVID19 genome structure. More
importantly, it led to new synergies among participants, an active online community, and new friendships across borders.

Data availability
Associated code is available at: DOI 10.17605/OSF.IO/ME62X

Data sources utilized:

NibbleSV: Genome in a Bottle, HG002, SV callset (ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/
AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/).

CNV2SV: CHM13 (https://github.com/nanopore-wgs-consortium/CHM13#telomere-to-telomere-consortium) and GRCh38.

CoronaSV: Data sources available on https://github.com/collaborativebioinformatics/coronasv.

CleanSV: hs37d5 HG002 BAM (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/phase2_reference_
assembly_sequence/hs37d5.fa.gz), hg19 COLO829 BAM (https://nextcloud.hartwigmedicalfoundation.nl/s/
LTiKTd8XxBqwaiC?path=%2FHMFTools-Resources%2FGRIDSS-Purple-Linx-Docker).

SWAGG: Data sources available on https://github.com/collaborativebioinformatics/swagg/blob/main/sample_manifest.tsv.

XSVLen: HG002 haplotyped-resolved assemblies (NCBI assemblywith accessionsGCA_0047796458.1 (maternal) and
GCA_004796285.1 (paternal)), GIAB HG002 truthset (https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/Ashkenazim
Trio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.vcf.gz).

GeneVar: Data sources available on https://github.com/collaborativebioinformatics/GeneVar.

PanOriginSV: genetic engineering attribution challenge (GEAC).

https://www.drivendata.org/competitions/63/genetic-engineering-attribution/.

SVTeaser: All data utilized was based on simulations

Sniphles: Genome in a Bottle, HG002, SV callset (ftp://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/
AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb/).

Software availability
NibbleSV

Source code available from: https://github.com/collaborativebioinformatics/nibSV

Archived source code at time of publication:

License: MIT license
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CNVSV

Source code available from: https://github.com/collaborativebioinformatics/CNV2SV

Archived source code at time of publication:

License: MIT license

CoronaSV

Source code available from: https://github.com/collaborativebioinformatics/coronasv

Archived source code at time of publication:

License: MIT license

CleanSV

Source code available from: https://github.com/collaborativebioinformatics/CleanSV

Archived source code at time of publication:

License: MIT license

Sniphles

Source code available from: https://github.com/collaborativebioinformatics/Sniphles

Archived source code at time of publication:

License: MIT license

Swagg

Source code available from: https://github.com/collaborativebioinformatics/swagg

Archived source code at time of publication:

License: MIT license

PanOriginSV

Source code available from: https://github.com/collaborativebioinformatics/PanOriginSV

Archived source code at time of publication:

License: MIT license

GeneVar

Source code available from: https://github.com/collaborativebioinformatics/GeneVar

Archived source code at time of publication:

License: MIT license
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SVTeaser

Source code available from: https://github.com/collaborativebioinformatics/SVTeaser

Archived source code at time of publication:

License: MIT license

XVSLen

Source code available from: https://github.com/collaborativebioinformatics/The_X_team

Archived source code at time of publication:

License: MIT license
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tools to more accurately identify, genotype and map SVs, as well as provide predictive functional 
effects of the variants to gene expression. The identification of new and accurate tools to identify 
SVs is of critical importance for understanding the genetic underpinnings of complex disease with 
no monogenic pattern of disease inheritance. This manuscript is the product of a virtual 
international hackathon, describing newly developed tools as a foundation for future discussion 
and development, and the links to the already available online tools provide additional and 
necessary information for understanding the software applications and outputs. I recommend this 
manuscript for indexing following amendments. From a functional genetics perspective, I provide 
the following comments and suggestions: 
 
1. The manuscript does not provide full detail about the code, methods and analysis of the 
individual tools, however, the purpose of the manuscript is to describe the hackathon and the 
resultant projects, with the intention for future development of these tools. This could be made 
clearer in the text with the development status and future requirements for each tool discussed. 
 
2. A summary table of the main applications, benefits, and stage of development for each of the 
tools and the future direction would be helpful for readers. In particular, more information on the 
specific applications of each of the tools would be helpful for those reading the manuscript 
without a bioinformatics background. 
 
3. The manuscript is written with an introduction to each tool, the operation for each and finishing 
with use cases or results for each. As a suggestion, describing each tool separately under its own 
heading and incorporating each of these sections would improve the flow of the manuscript. 
 
4. The current tools for accurate SV calling and genotyping from GWAS data are limited for poly-
nucleotide variations. Do any of the described tools address this limitation?  
 
5. The Swagg software describes a tool for SV calling and mapping at both the gene and protein 
level. However, the advantage of SV calling and mapping at the protein level is not clear given that 
many SVs are found in non-coding regions. The protein function is not further described in the 
methods and the interpretation of the figure in the results section was not clear. It would be 
useful to provide more information for the protein mapping. Can this software show predictive 
changes to mRNA or protein structures induced by SVs in non-coding regions? 
 
6. The GenVar tool offers a clinically relevant analysis with predictions to SV effects on regulation 
of gene expression. Does the tool identify SV regions based only on the reference sequence or is it 
able to further compare a patient sequence to the RefSeq and provide information as to the 
carriage of potential risk variants/variants known to effect gene expression? 
 
7. There is no figure displaying the result output for the phase sequencing analysis Sniphles tool, 
this would help in explaining the data analysis and output.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly
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Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genetic therapies, functional genetics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.
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This manuscript describes ten Structural Variation related software tools developed at the Second 
Baylor College of Medicine & DNAnexus hackathon. These tools successfully cover relevant topics 
in the SV field and certainly will be appreciated by the scientific community. As other reviewers 
pointed out, my primary concerns are that the text still needs some work to improve readability 
and fix inconsistencies (e.g., American vs. British spelling). Also, a table summarizing all tools 
described will be very welcome. There are also some issues specific to some tools that should be 
addressed. Comments for each tool are described below. 
 
NibbleSV: The tool seems great, performs efficiently, and the results are impressive. I just have 
few comments that would be interesting to see. First, the authors could add more details about 
the tests using the HG002. If I understood right, the GiaB tier 1 v0.6 was used as candidates to 
genotyping using the Illumina reads (250bp), is that correct? Also, how was the evaluation done? 
Second, if possible, it would be interesting to see how NibbleSV compares with other tools (e.g., 
paragraph). Finally, it would be nice to see how it performs in more complicated regions (e.g., 
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segmental duplications). I wonder if NibbleSV could help filter artifact SVs found by misalignment 
in those regions. 
 
CNV2SV: The motivation and the tool description must be improved in the manuscript. Also, the 
results are not well described and discussed, being restricted to the legends of Figures 11 and 12. 
 
Minor: 
In the methods, CNV2SV circularlize should be circlize to refer to the R package. 
Missing description of letter C in figure 11 legends. 
 
CoronaSV: The method proposes a Snakemake pipeline for SV discovery in SARS-CoV-2 genomes. 
It integrates short and long reads SV discovery tools, as well as assembly-based methods. 
CoronaSV also handles downloading sequencing data from SRA for variant calling. As a use case, 
the pipeline was applied to over 200 genomes, and a basic report of the results was shown. I’m 
not familiar with viral genomes, but I’m wondering what is the actual gain of applying such 
complex pipeline instead of performing de novo assembly and getting the SVs from it instead. 
 
CleanSV: The tool proposes a systematic way for filtering false-positive somatic SVs in cancer 
genomics. The approach uses germline SVs identified in normal tissue samples to find the best 
filtering thresholds for specific SV callers. There is no description of how to run the tool, and an 
example dataset could be added to the GitHub page. 
 
Sniphles: More details could be added to the diagram of the pipeline, the calling and merging 
steps are oversimplified. Is there a reason why Sniffles need Mosdepth to estimate its parameters? 
It would be great to see how it compares with the “first” approach of phasing mentioned by the 
authors, using tagged reads to phase SVs. 
 
Swagg: The motivation and methods are not very clear in the manuscript. It seems to me that the 
protein-graph is basically capturing small-variants. Where SVs fit in this context? The example 
showed in Figure 15 needs a more detailed explanation (e.g., what the color mean? Is there any SV 
affecting this protein?). Also, some phrases are repeated in the introduction and methods 
sections. 
 
PanOriginSV: I’m unfamiliar with the topic addressed by this tool. For the little information I could 
get, the proposal seems very relevant, and the results look promising. In the introduction, the 
authors discuss the drawbacks of using machine learning approaches and highlight PlasmidHawk 
advantages, but in the end, propose another machine learning method? What is different in this 
method compared to existing ones? I’m wondering if extending that tool to work non-linear 
pangenomes would be possible. Also, it would be nice to see the same benchmarking against 
PlasmidHawk. 
 
