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Tuning the dynamic range of bacterial promoters
regulated by ligand-inducible transcription factors
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Krešimir Josić1,2,3 & Matthew R. Bennett1,4

One challenge for synthetic biologists is the predictable tuning of genetic circuit regulatory

components to elicit desired outputs. Gene expression driven by ligand-inducible transcrip-

tion factor systems must exhibit the correct ON and OFF characteristics: appropriate acti-

vation and leakiness in the presence and absence of inducer, respectively. However, the

dynamic range of a promoter (i.e., absolute difference between ON and OFF states) is difficult

to control. We report a method that tunes the dynamic range of ligand-inducible promoters

to achieve desired ON and OFF characteristics. We build combinatorial sets of AraC-and

LasR-regulated promoters containing −10 and −35 sites from synthetic and Escherichia coli

promoters. Four sequence combinations with diverse dynamic ranges were chosen to build

multi-input transcriptional logic gates regulated by two and three ligand-inducible tran-

scription factors (LacI, TetR, AraC, XylS, RhlR, LasR, and LuxR). This work enables predictable

control over the dynamic range of regulatory components.
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Synthetic gene circuits are constructed by rewiring tran-
scription factors and promoters to create novel regulatory
topologies1–5. Promoters, which initiate transcription in

response to transcription factors and associated ligands, are
typically derived from endogenous components of the host or
related species to ensure compatibility with the host transcription
machinery. However, transcription rates of native promoters and
their responses to inducers vary widely, as they are tuned to
respond at rates appropriate to their natural setting6–8. This
potential incongruity can cause problems when constructing gene
circuits, as the fold-change induction of a natural promoter may
not allow the synthetic circuit to behave as designed.

The first step in tuning a promoter is generally to change its
overall output, i.e., to increase or decrease the amount of protein
produced. This can be achieved in several ways. For instance, the
copy number of the gene can be changed by placing it on different
plasmids or by integrating it multiple times within the chromo-
some. Libraries of constitutive promoters have also been assem-
bled and tested to achieve target expression levels9. In addition,
although not technically part of the promoter, the 5′ untranslated
region can be manipulated to alter translation rates and hence
protein production9–12.

Many attempts have been made to engineer transcriptional
systems that are better suited for use in synthetic gene
circuits13–18. Tuning these regulatory pathways involves building
and testing circuits with precharacterized −35 and −10 sites19 and
Shine–Dalgarno sequences20 of varying strengths until the desired
properties (e.g., leakiness, fold induction) are empirically
achieved; however, this approach can be extremely labor-
intensive and costly.

Furthermore, although these methods can help to control gene
expression, they universally alter protein output regardless of
inducer concentration and the dynamic range of gene expression
may change in unpredictable ways. For example, if one were to
increase the copy number of a gene to increase protein produc-
tion, the rates of production increase for both the OFF state (in
the absence of inducer) and the ON state (in the presence of
inducer).

To date, hybrid promoters that respond to two or more tran-
scription factors have been constructed in several ways, including:
by encoding operator sites for multiple transcription factors into a
single promoter21,22; by using two consecutive promoters, each
with its own regulatory features and transcription start site18; or
by engineering different transcription factors that bind to the
same operator23,24. Others have engineered promoters that have
altered overall production of either mRNA25–27 or protein10.
However, the dynamic range of these synthetic promoters can be
small—i.e., their outputs often show only a small difference
between OFF and ON states in response to signal ligands that
bind the transcription factors. Despite these advances in pro-
moter engineering, the dynamic range of synthetic promoters has
been difficult to tune. This problem prohibits the facile con-
struction of multi-layer synthetic gene circuits, which require the
output dynamic range of an upstream regulator to be compatible
with the input dynamic range of a downstream target. Of note,
ligand-inducible transcription factor systems can be manipulated
at the level of the transcription factor as well as at the level of the
promoter. In prior work, the leakiness and inducibility of the
ligand-inducible LacI repressor mutants have been quantified and
classified28. Such manipulation at the level of the transcription
factor is informative and compatible with our promoter engi-
neering approach, and both can be performed in conjunction to
enable facile tuning of the dynamic range of synthetic promoters.
Additionally, experimental studies have shown that inducibility
and dynamic range can be tuned by changing the copy number of
the plasmid encoding the transcription factor29,30, mutating the

transcription factors31, changing the operator sequence6, mutat-
ing the RNA polymerase25, and reducing promoter crosstalk32. In
addition, methods have been developed to calculate the prob-
ability of RNA polymerase binding at a promoter as a function of
the number of regulatory proteins in the cell33,34. Recently, the
insulation of minimal promoters was demonstrated to enable
precise engineering and biophysical modeling of complex syn-
thetic transcription circuits35. These approaches have inspired
our study and are compatible with our promoter engineering
approach to accomplish facile tuning of the dynamic range of
promoters.

