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Abstract

Measuring complexity of brain networks in the form of integrated information 

is a leading approach towards building a fundamental theory of consciousness. 

Integrated Information Theory (IIT) has gained attention in this regard due to its 

theoretically strong framework. Nevertheless, it faces some limitations such as 

current state dependence, computational intractability and inability to be applied 

to real brain data. On the other hand, Perturbational Complexity Index (PCI) is a 

clinical measure for distinguishing different levels of consciousness. Though PCI 

claims to capture the functional differentiation and integration in brain networks 

(similar to IIT), its link to integrated information is rather weak. Inspired by these two 

perspectives, we propose a new complexity measure for brain networks – Φ𝐶 using 

a novel perturbation based compression-complexity approach that serves as a bridge 

between the two, for the first time. Φ𝐶 is founded on the principles of lossless data 

compression based complexity measures which is computed by a perturbational 

approach. Φ𝐶 exhibits following salient innovations: (i) mathematically well

bounded, (ii) negligible current state dependence unlike Φ, (iii) network complexity 

measured as compression-complexity rather than as an infotheoretic quantity, and 

(iv) lower computational complexity since number of atomic bipartitions scales 

linearly with the number of nodes of the network, thus avoiding combinatorial 

explosion. Our computations have revealed that Φ𝐶 has similar hierarchy to < Φ >

for several multiple-node networks and it demonstrates a rich interplay between 

differentiation, integration and entropy of the nodes of a network.
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Φ𝐶 is a promising heuristic measure to characterize network complexity (and 

hence might be useful in contributing to building a measure of consciousness) with 

potential applications in estimating brain complexity on neurophysiological data.

Keywords: Mathematical biosciences, Neuroscience

1. Introduction

Φ, a measure of network complexity, has drawn a lot of attention recently because it 

claims its inspiration from the nature of consciousness. Consciousness is our inner 

“experience”, which is subjective, distinct and unique – such as the feeling of pain, 

perception of the color green, or in the most general sense, the felt experience – 

“what’s it like to be?” [1] by an organism. Consciousness is hard enough to be 

defined in words but easiest to be accepted, as it is something rather than nothing, 

which each of us is experiencing right now. The problem of measuring consciousness 

is difficult because of the presence of different levels of conscious experience [2]

and first person reports of consciousness might not be accurate. It might also be 

interesting to use the measures of consciousness and brain networks’ complexity in 

deciphering if neural networks as the ones in [3] possess any consciousness. It has 

also been suggested that we need a mix of theoretical and practical approaches to 

be able to characterize consciousness mathematically in terms of quality as well as 

quantity [4, 5].

On the basis of various scientific theories, different measures of consciousness are 

suggested in the literature – both on behavioral and neurophysiological basis [2]. 

The idea that consciousness is the result of a balance between functional integration 

and differentiation in thalamocortical networks, or brain complexity, has gained 

popularity [6, 7, 8, 9, 10].

We intend to analyze, in particular, a measure of complexity called Integrated 

Information – Φ [5] which has gained much popularity because of Integrated 

Information Theory of Consciousness (IIT) [5]. Though theoretically well founded, 

IIT 3.0 suffers from several limitations such as current state dependency,

computational intractability and inability to be used with neurophysiological data. 

There are two other measures viz. Neural Complexity [11] and causal density [12]

as well, which also capture the co-existence of integration and differentiation 

serving as measures of consciousness [2]. Apart from the individual challenges 

that these measures have, the common fundamental problem to use them in clinical 

practice is that they are very difficult to calculate for a network with large number 

of nodes such as the human brain [2]. In the recent past, a clinically feasible 

measure of consciousness – Perturbational Complexity Index (PCI) was proposed 

as an empirical measure of consciousness. PCI has been successfully tested in 
on.2019.e01181
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Figure 1. Dependence of Φ on current state. (A) A 3-node network 𝐴𝐵𝐶 with 3 different mechanisms 
𝑂𝑅, 𝐴𝑁𝐷, 𝑋𝑂𝑅 respectively. (B) The table of values of Φ for all current states of the network 𝐴𝐵𝐶 .

subjects during wakefulness, dreaming, non-rapid eye movement sleep, anesthesia 

induced patients, and coma patients. Although the authors of [6] claim that PCI is 

theoretically based, they don’t explicitly and formally establish a link to information 

integration.

1.1. Dependence of 𝚽 on the current state

Φ, as defined in [5], is heavily dependent on the current state of a system. This fact is 

supported by referring to the framework of IIT 3.0 – (i) firstly, the notion of intrinsic 

information that Tononi propounds is defined as “difference that make a difference” 

to a system, which is based on how an element of a system constrains the past of 

other node of the same system depending on its mechanism and its current state [5], 

(ii) secondly, IIT is based on a basic premise that if integrated information has to 

do something with consciousness, then it must not change, howsoever, the system 

is divided into its parts. Therefore we require a crucial cut – Minimum Information 

Partition (MIP) which is the weakest link of the system [13]. MIP is dependent on 

the current state of the system because it requires the identification of that partition 

which makes the least difference to the cause-effect repertoires of the system [5].