GeneVar: The proposal of GeneVar seems interesting and novel. However, not all features 
described in the manuscript seemed to be implemented. For instance, the authors state that a 
rare-variant burden test is performed but, I could not find that on the demo website. Also, the 
annotations are still very basic, the presentation of the overlap is not user-friendly. I would 
suggest improving how information is shown, with more summarized information about the 
overlap. 
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SVTeaser: SVTeaser is a framework for benchmarking SVs using simulations. Simulations are 
performed using SURVIVOR. Overall, the method seems well developed, and the contribution is 
relevant for the field. 
 
XSVLen: The methods sound truly relevant and novel. I’m very interested in applying this method 
in the future. I’m wondering if a more refined report could be implemented. It would be 
interesting to see results summarized for each haplotype separately. In the manuscript, the 
results table is hard to understand. For example, the first row shows 14942 INS >=50, while the 
second row shows a higher number when I would expect just a subset based on the description.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioinformatics, genomics, genetics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 14 Jun 2021
Ann Mc Cartney, NIH, Washington, USA 

We would like to thank Ricardo for their time on giving the authors of this manuscript 
feedback and comments. Upon receiving these comments the corresponding authors 
reached out to the developers of each of the tools developed as part of this hackathon, 
each of which have done their utmost to respond to each comment or question.  
  
Comment 1: General: This manuscript describes ten Structural Variation related software 
tools developed at the Second Baylor College of Medicine & DNAnexus hackathon. These 
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tools successfully cover relevant topics in the SV field and certainly will be appreciated by 
the scientific community. As other reviewers pointed out, my primary concerns are that the 
text still needs some work to improve readability and fix inconsistencies (e.g., American vs. 
British spelling). Also, a table summarizing all tools described will be very welcome. There 
are also some issues specific to some tools that should be addressed. 
 
Response: We agree that the format of the manuscript is somewhat cumbersome to read, 
however this is a pre-requisite determined by the journal for manuscripts associated with 
hackathons.  
  
Comment 2: For the Developer of NibbleSV: The tool seems great, performs efficiently, and 
the results are impressive. I just have a few comments that would be interesting to see. 
First, the authors could add more details about the tests using the HG002. If I understood 
correctly, the GiaB tier 1 v0.6 was used as a candidate for genotyping using the Illumina 
reads (250bp), is that correct? Also, how was the evaluation done? Second, if possible, it 
would be interesting to see how NibbleSV compares with other tools (e.g., paragraph). 
Finally, it would be nice to see how it performs in more complicated regions (e.g., segmental 
duplications). I wonder if NibbleSV could help filter artifact SVs found by misalignment in 
those regions. 
 
Response: Yes, the tests were done using GIAB Tier 1 v0.6 truth SV set and alignment file of 
illumina 2x250 bp dataset for HG002 sample. The true positive count is the number of 
genotyped SVs that are not parental SVs i.e. HG2count > 0 and the FP count is the parental 
SVs i.e. HG2count=0. The parental exclusive SVs that are not genotyped are counted as TNs 
and the HG002 SVs that are not genotyped by nibSV are counted as FN. The following 
metrics are used to evaluate performance of nibSV: 
 
Recall = TP/ (TP+FN); Precision = TP/(TP+FP); Accuracy = (TP+TN)/(TP+FP+FN+TN); False 
discovery rate = FP/(TP+FP). The performance of nibSV was compared with SVTyper. 
SVTyper can genotype only non-insertion (ie. here deletions) type SVs, so we compared 
nibSV with SVtyper only for deletion type of SVs. nibSv was run with parameters k=23 and 
m=0. 
Tool,TP,FP,FN,TN,Recall,Precision,Accuracy,FDR 
nibSV,12152,2055,17957,5248,0.4,0.86,0.47,0.14 
SVTyper,5873,212,24236,7091,0.20,0.97,0.35,0.03 
 
The high recall score of nibSV shows that it outperformed SVTyper for genotyping the non-
insertion type SVs. The high precision rate and low false discovery rate of SVTyper is due to 
the very low number of total genotyped SVs. The Paragraph tools required to add the 
padding bases to the SVs in the truth set. We could not successfully run Paragraph without 
making any changes to the truth set. Therefore, we have not included that tool in this 
result. 
 
Comment 3: For the CNV2SV Developers: The motivation and the tool description must be 
improved in the manuscript. Also, the results are not well described and discussed, being 
restricted to the legends of Figures 11 and 12. Minor:In the methods, CNV2SV circularlize should 
be circlize to refer to the R package.Missing description of letter C in figure 11 legends. 
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Response: Thank you for your assessment. We have restructured the respective sections in 
the manuscript in order to clarify the tool motivation and description of operation. We 
have also corrected the figure accordingly. 
  
Comment 4: For the CoronaSV Developers: The method proposes a Snakemake pipeline for 
SV discovery in SARS-CoV-2 genomes. It integrates short and long reads SV discovery tools, 
as well as assembly-based methods. CoronaSV also handles downloading sequencing data 
from SRA for variant calling. As a use case, the pipeline was applied to over 200 genomes, 
and a basic report of the results was shown. I’m not familiar with viral genomes, but I’m 
wondering what is the actual gain of applying such a complex pipeline instead of 
performing de novo assembly and getting the SVs from it instead. 
 
Response: The reviewer makes a good point with respect to de novo assembly from short 
reads, which would accurately capture small structural variants. However, given SARS-CoV-
2 is sequenced from an intrahost population, which often is from metatranscriptomes 
(RNA-sequencing of a microbiome sample) containing subgenomic RNAs, SVs reflect the 
transcriptional landscape of SARS-CoV-2. Thus we feel it is of use to capture the 
concordance across short reads, long reads, and assembly for structural variants calling. 
  
Comment 5: For the CleanSV Developers: The tool proposes a systematic way for filtering 
false-positive somatic SVs in cancer genomics. The approach uses germline SVs identified in 
normal tissue samples to find the best filtering thresholds for specific SV callers. There is no 
description of how to run the tool, and an example dataset could be added to the GitHub 
page. 
 
Response: Thank you to the reviewer for the response. As mentioned in the previous 
reviews, our contribution to the hackathon was a proof of concept. Releasing the filters for 
general use would require more work specifically investigating tumors of a given 
sequencing depth and tumor content. The panel of normals used for the paper are 
accessible, as cited in the paper. 
  
Comment 6: For the Sniphles Developers: More details could be added to the diagram of 
the pipeline, the calling and merging steps are oversimplified. Is there a reason why Sniffles 
need Mosdepth to estimate its parameters? It would be great to see how it compares with 
the “first'' approach of phasing mentioned by the authors, using tagged reads to phase SVs. 
 
Response: We would like to thank the reviewer for the comments and questions. We agree 
with the reviewer regarding the merging step, while this is a prototype of the idea, we will 
be working on enhancing the merging step. Additionally, we stated that in the manuscript.  
  
Comment 7: For the Sniphles Developers: “Sniffles need Mosdepth to estimate its 
parameters''. Response: Sniffles use a minimum of 10 reads to call an SV, we suggest to use 
mosdopth to calculate the coverage for the region we call SVs in, so it could adapt to low 
and high coverage as well as technology used for sequencing (PacBio or Oxford Nanopore 
Technology). 
Comment 8: For the Sniphles Developers: ‘’It would be great to see how it compares with the 
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“first'' approach of phasing mentioned by the authors, using tagged reads to phase SVs.”. 
 
Response: We will be working on that, as the second approach still needs more tuning. 
 
Comment 9: For the Swagg Developers: The motivation and methods are not very clear in 
the manuscript. It seems to me that the protein-graph is basically capturing small-variants. 
Where do SVs fit in this context? The example shown in Figure 15 needs a more detailed 
explanation (e.g What does the color mean? Is there any SV affecting this protein?). Also, 
some phrases are repeated in the introduction and methods sections. 
 
Response: We would like to thank the reviewer for their comments and questions regarding 
the manuscript. In response to their questions, the different colors are associated with 
different sequences used to build the graph, with each sequence taking a certain path in 
the graph, which yields the colors.  
  
Comment 10: For the PanOriginSV Developers: I’m unfamiliar with the topic addressed by 
this tool. For the little information I could get, the proposal seems very relevant, and the 
results look promising. In the introduction, the authors discuss the drawbacks of using 
machine learning approaches and highlight PlasmidHawk advantages, but in the end, 
propose another machine learning method? What is different in this method compared to 
existing ones? I’m wondering if extending that tool to work non-linear pangenomes would 
be possible. Also, it would be nice to see the same benchmarking against PlasmidHawk. 
 