Here we built a library of Escherichia coli promoters that have a
spectrum of dynamic ranges. To do so, we used a modular
approach in which promoters were assembled from libraries of
five main components: (1) the region upstream of the −35 site (in
which an operator site for a transcriptional activator can reside);
(2) the spacer region between the −10 and −35 sites (in which an
operator site for a repressor can reside); (3) the −10 site; (4) the
−35 site; and (5) the downstream region encoding the gene of
interest. The fold-change induction of the promoters was tuned
using a variety of −10 and −35 sites. We also developed a ther-
modynamic model that predicted the contribution of free energy
of binding to the overall transcriptional initiation rate, which we
measured in a fluorescence-based plate reader experiment.

Our prediction and identification of the dynamic range allowed
us to identify the ideal promoters for building multi-input hybrid
promoters that can be used to make transcriptional logic gates. To
build transcriptional AND gates with high signal-to-noise ratios,
we perused our screened promoter library to identify two mem-
bers that exhibited high fold-change induction and used their −35
and −10 cores to build hybrid promoters that respond to a variety
of small-molecule inducers. Each hybrid promoter exhibited
robust AND gate behavior—i.e., strong expression in the pre-
sence of all inducers and negligible expression in the absence of
one or more inducers.

Overall, our results provide a method for efficiently altering the
dynamics range of ligand-inducible promoters. This ability is key
for constructing synthetic gene regulatory circuits that require
precise input and output relationships and will allow researchers
to tune complex synthetic gene regulatory circuits in a facile
fashion. This paper provides a simple, cost-effective means of
engineering promoters that provide user-defined dynamic ranges,
which will enable the fine-tuning of the metabolic flux within
synthetic biological and chemical circuits inside living cells.

Results
Predictable promoter behavior by motif-based construction. In
growing E. coli cells, most promoters are regulated by σ70, a
housekeeping transcription factor that binds the −10 and
−35 sites of a promoter and enables RNA polymerase to bind and
initiate transcription36. Transcription rates have been shown to
be highly dependent on the sequences of the −10 and −35 sites for
promoters regulated by σE and σ70, and certain −10 and −35 site
combinations are associated with known transcription
rates19,37,38.

Here we characterize the relationship between the free energy
of σ70 binding to the −10 and −35 sites and the dynamic range of
a library of promoters. We first formulated a thermodynamic
model for transcriptional initiation based on the probability of
σ70 binding to DNA13–18,34,39–41. First, predicted transcription
rates were derived from the probability of σ70 binding, with the
assumption that, in the presence of inducer, the probability of
activator and σ70 both binding DNA is much higher than the
probability of σ70 alone binding. Second, to describe the fold
change in expression upon induction, the logarithms of the
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predicted transcription rates were fitted to the experimentally
measured transcription rates, with the assumption that recorded
fluorescence is proportional to the transcription rate. To account
for the different regulatory architectures in this work, this
thermodynamic model was modified to consider the additional
binding states of the different transcription factors. Specifically,
thermodynamic models were made for single (activator alone)
and multiple (activator and repressor) transcription factors with
different states of binding (+/+, +/−, −/+, −/−) modeled in order
to capture the entire range of possible biochemical interactions
(see Supplementary Note 1 for more details).

Our model predicted that the dynamic range of a promoter
could be tuned by varying the sequences of the −10 and −35 sites
of the promoter (Fig. 1). We assumed that changes at these sites
affected the equilibrium constant, Keq, of σ70 binding to DNA: If
Keq is low, σ70 binds poorly and the promoter will exhibit low
leakiness but poor induction (bottom curve in Fig. 1b). If Keq is
high, σ70 binds tightly and the promoter will exhibit good
induction but high leakiness (top curve in Fig. 1b). We postulated
that, for a range of moderate Keq values, a promoter can be made
to exhibit low leakiness and high induction, i.e., a large dynamic
range (middle curve in Fig. 1b).