Response: We’d first like to thank the reviewer for their feedback. While PanOriginSV does 
use machine learning, it has the advantage that random forests are much easier to 
inspect, train, and interpret than other ML models. In addition, the step of constructing the 
pangenome already constructs features of the sequence. The results of PlasmidHawk are 
shown as the “linear” model in Table 1 as opposed to PanOriginSV, the graph model. 
  
Comment 11: For the GeneVar Developers: The proposal of GeneVar seems interesting and 
novel. However, not all features described in the manuscript seemed to be implemented. 
For instance, the authors state that a rare-variant burden test is performed but, I could not 
find that on the demo website. Also, the annotations are still very basic, the presentation of 
the overlap is not user-friendly. I would suggest improving how information is shown, with 
more summarized information about the overlap.  
 
Response: Thank you reviewer, for your thoughts and assessment. Indeed, GeneVar is a 
work in progress and what you see now is the result of only 3 days of work. The developers 
agree that to make this a public tool, additional time and effort is needed. 
  
Comment 12: For the SVTeaser Developers: SVTeaser is a framework for benchmarking SVs 
using simulations. Simulations are performed using SURVIVOR. Overall, the method seems 
well developed, and the contribution is relevant for the field. 
 
Response: We appreciate the reviewer's careful and detailed assessment of our work, as 
well as his complimentary remarks. We believe that our tool will be useful in genetic 
research on SV predictions. 
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Comment 13: For the XSVLen Developers: The methods sound truly relevant and novel. I’m 
very interested in applying this method in the future. I’m wondering if a more refined report 
could be implemented. It would be interesting to see results summarized for each 
haplotype separately. In the manuscript, the results table is hard to understand. For 
example, the first row shows 14942 INS >=50, while the second row shows a higher number 
when I would expect just a subset based on the description. 
 
Response: Many thanks to the reviewer for pointing this out and for the interest in the 
method, we have updated the main table for including the right numbers and also to help 
comprehension of categories. This was due to a bug in the annotation script that has been 
fixed. We did not perform a detailed exploration of haplotype-overlapping calls or the 
generation of a more detailed report as this was a proof-of-concept of the method but we 
agree it would be interesting if future work is performed. 
 
We would like to thank the reviewer for their kind comments and feedback and hope that 
they have addressed all questions or concerns posed.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 17 May 2021

https://doi.org/10.5256/f1000research.54651.r83792

© 2021 Jaron K. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Kamil S. Jaron   
Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK 

General comments 
 
This manuscript is a write-up report of an apparently very successful hackathon. Authors present 
an overview of 10 different approaches to solve various issues in the genomics world of structural 
variants, some of then sound really promising. I appreciated the modest tone authors haven 
chosen when describing the current state of each tools. All the tools have at least some 
exploratory value, and all of them are publicly available, therefore I have no major objections for 
the manuscript to be indexed. 
 
This being said, I do agree with the first reviewer, I would greatly appreciate if before diving into 
details of individual methods, a big picture overview would be provided, for example a table with 
short descriptions, urls and development stages would be really handy. Disclosing the 
development stages would be particularly useful for a reader to know what to expect if 
proceeding further in reading. 
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I do think this manuscript will spark a lot of ideas in the SV community, so I also wondered, what 
are the contribution policies to individual tools? Many of the tools have some future plans and are 
not yet production ready. Who would be the people to contact if someone would be interested in 
contributing and helping out with finishing a tool that would be particularly helpful for their 
research project? 
 
The manuscript could benefit immensely from a big reorganisation. I do believe that classical 
Intro/Meth/Results organisation is not doing this manuscript a favour. It was really hard for me to 
keep track of ten threads in parallel and at some point I just gave up on top-bottom reading. I 
ended up scrolling back and forth between different sections to get information regarding one 
tool I tried to understand at the time. I also think most of the people will be mostly interested in 
one of the tools only when opening the manuscript for reading, therefore I would propose to keep 
the common Introduction and Conclusion sections but restructure the rest of the paper paper on 
per method basis. 
 
I also appreciated authors' effort to comply with FAIR principles. Although I have not check every 
tool, those I did were neatly documented. Thoughts regarding individual tools are listed bellow. 
 
NibblerSV 
 
If I understand right. The genotyping using NibblerSV is done in two phases - 1. calculating a 
dictionary of specific kmers for each allele, I would call those diagnostic kmers (e.g. allele specific 
kmers absent in the reference genome) and 2. matching kmers of resequencing data to the 
diagnostic kmers. I did find the idea very clearly explained. 
 
The part I did not understand is how it's decided if a sample does or does not carry a variant. Does 
it need to have all the diagnostic kmers at a certain coverage? Or at least some proportion? What if 
the sample contains kmers of multiple diagnostic markers? Is it possible to genotype a 
heterozygous SV? Is there any measure of confidence in genotyped alleles? I personally would 
prefer to read more about these details over technical aspect such as different types of temporary 
files that the software is producing that actually are mentioned. 
 
I also wondered, given the approach of generating catalogues of SV-diagnostic kmers, I would 
anticipate very variable power to detect SVs of different sizes and types. For example, recent 
inversions will be identified only through very few kmers found at the edge of the inversion, 
compared to large scale insertions that will probably harbour many diagnostic kmers and clearer 
signal. Did you look at the sensitivity/precision in respect to size/type? Would that be a 
consideration one should have when deciding if to use nibSV or paragraph or VG? 
 
CNV2SV 
 
This tool has the least intuitive motivation of all the tools presented. I would naturally assume all 
loci with CNV should also be called as SVs, hence I was not sure why it is interesting at all getting 
the same information twice. However, the results of this analysis proved my intuition wrong. Only 
very few CNVs are linked to SVs. However, the suggested explanation with length disparity was a 
bit dissatisfying to me. How comes that the SV and CNV callers call variants of so different size? 
Which are shorter/longer? Do you think the CNV/SV reconcilation could be more overlapping with 
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a different choice of SV/CNV caller? 
 
This software has absolutely outstanding description on the GitHub repository. 
 
Minor comments: 
 
Figure 12, panel B has a cropped y-axis label. 
 
In the Methods the text "formats (from Parliament" has an opening bracket that is never closed. 
 
CoronaSV 
 
I did appreciate the idea of scalable pipeline for conservative analyses of SARS-CoV-2 genomes. 
Authors made many unjustified choices. For example, why did you chose in particular Manta, 
Delly, Lumpy and Tardis to detect SV using short reads? But I suppose it is understandable why it 
would be challenging justify every choice in limited time of a hackathon. 
 
The step of the analysis I am worried about is the merging by SURVIVOR, it also happens to be the 
only one that does not seem to be included in the GitHub repository. What parameters were used 
for individual merging steps using SURVIVOR? Given the genome of SARS-CoV-2 is really small, I 
believe that the outcome of this pipeline will be very sensitive to the chosen thresholds for 
merging variants. 
 
This project aims to get "trustworthy SV calls across SARS-Cov-2", but there was only very little 
effort in validation of the SV set detected as far as I can tell. I was honestly quite surprised to see 
how many deletions that are >20k long you reported as confident. Is it really possible for SARS-
CoV-2 to lose more than 2/3 of its genome? Could they represent some SV calling artefacts? One 
way how to check the quality of called SVs would be compare phylogenetic relationships of the 
analysed viruses that are probably available for all the sequenced data anyway and verify that the 
common SVs are shared within monophyletic clusters. 
 
Finally, the provided data frame with the input data contains various types of libraries. How does 
SV calling works on RNA-seq data? To be honest, I am not even sure what "RNA-seq" means in the 
context of RNA viruses, but I do find strange that all the libraries seem to be treated the same. 
Could some of those huge deletion be simply the selection process of the non-WGS libraries? 
 
I understand this is a hackathon paper, and therefore it would be unreasonable to ask for more 
analyses, but I do believe that the wording of this tool should be toned down a lot. I think this is a 
good first draft for this ambitious pipeline, but loads of work and thought should be given to it 
before the called SV sets are called trustworthy. 
 
CleanSV 
 
The idea here is to figure out empirical filtering thresholds to minimise false positives on called 
SVs. This is a great idea and it's desperately needed to have a better community resources to 
reduce the need for manual curation. 
 
I am also very sure that these thresholds would have great applicability in other species and 
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germline SV calling. Is there any chance of more general applicability? 
 
Given authors have decided not to share the filtering thresholds, I think it should be clearly stated 
early on that this is only a conceptual description of the workflow and results are not provided yet. 
 