To test our hypothesis that the dynamic range of a ligand-
inducible promoter could be tuned by varying the Keq values of
the −35 and −10 sites, we constructed a library of promoters
(Fig. 2a), each of which contained: (1) a proximal operator-
binding site for either AraC or LasR (immediately upstream of
the −35 site); (2) various −10 and −35 sites derived from E. coli
promoter consensus sequences, native promoters, synthetic
promoters13,14, and arbitrary sequences; and (3) a fixed down-
stream reporter sequence encompassing the +1 site, a ribosome-
binding site and the gene encoding yellow fluorescent protein
(YFP). AraC and LasR were chosen because they are both ligand-
inducible transcriptional activators but come from two different
transcription factor families42,43. In addition, a LacI-binding site
(LacO1) was encoded in the spacer region between the −10 and
−35 sites to examine the influence of repressors on the behavior
of these promoters.

Each promoter in the library was cloned into identical plasmid
backbones (pMB1 origin, kanamycin resistance) and transformed
into E. coli strain CY015, which is a ΔlacI ΔaraC strain that also
constitutively expressed genomically encoded araC and lasR. We
expected the promoters to be activated upon addition of their

corresponding inducers, i.e., arabinose for AraC, and 3O-C12-
HSL for LasR. To measure the relative promoter units (RPU), we
used a standardized method that has been adopted by the
research community19,44. We measured the transcription rate of
each promoter in the library with and without inducer and
observed that rankings of the −10 and the −35 sites were
consistent between AraC- and LasR-regulated promoters regard-
less of the identity and presence of each inducer (Fig. 2b). For
certain combinations of −10 and −35 sites, the promoters
achieved a maximum expression level (~105 RPU)—an observa-
tion that is consistent with that of prior reports14,44. Fold-change
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Fig. 1 Ligand-inducible promoters have different dynamic ranges. a
Theoretically predicted transcription rate of a ligand-inducible promoter as
a function of the relative equilibrium constant of σ-factor binding to the −10
and −35 sites, ln(Keq)= −(ΔG−10 +ΔG−35) (see
Supplementary Information). b Theoretically predicted transcription rates
as a function of inducer concentration for three different but fixed values of
the combined free energy of the −10 and −35 sites (as shown in a). The
experimentally measured dynamic ranges of ligand-inducible promoters are
shown in Supplementary Figure 1
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Fig. 2 Libraries of −10 and −35 sites cover a wide range of expression. a
Diagram of the promoters showing essential features. Each promoter
contained a proximal operator site for either AraC or LasR, a constant
downstream reporter (YFP), and −10 and −35 sites chosen from the lists
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regulated by either AraC (left column) or LasR (right column) with (bottom
row) and without (top row) inducer for every combination of the −10 and
−35 sites listed in a. c Fold-change induction heat maps for either AraC (left
column) or LasR (right column). Experiments were performed with
biological triplicates. Experimental data are available in Supplementary
Data 1–3
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induction heat maps were consistent between AraC- and LasR-
regulated promoters (Fig. 2c), indicating that the dynamic ranges
of ligand-inducible promoters are predominantly controlled by
the sequences of the −35 and −10 sites.

To better understand the behavior of the promoters within the
library, we fit our thermodynamic model to the experimentally
observed transcription rates (see Supplementary Information).
The experimental results supported the predicted effects of Keq

on transcription rates (Fig. 3a, d) and fold-change induction
(Fig. 3b, e). Of note, promoters exhibit a range of leakiness and

inducibility depending on the free energy of σ70 binding, as
shown in the induction curves for three different combinations of
−10 and −35 sites (bD, dE, and eG) in the AraC- (Fig. 3c) and
LasR-regulated (Fig. 3f) promoters.

To demonstrate that our method applies not only to activators
but also extends to other mechanisms of transcriptional
regulation such as repression, we next investigated the behavior
of hybrid promoters that respond to both an activator (either
AraC or LasR) and a repressor (LacI) (Fig. 4a). To this end, we
tested our promoter library in strain CY012, which is genetically
identical to CY015 with the exception of a constitutively
expressed genomically encoded lacI. The promoters were
characterized under four conditions: in the presence of (a)
neither inducer, (b) inducer of the activator only (arabinose or
3O-C12-HSL), (c) inducer of the repressor only (isopropyl β-d-1-
thiogalactopyranoside (IPTG)), and (d) both inducers. The results
were similar to those obtained in the absence of lacI—the
ordering of −10 and −35 sites based on measured transcription
rates was consistent under all four conditions. This data was also
consistent with our two-input thermodynamic model in which
extra states were included to account for repressor binding
(Fig. 4b, c; Supplementary Information).

Engineering responsive hybrid promoters. To demonstrate the
utility of our predictive model and experimental dataset for the
construction of synthetic ligand-inducible promoters that behave
as desired, we opted to perform a logic operation that required
high inducibility and low leakiness (Supplementary Figure 3).
Thus we decided to build AND gates using −35 and −10
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Fig. 3 A thermodynamic model of promoter affinity fits the data. a
Experimentally measured transcription rates of the AraC-regulated
promoter as a function of the relative equilibrium constant of σ-factor
binding to the −10 and −35 sites for both induced (blue squares) and
uninduced (red diamonds) conditions. The thermodynamic model (solid
curves) was fit to the results of each combination of the −10 and −35 sites.
b The fold-change induction (ratio of the induced and uninduced
transcription rates) of the AraC-regulated promoters as a function of
relative equilibrium constant of σ-factor binding to the −10 and −35 sites. c
Transcription rate as a function of arabinose concentration for three AraC-
regulated promoters: Para-bD (circles), Para-dE (squares), and Para-eG
(triangles). d Experimentally measured transcription rates of the LasR-
regulated promoter as a function of the relative equilibrium constant of σ-
factor binding to the −10 and −35 sites for both induced (blue squares) and
uninduced (red diamonds) conditions. The thermodynamic model (solid
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e The fold-change induction (ratio of the induced and uninduced
transcription rates) of the LasR-regulated promoters as a function of
relative equilibrium constant of σ-factor binding to the −10 and −35 sites. f
Transcription rate as a function of 3OH-C12-HSL concentration for three
LasR-regulated promoters: Plas-bD (circles), Plas-dE (squares), and Plas-eG
(triangles). Experiments were performed with biological triplicates. Error
bars in each plot have been omitted for clarity as they are, in most cases,
smaller than the size of the symbols. Thermodynamic modeling data and
experimental data are available in Supplementary Information and
Supplementary Data 4, respectively
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transcriptional repressor LacI. b Transcription rate of the AraC- and LacI-
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c Same as b, but for the LasR- and LacI-regulated hybrid promoters and
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data and experimental data are available in Supplementary Information and
Supplementary Data 5
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combinations that were predicted and observed to exhibit the
largest dynamic range. We assembled hybrid promoters that are
tightly controlled by multiple ligand inputs beyond those tested
above (Fig. 5). Specifically, these hybrid promoters contained
operator sequences (upstream of the −35 site) that bind a variety
of ligand-inducible transcriptional activators: AraC (arabinose),
XylR (xylose), RhlR (C4-HSL), LasR (3O-C12-HSL), and LuxR
(3O-C6-HSL). Additionally, we included operator sites for either
LacI (LacOsym) or TetR (TetO2) in the spacer region to allow
repression by these proteins6,13. For the −35 site, we chose to
characterize version “d” (TTTACA) further because it provided
medium affinity for σ70. First, we slightly modified version “d”
(TTTACA) to TTTACT because the terminal nucleotide, T, (a) is
the second most common base pair at that position45, (b) creates
a one base pair overlap with the LacOsym operator site, (c) is

known to decrease the leakiness of the promoters in the presence
of the repressor6,13, and (d) the nature of this DNA substitution
mutation does not alter the binding affinity of σ70 for this
−35 site25. As for the −10 sites, we chose versions “E” (GATACT)
and “F” (GATAAT), because both of these sequences possess a
2 bp overlap with the TetO2-binding site (allowing facile inte-
gration of the TetO2 site) while providing different dynamic
ranges. We posited that the difference in dynamic ranges would
manifest as differences in the leakiness (basal transcription rates)
and inducibility (induced transcription rates) of the AND gates
built with these sequences. Specifically, version E that exhibited
lower leakiness and lower inducibility was expected to provide
tighter repression and lower induction, while version F that
exhibited higher leakiness and higher inducibility was expected to
provide leakier repression and higher induction. Two additional
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LacO1 and TetO2 sites were also added (one downstream and one
~400 bp upstream of the +1 site) to achieve further repression46.