Minor comments: 
 
I resume hs37d5 in "Illumina short reads using novoalign hs37d5 HG002 BAM" means it a human 
data, but I do think it should be explicitly mentioned. 
 
A bunch of citations are in a different format, something like "(7)" and without actual reference. 
 
Sniphles 
 
Again, a very timely contribution. Phasing of SVs will me more and more important as long read 
technologies are more and more available even for population genomics studies. 
 
I found the idea very clear, and sound. I did wonder, however, about the merging step. 
Technically, SVs from different halplotype need to be merged as if only the SV is homozygous in 
the alternative allele, therefore I wonder if it is appropriate to lump together everything that is 
closer than 1000 bases from each other. How many such variants were detected? 
 
That's kind of related to the only thing I was missing - results. The test case of this method is 
basically a more confusing repetition of what is already written in methods without any actual 
numbers of phased SVs. How successful was phasing? How many and how long blocks were 
phased? If unavailable yet, you should be explicit that it's untested approach. 
 
Although I have not tried to install the software, I appreciated that the GitHub repository was very 
neat and the code very well organised. 
 
Swagg 
 
This was another tool with rather difficult text and figure. It is still not very clear to me how using 
protein graph should help SV calling. 
 
I was also rather confused about the construction of protein graph. In methods the you write, 
"Protein graphs are generated using a multiple sequence alignment of the protein", but what is 
"the protein"? I originally imagined SWAGG would use genome annotation, where the multiple 
sequence alignment comes into play? I got it lot better from the presentation I found on the 
GitHub, but I am still not 100% sure how it's done. The presented figure is very pretty, but I did not 
understand at all what I was supposed to look at. 
 
I just think it's pity, it does look like a loads of work with a really interesting idea. I would 
recommend to spend more effort on explanation of the reasoning behind and general clarity of 
the text. 
 
I also wondered, is the protein information used for SV calling in the end? If no, why is not the 
input to your software a vcf file with SVs? Why it's important they are called by GATK and 

 
Page 43 of 60

F1000Research 2021, 10:246 Last updated: 28 SEP 2021



deepVariant? That was another confusing bit for me. 
 
PanOriginSV 
 
A machine learning approach that takes genome variation graph that includes both SNVs and SVs 
and determines lab of origin. First, I would like to disclaim I am a bit out of my depth reviewing 
this method, as I never worked with lab strains and genetically modified organisms or thought 
about the problem of lab attribution. 
 
I was a bit confused about the benchmarking. The Genetic Engineering Attribution Challenge 
seem to have plenty of approaches with really successful prediction algorithm, why is the 
approach compared to a single method (PlasmidHawk) that does not seem to be compared to the 
other approaches in the challenge? I also wondered why the results were shown in per-cluster 
basis, not overall accuracy, so they could be comparable to the approaches from the Genetic 
Engineering Attribution Challenge. 
 
Perhaps a silly thought, but do you think that machine learning approach is scalable? Having 
comparable training dataset to the unclassified dataset is essential for meaningful prediction, 
would the approach work for novel strains? 
 
Minor comments: 
 
This sentence "PanOriginSV has three additional open source dependencies which are MMSEQ2 
(for clustering), BCALM (pangenome creation) and GraphAligner (for sequence-to-graph 
alignment)" should probably contain references to respective software. 
 
"10-50x less than the linear model (depending on the cluster)." Less than PlasmidHawk? 
 
GeneVar 
 
This tool has a functional prototype and it works! It allows a user to browse variants related to any 
human gene, which is fun. However, I do think it should be called "human SV browser" (I originally 
imagined the intend is to make a generic SV browser). 
 
I appreciated to attempt of making information about human SVs accessible to more general 
public, but I do wonder how close to the goal authors got. I don't think allele frequency spectrum 
is an easy plot for a user without background in genetics. Also, there are loads of variants shown 
for every gene, would it be possible in future to somehow prioritise to the "most likely relevant" 
variants? What you think could be done to improve accessibility of the tool by for example GPs? 
 
Minor comment: 
 
In the app, it's a bit confusing that SV length is filtered on the panel on left, while all the remaining 
variables are filtered by clicking on the empty "all" fields bellow column names. 
 
SVTeaser 
 
I really like this idea for a framework for simulating reads and benchmarking SV callers. Beside 
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previously utilised approach of generating insilco generated SVs, SVTeaser also allows a lexicon 
based generation of SVs. I also found the writing and description of this method very nice and 
understandable. 
 
One of the main general problems of simulating sequencing reads is that it is very hard to take 
into consideration all biases of real life sequencing. For example, cross sample or bacterial 
contamination are really hard to consider. As a consequence, benchmarking using simulations is 
(probably) always overly optimistic. Would it be useful to attempt to quantify the optimism? For 
example by simulating reads from a sequenced genome with known SVs? Then the precision and 
recall of SVs could be compared between the simulated and real sequencing data. 
 
XSVLen 
 
Sound approach, but took me while to see any added value compared to the original study by Chin 
et al. (2020)1. Do I understand right that what was done on MHC locus you generalised in a 
framework for any region with haplotype-resolved assemblies? I think it should be more clearly 
stated what was done by by Chin et al. before and how your approach differs. Also, in the text you 
refer to Nurk et al., although the reference is Chin et al. (I think it was confused with this other 
paper presenting HiCanu2).  
 
In the table, the second row says "Number of these calls that overlap assembly contigs". First, how 
can be any variant called outside of an assembly contig? Do you mean overlapping with haplotype-
resolved contigs? You also write "these calls", which made me think it's a subset of the first row, 
but insertions >50bp seems to have a higher number in the first row (14942 vs 17481). Actually, I 
did not really understand the third row either, where the "Number of truvari" come from? Are 
these cuteSV compared to the gold standard? If so, how comes the FP and TP do not sum up to 
the same number as the first row? 
 
Similarly to SWAGG, I think this could be a useful tool and you seem to do loads of work on the 
coding part. However, the text was very confusing to me and I do think with more effort in it you 
could reach much wider readership. 
 
Minor comments: 
 
This sentence is hard to read "This software is a framework for haplotype-resolved assemblies for 
benchmarking SV detection algorithms (Figure 10).", what about "This software is a framework for 
benchmarking SV detection algorithms against haplotype-resolved assemblies (Figure 10)."? 
 
"All methods are open-source licensed and have been made available on GitHub: 
https://github.com/collaborativebioinformatics." is an unnecessary statement as FAIR principles 
are disclosed for all 10 tools and all the links are provided at the bottom. 
 
References 
1. Chin C, Wagner J, Zeng Q, Garrison E, et al.: A diploid assembly-based benchmark for variants in 
the major histocompatibility complex. Nature Communications. 2020; 11 (1). Publisher Full Text  
2. Nurk S, Walenz BP, Rhie A, Vollger MR, et al.: HiCanu: accurate assembly of segmental 
duplications, satellites, and allelic variants from high-fidelity long reads.Genome Res. 30 (9): 1291-
1305 PubMed Abstract | Publisher Full Text  
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Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics, evolutionary biology, bioinfromatics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 06 Jun 2021
Ann Mc Cartney, NIH, Washington, USA 

We would like to thank Kamil Jaron for his time on giving the authors of this manuscript 
feedback and comments. Upon receiving these comments the corresponding authors 
reached out to the developers of each of the tools developed as part of this hackathon, 
each of which have done their utmost to respond to each comment or question. The 
responses to each of the reviewer's comments are outlined below in bold and italic. 
  
Comment 1: General: This manuscript is a write-up report of an apparently very successful 
hackathon. Authors present an overview of 10 different approaches to solve various issues 
in the genomics world of structural variants, some of them sound really promising. I 
appreciated the modest tone authors have chosen when describing the current state of 
each tool. All the tools have at least some exploratory value, and all of them are publicly 
available, therefore I have no major objections for the manuscript to be indexed. This being 
said, I do agree with the first reviewer, I would greatly appreciate it if before diving into 
details of individual methods, a big picture overview would be provided, for example a table 
with short descriptions, urls and development stages would be really handy. Disclosing the 
development stages would be particularly useful for a reader to know what to expect if 
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proceeding further in reading.I do think this manuscript will spark a lot of ideas in the SV 
community, so I also wondered, what are the contribution policies to individual tools? Many 
of the tools have some future plans and are not yet production ready. Who would be the 
people to contact if someone would be interested in contributing and helping out with 
finishing a tool that would be particularly helpful for their research project?  
 
Response: This is a great question. In general the tools are provided as is. The individual 
authors are part of their github pages. Furthermore these tools might be extended in 
future hackathons. Some tools are still being worked on (e.g. NibSV). In terms of contacting 
authors, please contact the authors associated with each tool; this should be listed in each 
README of the respective tool. Naturally, feel free to contact the lead authors of this paper 
as well. 
 
Comment 2: General: The manuscript could benefit immensely from a big reorganization. I 
do believe that the classical Intro/Meth/Results organization is not doing this manuscript a 
favor. It was really hard for me to keep track of ten threads in parallel and at some point I 
just gave up on top-bottom reading. I ended up scrolling back and forth between different 
sections to get information regarding one tool I tried to understand at the time. I also think 
most of the people will be mostly interested in one of the tools only when opening the 
manuscript for reading, therefore I would propose to keep the common Introduction and 
Conclusion sections but restructure the rest of the paper on a per method basis.  
 
Response: While we agree, this is a given from the journal for hackathons. We are following 
this format.  
 
Comment 3: General: I also appreciated the authors' effort to comply with FAIR principles. 
Although I have not checked every tool, those I did were neatly documented. Thoughts 
regarding individual tools are listed below.  
 
Response: We thank the reviewer for going over these and highly appreciate the feedback.  
 
Comment 4: For the NibblerSV Developers:If I understand right. The genotyping using 
NibblerSV is done in two phases - 1. calculating a dictionary of specific kmers for each allele, 
I would call those diagnostic kmers (e.g. allele specific kmers absent in the reference 
genome) and 2. matching kmers of resequencing data to the diagnostic kmers. I did find 
the idea very clearly explained. The part I did not understand is how it's decided if a sample 
does or does not carry a variant. Does it need to have all the diagnostic kmers at a certain 
coverage? Or at least some proportion? What if the sample contains kmers of multiple 
diagnostic markers? Is it possible to genotype a heterozygous SV? Is there any measure of 
confidence in genotyped alleles? I personally would prefer to read more about these details 
over technical aspects such as different types of temporary files that the software is 
producing that actually are mentioned.  
 
Response: NibSV currently screens the diagnostic kmers against the reference genome. 
Right now if one of these kmers are found in the reads it is reported that the SV is found in 
general. This can be improved upon easily (e.g. weight with reference allele kmers) but 
that is the current state. NibSV does not include a genotyping model nor ref alleles at the 
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moment. Still the early results are very promising. The tests were done using GIAB Tier 1 
v0.6 truth SV set and alignment file of illumina 2x250 bp dataset for HG002 sample . The 
true positive count is the number of genotyped SVs that are not parental SVs i.e. HG2count 
> 0 and the FP count is the parental SVs i.e. HG2count=0. The parental SVs that are not 
genotyped are counted as TNs and the non-parental SVs that are not genotyped by nibSV 
are counted as FN. The following metrics are used to evaluate performance of NibSV: Recall 
= TP/ (TP+FN); Precision = TP/(TP+FP); Accuracy = (TP+TN)/(TP+FP+FN+TN); False discovery 
rate = FP/(TP+FP).We have compared the performance of nibSV with SVTyper (will update 
the results in the manuscript). The Paragraph tools required to add the padding bases to 
the SVs in the truth set. We could not successfully run paragraph without making any 
changes to the truth set. Therefore, we have not included the paragraph tool in this result. 
 
Comment 5: For NibSV Developers: I also wondered, given the approach of generating 
catalogues of SV-diagnostic kmers, I would anticipate very variable power to detect SVs of 
different sizes and types. For example, recent inversions will be identified only through very 
few kmers found at the edge of the inversion, compared to large scale insertions that will 
probably harbour many diagnostic kmers and clearer signals. Did you look at the 
sensitivity/precision in respect to size/type? Would that be a consideration one should have 
when deciding if to use nibSV or paragraph or VG?  
 
Response: This is again an excellent point. We only focused on insertion and deletions at 
this moment. Indeed we see a higher recall on insertion compared to deletions. This is also 
driven by the fact that we see a deletion more often within repeats. Nevertheless, nibSV 
does not consider the entire length of an insertion but rather only the breakpoints. We 
think that nibSV has some advantages over runtime and its not reliant over the genome 
version of the reads. However, Paragraph etc. will likely have more control of different 
insertions at the same region.  
 
Comment 6: For the CNV2SV Developers: This tool has the least intuitive motivation of all 
the tools presented. I would naturally assume all loci with CNV should also be called as SVs, 
hence I was not sure why it is interesting at all getting the same information twice. 
However, the results of this analysis proved my intuition wrong. Only very few CNVs are 
linked to SVs. However, the suggested explanation with length disparity was a bit 
dissatisfying to me. How come that the SV and CNV callers call variants of so different sizes? 
Which are shorter/longer? Do you think the CNV/SV reconciliation could be more 
overlapping with a different choice of SV/CNV caller? This software has an absolutely 
outstanding description on the GitHub repository. Minor comments: Figure 12, panel B has 
a cropped y-axis label. In the Methods the text "formats (from Parliament" has an opening 
bracket that is never closed.  
 
Response: Typically CNV is called against a locus on a reference genome. We take the view 
that a CNV is caused by one or more SVs but most CNV callers do not identify a specific SV 
(insertions or deletions with the coordinate associated.) For example, if we know there are 
additional copies for region A. A CNV caller will call an additional copy of A in the reference 
coordinate, but one would not know where the additional copy really is and what the exact 
sequences and the inserted locus. CNV2SV is partially developed to understand the 
spectrum of CNV. By connecting the CNV calls for SV calls from de novo assembly results, 
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we get a chance to understand the nature of CNVs is the light full de novo assembly 
results. The differences of the sizes from the different CNV caller and SV caller actually 
reflects that we still need more work to understand the relationship of CNVs and SVs. (Most 
CNV callers use short read data with coverage statistics. This is fundamentally different 
from calling SVs from assembly-assembly alignment in terms of detection methodology.) 
We anticipate more de novo assemblies of human genomes will help us eventually get 
better pictures.  
 
Comment 7: For the CoronaSV Developers: I did appreciate the idea of a scalable pipeline 
for conservative analyses of SARS-CoV-2 genomes. Authors made many unjustified choices. 
For example, why did you choose in particular Manta, Delly, Lumpy and Tardis to detect SV 
using short reads? But I suppose it is understandable why it would be challenging to justify 
every choice in the limited time of a hackathon. The step of the analysis I am worried about 
is the merging by SURVIVOR, it also happens to be the only one that does not seem to be 
included in the GitHub repository. What parameters were used for individual merging steps 
using SURVIVOR? Given the genome of SARS-CoV-2 is really small, I believe that the 
outcome of this pipeline will be very sensitive to the chosen thresholds for merging 
variants. This project aims to get "trustworthy SV calls across SARS-Cov-2", but there was 
only very little effort in validation of the SV set detected as far as I can tell. I was honestly 
quite surprised to see how many deletions that are >20k long you reported as confident. Is 
it really possible for SARS-CoV-2 to lose more than 2/3 of its genome? Could they represent 
some SV calling artefacts? One way to check the quality of called SVs would be to compare 
phylogenetic relationships of the analysed viruses that are probably available for all the 
sequenced data anyway and verify that the common SVs are shared within monophyletic 
clusters. Finally, the provided data frame with the input data contains various types of 
libraries. How does SV calling work on RNA-seq data? To be honest, I am not even sure what 
"RNA-seq" means in the context of RNA viruses, but I do find it strange that all the libraries 
seem to be treated the same. Could some of those huge deletions be simply the selection 
process of the non-WGS libraries? I understand this is a hackathon paper, and therefore it 
would be unreasonable to ask for more analyses, but I do believe that the wording of this 
tool should be toned down a lot. I think this is a good first draft for this ambitious pipeline, 
but loads of work and thought should be given to it before the SV sets are called 
trustworthy. 
 
Response: The reviewer makes several helpful points. To the first point, we selected a 
handful popular SV callers from short reads suitable for the task, and given the short 
duration of the hackathon, we unfortunately were unable to evaluate a more 
comprehensive set. To the general point of do we expect to see such large SVs, given SARS-
CoV-2 is sequenced from an intrahost population, which often is from metatranscriptomes 
(RNA-seq applied to a microbiome sample) containing subgenomic RNAs, large SVs can be 
observed as it captures the transcriptional landscape of SARS-CoV-2. And we have added 
details of SURVIVOR to the Github repository, thank you for pointing this out.  
 
Comment 8: For the CleanSV Developers: The idea here is to figure out empirical filtering 
thresholds to minimise false positives on called SVs. This is a great idea and it's desperately 
needed to have better community resources to reduce the need for manual curation. I am 
also very sure that these thresholds would have great applicability in other species and 
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germline SV calling. Is there any chance of more general applicability?  
 