As desired, all combinations of the hybrid promoters exhibited
high induction only in the presence of both inducers and low
signal in the presence of neither inducer (Fig. 5a). As expected,
the “dE” combination of −10 and −35 sites provided tighter
transcriptional regulation than the “dF” combination, which
provided higher induction but was slightly more leaky than
promoters with the “dE” combination (Fig. 5a).

To demonstrate that the high-inducibility and low-leakiness
properties of these −35 and −10 combinations extend to multi-
input hybrid promoters that are more complex, we constructed
hybrid promoters that respond to three different inputs. For each
three-input hybrid promoter, we included the “dE” or “dF” site, an
activator-binding site (for AraC, XylR, RhlR, LasR, or LuxR), a
LacOsym-binding site in the spacer region, and two TetO2 sites at
the +1 position and upstream (~ −400 bp) region. Of note, the
TetO2 site at the +1 position provided more repression capacity
than the upstream TetO2 site. We observed that these hybrid
promoters exhibited high gene expression if and only if all three
inducers were present (Fig. 5b). These hybrid promoters
demonstrate the utility of our experimental dataset for identifying
the optimal −35 and −10 combinations for engineering gene
expression.

Finally, to demonstrate the utility of our method for
engineering synthetic promoters with desired dynamic ranges,
we tested the bD and eG promoters, which possess distinct ON
and OFF characteristics compared to dE and dF. Specifically, in
contrast to the low-leak and high-signal performance of dE and
dF (Supplementary Figure 3), promoter bD has low leak and low
signal while promoter eG has high leak and high signal (Fig. 3c).
As expected, the two-input (Fig. 5a) and three-input (Fig. 5b)
hybrid promoters that contain the bD and eG sequences exhibit
low leak and low signal as well as high leak and high signal,
respectively (Fig. 5).

Discussion
To date, synthetic gene circuits have been constructed primarily
by cobbling together regulatory parts drawn from disparate
pathways. For instance, the original genetic toggle switch1 con-
tained the repressors LacI (which regulates lactose metabolism)
and TetR (which regulates the response to tetracycline). Because
the lac and tet systems evolved separately, the promoters that
respond to LacI and TetR are tuned to transcribe downstream
genes at rates appropriate to their original setting. This tuning
incongruity can cause problems for synthetic biologists, as the
transcriptional response of a promoter needs to match the syn-
thetic context of the circuit. Unfortunately, traditional strategies
of testing −35 and −10 combinations and Shine–Dalgarno
sequences of varying strengths to empirically achieve desired
properties (with respect to, say, leakiness and inducibility) can be
extremely time-consuming and labor-intensive.

In this study, we developed a method for tuning the difference
between the ON and OFF states of a regulated promoter. We
created a library of −10 and −35 sites that exhibit a wide range of
fitted binding energies (inferred by fitting transcriptional data to a
mathematical model) for σ70 and characterized how the fitted
binding energies affect the uninduced vs induced transcription
rates of ligand-inducible promoters. Despite the relatively small
number of examined −10 and −35 sites (a total of 48 combina-
tions), our library members spanned the full range of possible
input and output relationships, i.e., the data points span the entire
breadth of the dynamic range curves shown in Figs. 3a, b and 4b,
c. We further demonstrated the utility of our method for building
synthetic gene circuits by using it to select optimal −35 and −10

combinations for building two- and three-input hybrid promoters
with high inducibility and low leakiness.

Note that our model for transcriptional repression is not as
quantitatively accurate as our model for transcriptional activa-
tion, possibly because our model does not account for additional
biophysical states that may be assumed by the DNA during
transcriptional repression (e.g., DNA looping41). Therefore, in the
absence of inducers that bind the transcriptional repressors, the
predicted transcription rates can deviate from the data for higher
values of ln(Keq) (see gray plots in Fig. 4b, c).

Since the characteristics of each −10 and −35 site combination
were independent of the transcription factor(s) being used to
regulate the promoter (Figs. 3a, d and 4b, d), this approach
should apply to the host of novel transcription factors that have
been developed to regulate σ70-based synthetic gene circuits23,47

(provided the transcription factors have known ligands). Addi-
tionally, when used in conjunction with methods for controlling
protein production rates, our approach should provide exquisite
control over the dynamic range of gene expression in synthetic
gene circuits.