Response: We thank the reviewer for the assessment and insightful question. In terms of 
more general applicability, we agree with the reviewer entirely. However, in order to 
release these filters/thresholds to the larger community for general use, the optimal 
approach would be to focus on a particular use of SV calling (e.g. translational genomics in 
oncology) with a particular assay of a certain average coverage and tumor purity. These 
filters need to be tailored specifically for these parameters. We suspect generating filters 
per SV caller for general use would result in minimal quality control; this is especially true 
within cancer genomics in terms of calling somatic and germline SVs accurately. As for 
focusing on other species (even within a germline context), the main impediment is that we 
would need a sufficient number of samples from species X at a specific time in order to 
create these filters.  
 
Comment 9: For the CleanSV Developers: Given authors have decided not to share the 
filtering thresholds, I think it should be clearly stated early on that this is only a conceptual 
description of the workflow and results are not provided yet.  
 
Response: We agree with this assessment, and have tried to clarify this in the manuscript. 
This paper is the result of a hackathon, and the ideas within are largely proof of concepts 
which have value outside of a more comprehensive paper.  
 
Comment 10: For the CleanSV Developers: Minor comments: I resume hs37d5 in "Illumina 
short reads using novoalign hs37d5 HG002 BAM" means it is human data, but I do think it 
should be explicitly mentioned. A bunch of citations are in a different format, something like 
"(7)" and without actual reference.  
 
Response: We have clarified and fixed these issues in the manuscript. 
 
Comment 11: For the Sniphles Developers: Again, a very timely contribution. Phasing of SVs 
will be more and more important as long read technologies are more and more available 
even for population genomics studies. I found the idea very clear, and sound. I did wonder, 
however, about the merging step. Technically, SVs from different haplotype need to be 
merged as if only the SV is homozygous in the alternative allele, therefore I wonder if it is 
appropriate to lump together everything that is closer than 1000 bases from each other. 
How many such variants were detected? That's kind of related to the only thing I was 
missing - results. The test case of this method is basically a more confusing repetition of 
what is already written in methods without any actual numbers of phased SVs. How 
successful was phasing? How many and how long blocks were phased? If unavailable yet, 
you should be explicit that it's an untested approach. Although I have not tried to install the 
software, I appreciated that the GitHub repository was very neat and the code very well 
organised.  
 
Response: We would like to thank the reviewer for the ideas and suggestions. Also, we 
would like to mention that, this is a prototype of the ideas, and we opened an issue 
regarding the suggestions. We shall implement a parameter to set the minimum accepted 
length to identify 2 heterozygote SVs as one.  

 
Page 50 of 60

F1000Research 2021, 10:246 Last updated: 28 SEP 2021



 
“How many such variants were detected? That's kind of related to the only thing I was 
missing - results.” 
 
We used chromosome 20, it contained 652 SVs with minimum 13 to support SVs. 239 SVs are 
heterozygote we managed to phase 182 of those (76.15%) in 76 phase blocks using the first 
method. For the second method, while we completed the tool, and it worked as expected, 
but sadly it did not give the expected results, we still need to work on debugging and 
enhancing the second method.  
  
Comment 12: For the Sniphles Developers: “I did wonder, however, about the merging 
step. Technically, SVs from different halplotype need to be merged as if only the SV is 
homozygous in the alternative allele, therefore I wonder if it is appropriate to lump together 
everything that is closer than 1000 bases from each other.” 
 
Response: We agree with the suggestion, we shall implement a parameter that takes as an 
input the maximum distance to merge heterozygote SVs. 
 
Comment 13: For the Sniphles Developers: “The test case of this method is basically a more 
confusing repetition of what is already written in methods without any actual numbers of 
phased SVs.”  
 
Response: We changed it accordingly.  
 
Comment 14: For the Sniphles Developers: “How successful was phasing? How many and 
how long blocks were phased? If unavailable yet, you should be explicit that it's an untested 
approach.” 
 
Response: This is a prototype we worked only on chromosome 20 using HiFi data, we still 
need to develop our method, we updated the manuscript to state that. 
 
Comment 15: For the Swagg Developers: This was another tool with rather difficult text and 
figure. It is still not very clear to me how using a protein graph should help SV calling. I was 
also rather confused about the construction of the protein graph. In the methods you write, 
"Protein graphs are generated using a multiple sequence alignment of the protein", but 
what is "the protein"? I originally imagined SWAGG would use genome annotation, where 
the multiple sequence alignment comes into play? I got it a lot better from the presentation 
I found on GitHub, but I am still not 100% sure how it's done. The presented figure is very 
pretty, but I did not understand at all what I was supposed to look at. I just think it's a pity, it 
does look like a load of work with a really interesting idea. I would recommend spending 
more effort on explanation of the reasoning behind and general clarity of the text. I also 
wondered, is the protein information used for SV calling in the end? If not, why is not the 
input to your software a vcf file with SVs? Why is it important that they are called by GATK 
and deepVariant? That was another confusing bit for me.  
 
Response: We would like to thank the reviewer for their comments and questions, 
specifically with respect to why we should build a variation graph and not just keep 
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variations in a VCF file. Building graphs from amino acid sequences can be used to align 
new amino acid sequences to these graphs, thereby finding similarities to other sequences. 
A modified Smith-Waterman algorithm that works for DAGs (Directed Acyclic Graphs) can 
be used for this job. Due to how proteins work and fold, it is possible to have a gene 
between two samples from two different genres in bacteria that are very distant (20-30% 
sequence similarity), however, due to nonsense mutations, the amino acid sequence 
similarity is higher (50-60%). For example, in Myxobacteria, looking at two different 
samples from two different genres or families, building a pangenome graph out of the DNA 
is not really feasible due to the amount of variations between them. However, looking at 
amino acid sequences, more similarities can be found. Therefore, with building a graph out 
of the amino acid, paths can be labeled with metadata (certain conserved nodes for 
example are associated with antibiotic resistance, aligning a new sequence to this graph, 
can also tell us about this new sequence). This can additionally be accomplished via HMM 
modeling, but, building a graph adds a visualization element, and with the recent 
optimizations in graphical mapping algorithms, it may be faster at aligning a sequence to 
a graph than using some HMM model. Building on the idea that we can add metadata to 
paths in the graph, looking at this paper for example, "Jaillard et al. (2018). “A Fast and 
Agnostic Method for Bacterial Genome-Wide Association Studies: Bridging the Gap between 
K-Mers and Genetic Events.” We see how from looking at the graphs, certain nodes can be 
associated with resistance. However, for example, this method breaks down when the 
similarity between the sequence we're looking at drops, as it's hard to find shared k-mers 
then. However, going to amino acid space, the similarity increase and similar methods and 
algorithms can then be used but with the amino acid alphabet. 
 
Comment 16: For the PanOriginSV Developers: A machine learning approach that takes a 
genome variation graph that includes both SNVs and SVs and determines lab of origin. First, 
I would like to disclaim I am a bit out of my depth reviewing this method, as I never worked 
with lab strains and genetically modified organisms or thought about the problem of lab 
attribution. I was a bit confused about the benchmarking. The Genetic Engineering 
Attribution Challenge seems to have plenty of approaches with really successful prediction 
algorithms, why is the approach compared to a single method (PlasmidHawk) that does not 
seem to be compared to the other approaches in the challenge? I also wondered why the 
results were shown on a per-cluster basis, not overall accuracy, so they could be 
comparable to the approaches from the Genetic Engineering Attribution Challenge. Perhaps 
a silly thought, but do you think that machine learning approach is scalable? Having a 
comparable training dataset to the unclassified dataset is essential for meaningful 
prediction, would the approach work for novel strains? Minor comments: This sentence 
"PanOriginSV has three additional open source dependencies which are MMSEQ2 (for 
clustering), BCALM (pangenome creation) and GraphAligner (for sequence-to-graph 
alignment)" should probably contain references to respective software. "10-50x less than 
the linear model (depending on the cluster)." Less than PlasmidHawk? 
 
Response: We’d first like to thank the reviewer for their feedback and questions. While 
other tools have been developed for the same problem, Plasmidhawk was recently shown 
to outperform the other state-of-the-art methods while also being more straightforward to 
run. Additionally, Plasmidhawk does not require a GPU in order to train efficiently. The 
main reason for showing per-cluster accuracy was to show the performance of our method 
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on large groups of highly similar sequences. In addition, machine learning methods are not 
well suited for small cluster scenarios due to the lack of training data. Unfortunately, the 
code for all other methods in the GEAC was unavailable, therefore we were unable to 
compare results without submitting to the challenge. However, we do think that machine 
learning is scalable, although the preprocessing of the data will become more important as 
the dataset grows. For novel strains that have no similarity to the database, our method 
would not work but we are confident that no other method would. However, for novel 
strains that have “signatures” in the database, these would be represented by nodes in the 
pangenome that are relatively unique to certain labs. 
 