Methods
Strains and plasmids. We performed our experiments in E. coli strains derived
from wild-type MG1655. To minimize interference of endogenous LacI with our
exogenous LacI repressor, we performed lambda Red recombination48,49 to prepare
a LacI- strain—CY011 (E. coli strain MG1655 ΔlacI). In addition, since an E. coli
LuxR homolog, sdiA, can partially activate Prhl50, we knocked out sdiA from CY011
to create CY013 (CY011 ΔsdiA). In order to test our −35 and −10 combinations in
the context of three different promoters and transcription regulators, we built a
plasmid pCH035 encoding wild-type araC, Ptrc*-rhlR (cloned from ATCC #47085),
and PIq-lasR (cloned from ATCC #47085) and performed lambda Red recombi-
nation to integrate these genes into the genome of CY013 to obtain CY015 (CY013
wt-araC, Ptrc*-rhlR, PIq-lasR). Next, to test repressor function, we integrated PIq-
LacI and PN25-TetR into the original LacI site of CY013 and CY015 via lambda Red
recombination to obtain CY019 (CY013 PIq-LacI PN25-TetR) and CY021 (CY015
PIq-LacI PN25-TetR), respectively. After each recombination, antibiotic markers
were removed by FLP-FRT recombination.

To construct the promoter library, we used a modified Golden Gate strategy51

wherein BsaI was used to create a specific restriction site in the spacer region. The
first segment contains the activator-binding site and the −35 site; the second
segment contains the −10 site, a ribosome-binding site, and yfp (T203Y mutant of
sfGFP) reporter gene9. After PCR amplification of each segment, all segments were
ligated to the plasmid backbone (KanR and pMB1 +rop origin) in all possible
combinations. We used a similar strategy to construct the two- and three-input
hybrid promoters. The genomic copy of XylR was used, but the majority of the
activators were either integrated into the genome (AraC, LasR, and RhlR) or
supplied on a separate plasmid (LuxR) (ChlorR and pSC101 origin).

All strains, plasmids, and promoter sequences used in this research are listed in
Supplementary Tables 1–4. Key plasmids and strains are listed in Supplementary
Table 5 and will be available by request on Addgene (https://www.addgene.org/
Matthew_Bennett/) under the publication identifier corresponding to this
manuscript.

Promoter strength assay. To measure the strengths of each −35 and −10 com-
bination for promoters of the three activators, we first transformed the reporter
plasmids encoding our library of promoters into strain CY015. We used the PBAD,
Plas, and Prhl promoters as reference standards against which we standardized the
strengths of each member of the promoter library52. To measure the strengths of
each −35 and −10 combination for promoters of the two repressors, we used strain
CY021, a LacI, and TetR knock in strain. In the two- and thre-input hybrid
promoter assay, we transformed plasmids encoding the additional activator (LuxR)
and hybrid promoters into CY015.

The strains were cultured overnight in LB media with 50 μg/mL kanamycin
(and 25 μg/mL chloramphenicol as needed). The overnight cultures were
inoculated at 1% volume per volume into 100 μL M9 media supplemented with
0.4% glycerol and 0.2% casamino acids and transferred into a 96-well plate. After
growth with shaking at 37 °C for 2 h, 100 μL M9 media with 2× inducer was added
to the cultures. The final concentrations of all inducers were as follows: C4-HSL
(10 μM), 3O-C6-HSL (0.1 μM), 3O-C12-HSL (0.1 μM), arabinose (5 mM), xylose
(5 mM), IPTG (1 mM), and ATc (100 ng/mL). Cultures were grown at 37 °C and
800 rpm in a plate shaker. The fluorescence of YFP was measured after 2 h using a
plate reader (Tecan Infinite M1000; excitation 515± 5 nm, emission 528± 5 nm;
PMT gain of 100) and reported as Fluotest_promoter = (fluorescence4h−fluorescence2h)
per OD600

52. Reference standards were included on each 96-well plate. The final
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promoter strength was calculated in RPU using the equation RPUtest_promoter =
Fluotest_promoter×RPUreference_standard)×Fluoreference_standard−1.

Code availability. Commented code and all collected coding data are available in
the Github repository at https://github.com/josic/Promoter-Engineering.

Data availability. All experimental data are available in Supplementary Data 1–8
and are available from the authors upon reasonable request.

Received: 15 June 2017 Accepted: 1 December 2017
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