Comment 17: For the GeneVar Developers: This tool has a functional prototype and it 
works! It allows a user to browse variants related to any human gene, which is fun. 
However, I do think it should be called a "human SV browser" (I originally imagined the 
intent is to make a generic SV browser). I appreciated the attempt to make information 
about human SVs accessible to the general public, but I do wonder how close to the goal 
the authors got. I don't think the allele frequency spectrum is an easy plot for a user without 
a background in genetics. Also, there are loads of variants shown for every gene, would it 
be possible in future to somehow prioritise to the "most likely relevant" variants? What you 
think could be done to improve accessibility of the tool by for example GPs? Minor 
comment: In the app, it's a bit confusing that SV length is filtered on the panel on the left, 
while all the remaining variables are filtered by clicking on the empty "all" fields below 
column names. 
 
Response: Thank you reviewer for your thoughts and questions. We agree that ranking the 
variants shown could be helpful for genes with a lot of variants. While right now a long list 
of variants suggest more filtering needed by the user, it would be better to have the most 
impactful SVs shown first by default. In terms of improving accessibility of the tool to GPs, 
etc. We think adding documentation and tutorials to the tool would be helpful, for example 
to interpret the frequency histogram, and will be added as the tool matures. We are also 
keen on receiving feedback directly from clinicians and GPs. We are exploring ways to 
reach out to them to learn what should be changed, improved, or added. 
 
Comment 18: From the SVTeaser Developers: I really like this idea for a framework for 
simulating reads and benchmarking SV callers. Beside the previously utilised approach of 
generating insilco generated SVs, SVTeaser also allows a lexicon based generation of SVs. I 
also found the writing and description of this method very nice and understandable. One of 
the main general problems of simulating sequencing reads is that it is very hard to take into 
consideration all biases of real life sequencing. For example, cross sample or bacterial 
contamination are really hard to consider. As a consequence, benchmarking using 
simulations is (probably) always overly optimistic. Would it be useful to attempt to quantify 
optimism? For example by simulating reads from a sequenced genome with known SVs? 
Then the precision and recall of SVs could be compared between the simulated and real 
sequencing data.  
 
Response: We agree that benchmarking against simulated data is overly optimistic and 
that it’s hard to accurately replicate library preparation errors such as what you have 
described. A primary goal of SVTeaser is to assist developers of SV calling algorithms with 
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assessing how their tool would perform without needing to quantify their algorithm’s 
problems versus their sequencing’s problems. A well benchmarked, production-ready tool 
shouldn’t rely on only SVTeaser and would always have real data to test against. However, 
should someone want to simulate more realistic sequencing experiments by adding batch 
effects such as cross-sample contamination, it would be possible for them to run SVTeaser 
twice - once over their target sample’s SVs at e.g. 28x coverage and again with a second 
sample’s SVs at e.g. 2x coverage. Then, simply concatenating the sets of generated reads 
prior to read-mapping would create a simplistic simulation of ~5% cross-sample 
contamination. While SVTeaser doesn’t currently automate this kind of operation, we will 
strongly consider how best to incorporate the functionality.  
 
Comment 19: For the developers of XSVLen: Sound approach, but took me a while to see 
any added value compared to the original study by Chin et al. (2020)1. Do I understand right 
that what was done on MHC locus you generalised in a framework for any region with 
haplotype-resolved assemblies? I think it should be more clearly stated what was done by 
Chin et al. before and how your approach differs. Also, in the text you refer to Nurk et al., 
although the reference is Chin et al. (I think it was confused with this other paper 
presenting HiCanu2). In the table, the second row says "Number of these calls that overlap 
assembly contigs". First, how can there be any variant called outside of an assembly contig? 
Do you mean overlapping with haplotype-resolved contigs? You also write "these calls", 
which makes me think it's a subset of the first row, but insertions >50bp seems to have a 
higher number in the first row (14942 vs 17481). Actually, I did not really understand the 
third row either, where does the "Number of truvari" come from? Are these cuteSV 
compared to the gold standard? If so, how come the FP and TP do not sum up to the same 
number as the first row? Similarly to SWAGG, I think this could be a useful tool and you 
seem to do loads of work on the coding part. However, the text was very confusing to me 
and I do think with more effort in it you could reach much wider readership.Minor 
comments: This sentence is hard to read "This software is a framework for haplotype-
resolved assemblies for benchmarking SV detection algorithms (Figure 10).", what about 
"This software is a framework for benchmarking SV detection algorithms against haplotype-
resolved assemblies (Figure 10)."  
 
Response: Many thanks for the comments and all the interest about the work we 
performed. The assembly we used for benchmarking is the one generated by Wenger et al. 
2020 (NCBI Assembly with accessions GCA_004796485.2 (maternal) and GCA_004796285.1 
(paternal) - so we worked with the whole-genome and not only CHM. The reference of CHM 
locus has been removed from the text and we included the right reference. We have 
updated the methods section for improving comprehension on the approach we 
implement. Here, we benchmarked sequence-resolved variants by checking their presence 
in a haplotype-resolved assembly available and so it works on top of an haplotype-resolved 
assembly. We have also updated the main table to include the correct numbers and also to 
help comprehension of categories. The "Number of these calls that overlap assembly 
contigs" row makes reference to SV called by cuteSV (sequence-resolved SV calling) that 
would be found also in the assembly by the approach we tested (construct SV query and 
map queries back to assembly). In the "Number of truvari” (updated to Number of 
overlapping calls classified with truvari) row we include the classification obtained using 
truvari – we compare the cuteSV calls and GIAB truth set). This was due to a bug in the 
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annotation script that has been fixed. The minor suggested change has been applied to the 
text. 
 
Again, we thank the reviewer for his thoughtful comments, suggestions and feedback and 
hope that the following responses have clarified any queries or concerns.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 11 May 2021

https://doi.org/10.5256/f1000research.54651.r83791

© 2021 Sabot F. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Francois Sabot   
DIADE, Univ Montpellier, IRD, CIRAD, Montpellier, France 

The Pangenome Hackathon paper lead by A. McCartney and FJ Sedlazeck was a great moment of 
intellectual development and findings for pangenomics research on human and coronavirus, 
pandemics time "oblige". Ten softwares/methods were developed, some being even released, 
some being more in alpha state. All these tools are of interest, in their targeted human-related 
field but also in non-human fields (working on plants, I am interested in more than one of them). 
 
The paper has been written collectively, each software participants writing their part, and while of 
high interest in terms of opening, it is the main limit in the manuscript, in my opinion. 
 
Indeed there is no homogeneity in the way tools are described (global aim, method, 
implementation, figure, results/tests), and thus it is quite difficult to have a global idea of the 
different level of development. An initial table with level of advancement (alpha, beta, ready for 
use, in testing, etc or something like it) would be useful. In addition, a final reformatting by a 
single writer would smooth the reading. 
 
In details, going for each tools: 
 
NibbleSV: what is the impact of SNP on the detection through k-mers? I mean if the individual has 
more than a very low level of variation, it may increase the FP rate? what is the RAM usage per 
sample? why providing info of time for 23mers but results of recall/precision with 21. 
 
CNV2SV: page 8, output of CNV2SV is said to be a python script (envlink.py)? Why computing the 
pre-alignment on DNAnexus? Which stats methods are used? 
 
CORONASV: are the three approaches (SR, LR, assembly) required in all analyses or you can 
choose? Why does Flye not represented in Figure 3? 
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CleanSV: on page 6, I cannot see the link with aneuploidy in this specific case. Can you estimate 
the false negative rate? Do you have an idea of the RAM usage? 
 
Sniphles: "the produced BAM from the previous step" is the one produced by Princess? The first 
sentence of results is the same as in the method. It missed also here a short summary of the 
results. 
 
Swagg: the implementation text is almost the same as in the introduction of the tool. The 
implementation part is quite short and the fig 6 did not shown any info about the protein graph 
possibility. Finally, what is the advantage of having the protein graph compared to an alignment 
showing the variation? 
 
PanOriginSV: What are the alignment information included in the training part? Which 'more 
recent pangenome graph construction tool' are you thinking about? 
 
GeneVar: a really interesting tool for praticians. My only question is will it be possible to add new 
informations about variations outside of strandard DB? 
 
SVteaser: do you have any information of time per SV? What are the size of variations you can 
include? Can we add also translocations or SNP? 
 
XSVLen: the figure 10 is quite drafty and would need to be improved for more information. Do 
you have any information about the recall/precision? 
 
In conclusion, I was very impressed by the high number of tools and of their quality and think this 
paper is really worthy.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.
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Reviewer Expertise: Genomics, bioinformatics, evolution

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 14 Jun 2021
Ann Mc Cartney, NIH, Washington, USA 

We would like to thank Francois Sabot for their time on giving the authors of this 
manuscript feedback and comments. Upon receiving these comments the corresponding 
authors reached out to the developers of each of the tools developed as part of this 
hackathon, each of which have highly appreciated your work and thoughtful comments. The 
responses to each of the reviewers comments are outlined below in bold and italic.  
 
General Comment 1: The Pangenome Hackathon paper led by A. McCartney and FJ 
Sedlazeck was a great moment of intellectual development and findings for pangenomics 
research on human and coronavirus, pandemics time "oblige". Ten softwares/methods 
were developed, some being even released, some being more in alpha state. All these tools 
are of interest, in their targeted human-related field but also in non-human fields (working 
on plants, I am interested in more than one of them). The paper has been written 
collectively, each software participant writing their part, and while of high interest in terms 
of opening, it is the main limit in the manuscript, in my opinion. Indeed there is no 
homogeneity in the way tools are described (global aim, method, implementation, figure, 
results/tests), and thus it is quite difficult to have a global idea of the different levels of 
development. An initial table with level of advancement (alpha, beta, ready for use, in 
testing, etc or something like it) would be useful. In addition, a final reformatting by a single 
writer would smooth the reading.  
 
Response: We thank the reviewer for this suggestion. Indeed we also struggled as this 
manuscript has over 50 authors. The tools have so far only been developed within a few 
days in the context of a remote hackathon and thus represent more prototypes / proof of 
concepts than production ready methods.  
  
Comment 2: For NibbleSV Developers: “what is the impact of SNP on the detection through 
k-mers? I mean if the individual has more than a very low level of variation, it may increase 
the FP rate? What is the RAM usage per sample? why providing info of time for 23mers but 
results of recall/precision with 21.  
 
Response: That's a great question. We predict that the impact of SNP is minimal because 
the SNV must be directly within +/- e.g. 10bp of the SV breakpoint on either side. If there is 
a SNV it will lower our recall rate. We have further experimented with spaced kmers, that 
would help in this regard. RAM usage is ~4Gbp per sample.  
  
Comment 3: For CNV2SV Developers: page 8, output of CNV2SV is said to be a python script 
(envlink.py)? Why computing the pre-alignment on DNAnexus? Which stats methods are 
used?  
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Response: Thank you for your question. The CNV2SV script performs the CNV-SV linking 
steps independently of the tools used to generate the three input files (2 .vcf files 
containing SV calls and CNV calls, respectively, as well as the reference genome as .fasta). 
In the scope of the Hackathon, we generated the test input VCF files using dipcall (genome-
genome-alignment for SVs) and CNVnator (a CNV caller), for a human data set. These steps 
were executed on DNANexus, since unlike the actual CNV2SV script itself, high processing 
power and working memory were required, especially for the genome-genome alignment 
for the two human genome versions. Users can use VCF files as generated by tools and 
parameters of their choice as input for CNV2SV. While we expect output from most relevant 
tools that produce calls in VCF format to be compatible, we specifically tested the before 
mentioned tools in the scope of the Hackathon. While the statistics applied to generate the 
input SV/CNV calls vary based on the tools used, CNV2SV itself performs the linking using 
default cutoff values for parameters such as minimum CNV length, minimum alignment 
identity and maximum distance for adjacent duplication events. Furthermore, basic 
statistics are recorded for matched CNV-SV pairs as well as the failure reasons for CNVs 
that could not be linked to a corresponding SV. In response to the final question "Which 
stats methods are used?" the developers were not sure about which stat this is in reference 
to.  
  
Comment 4: For the CORONASV Developers: are the three approaches (SR, LR, assembly) 
required in all analyses or you can choose? Why is Flye not represented in Figure 3?  
 
Response: We thank the reviewer for catching this; we have updated the text to indicate 
that long read assembly with Flye is not currently supported for such a small genome with 
default parameters. Specifically, we have modified "In order to integrate assembly based 
methods, de novo SARS-CoV-2 assemblies were generated using Unicycler for short-read 
sequencing and Flye for ONT long-reads." to instead read " In order to integrate assembly 
based methods, de novo SARS-CoV-2 assemblies were generated using Unicycler for short-
read sequencing". 
 
Comment 5: For the CleanSV Developers: Can you estimate the false negative rate? Do you 
have an idea of the RAM usage?  
 
Response: Here we refer to the presence of somatic structural variations to be synonymous 
with “aneuploidy”. Aneuploidy itself is an umbrella term used within oncology to refer to 
somatic abnormalities of a cell’s chromosomes. We try to clarify this with a sentence in the 
manuscript. In terms of the false negative rate, so far this has been estimated with 
simulated benchmarks, which surely don’t reflect the complexities of actual clinical data---
any real data will be of variable tumor content (purity) and coverage. The best source of 
collective knowledge within the field is probably the results of DREAM challenges. Indeed, 
the question of false negatives is one of the deeper questions for all variant calling 
methods used within cancer genomics. Systematically investigating this problem would 
require benchmarks from real data, which don’t exist---even robustly characterized cell 
lines would not be realistic enough. With that in mind, we also wish to emphasize that 
clinicians are primarily concerned with the presence of false positives. These are potential 
therapeutic biomarkers which, if missed/ignored by bioinformatic methods, could result in 
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overlooked therapeutic interventions. In terms of RAM usage, the tool provided uses 
standard functions in R, and will not be memory intensive. 
 
Comment 6: For the Sniphles Developers: "the produced BAM from the previous step" is the 
one produced by Princess? The first sentence of results is the same as in the method. I also 
missed a short summary of the results.  
 
Response: We would like to thank the reviewer, a change was made accordingly in the 
manuscript.  
  
Comment 7: For the Swagg Developers: the implementation text is almost the same as in 
the introduction of the tool. The implementation part is quite short and the fig 6 did not 
show any info about the protein graph possibility. Finally, what is the advantage of having 
the protein graph compared to an alignment showing the variation?  
 
Response: Generating the graphs out of the amino acid has a visualization factor, as 
different sequences can be represented as different paths in the graph, conserved 
sequences in the MSA will show up as a single node and bubbles are generated from the 
variations. One can extend this be aligning new sequences to the graph, e.g. using a 
modified Smith-Waterman algorithm after topologically sorting the graph, this way, the 
alignment can tell us quickly which path this new sequence takes through this graph, 
moreover, one can add another layer of data to the paths, for example in bacteria, certain 
mutations or conserved sequences in the protein are related to antibiotic resistance. 
  
Comment 8: For the PanOriginSV Developers: What is the alignment information included 
in the training part? Which 'more recent pangenome graph construction tool' are you 
thinking about?  
 
Response: We’d first like to thank the reviewer for their questions. We thread/align the 
query sequences to the pangenome graph created using BCALM. The nodes that are hit are 
used as the features for machine learning. We have experimented with other information 
as well such as alignment length, %id, etc, but overfitting is an issue that requires further 
work. Minigraph would be a more recent pangenome graph construction tool that we could 
use. 
  
Comment 9: For the GeneVar Developers: a really interesting tool for practitioners. My only 
question is will it be possible to add new information about variations outside of standard 
DB?  
 
Response: Thank you reviewer, for the question. At this time, we don’t plan to support non-
standard data types. However, if you have a specific use case in mind, the developers 
would be open to a collaboration. 
 
Comment 10: For the SVteaser Developers: do you have any information of time per SV? 
What are the sizes of variations you can include? Can we also add translocations or SNP?  
 
Response: Thank you to the reviewer for the feedback. In terms of running time per SV, this 
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correlates with the size of SV simulated and the nature of the SV (e.g. translocations being 
more difficult). However, these operations are relatively straightforward operations 
manipulating the strings from the FASTA file. Users are able to set the size of SVs within 
the simulation framework, and in principle could handle any organism. Yes, translocations 
and SNPs are possible. 
 
Comment 11: For the XSVLen Developers: the figure 10 is quite drafty and would need to be 
improved for more information. Do you have any information about the recall/precision?  
 
Response: Many thanks for the suggestion and the interest, the figure is intended to give 
an overview of the method and not a detailed explanation of the pipeline. Regarding 
precision/recall numbers, we did not check this specifically but in Table 2 the number of TP 
and FP are summarized for the assembly calls.  
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