Therefore, following from the above, we can infer that Φ is dependent on the current 

state of a system. However, this can be problematic as shown in Figure 1. Figure 1(A) 

shows a system 𝐴𝐵𝐶 with 3 different mechanisms and Figure 1(B) shows different 

values of Φ for the different current states of 𝐴𝐵𝐶 , which shows the current state 

dependence of Φ.

1.2. Theoretical gap in Perturbational Complexity Index (PCI)

PCI is defined as “the normalized Lempel–Ziv complexity of the spatiotemporal 

pattern of cortical activation triggered by a direct Transcranial Magnetic Stimulation 

(TMS) perturbation” [6]. PCI computes the algorithmic complexity of the brain’s 

response to the perturbation and determines two important components of
on.2019.e01181
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complexity: integration and differentiation, for the overall output of the

corticothalamic system.

Perturbational Complexity Index (PCI) [6] is proposed as an objective measure for 

the determination of consciousness in the clinic and for distinguishing the level of 

consciousness in 3 scenarios: (i) healthy subjects in wakefulness, non-rapid eye 

movement (NREM) sleep and dreaming states, (ii) subjects sedated by anesthetic

agents (midazolam, xenon, and propofol), and (iii) patients who emerged from coma 

(vegetative/minimally conscious state, and locked-in syndrome) [6].

PCI faces certain drawbacks which needs to be addressed: a) the authors of PCI 

have not explicitly shown the mapping between the values of their measure (for 

example, high in wakefulness and low in NREM sleep) and the amount of integration 

and differentiation present in the cortical responses, b) PCI measures complexity 

of (averaged) TMS evoked potentials from one particular target region (single 

type of external perturbation) [14], and c) it is not known whether TMS-induced 

perturbations in PCI are random in nature or not.

1.3. The new measure – 𝚽𝑪

On one hand we have theoretically well founded measures such as Integrated 

Information, Causal Density and Neural Complexity, which are currently impossible 

to be tested in the clinic on a real subject; on the other hand we have the very 

promising and successful candidate – PCI, which is applicable in the clinic, but lacks 

a clear connection to these theoretical measures. Our aim is to bridge this gap.

Inspired by the theoretical framework of IIT 3.0 and empirical measure PCI, we 

propose a perturbation based compression-complexity measure for brain networks –

Φ𝐶 . The idea of Compression-Complexity is motivated by observing the similarity 

between data compression performed by compression algorithms and ability of the 

human brain to make holistic sense of the different stimuli received by the brain. The 

link between data compression and Tononi’s integrated information is highlighted 

by the fact that the information encoded by the bits of a compressed file are more 

tightly integrated than the original uncompressed file.1 Complexity measures based 

on lossless data compression algorithms such as Lempel–Ziv Complexity (LZ) [15]

and Effort-To-Compress (ETC) [16] are known to outperform infotheoretic measures 

such as entropy for characterizing the complexity of short and noisy time series of 

chaotic dynamical systems [16, 17]. The newly proposed compression-complexity 

measure Φ𝐶 characterizes complexity of networks using LZ and ETC measures.

1 Even if the vowels are eliminated from the original text we can still make sense out of it. On the other hand even a 
single bit error in the compressed file can render it undecodable and hence incomprehensible indicating that information 
is more tightly integrated across all or most of the bits of the compressed file.
on.2019.e01181
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Φ𝐶 is defined and computed as the maximally-aggregate differential normalized 

Lempel–Ziv (LZ) or normalized Effort-To-Compress (ETC) complexity for the time 

series data of each node of a network, generated by perturbing each possible atomic 

bipartition of an 𝑁-node network with a maximum entropy perturbation and a zero 

entropy perturbation. The detailed explanation is given in Methods section and 

in ‘Supplementary Text’. Φ𝐶 has the following advantages – theoretically well-

bounded and independent of current state of the system, linear correlation with 

entropy of the nodes, and approximates integrated information with both aspects – 

‘process’ and ‘capacity’. Φ𝐶 attempts to capture the co-existence of differentiation, 

integration, as well as entropy in networks and shows a similarity with Φ in its 

performance on 3, 4 and 5-node networks.

2. Results

The Results section is structured as follows: we start by analyzing IIT 3.0 and its 

limitations, in particular, its dependence on current state which makes Φ a non-robust 

measure. This limitation is one of the motivations for proposing a new measure. We 

also demonstrate the correlation between < Φ > (mean value of Φ) and the entropy 

of the nodes of the network. In the next section, we allude to the lack of a clear 

theoretical framework in PCI which makes it an empirical measure. To address these 

limitations, we first introduce the idea of compression-complexity and then propose 

a new measure – Φ𝐶 . The steps for the computation of the new measure are provided 

and its properties are enlisted. We also contrast the hierarchy of < Φ > with < Φ𝐶 >

for all 3, 4, 5-node networks formed by logic gates: 𝑂𝑅, 𝐴𝑁𝐷 and 𝑋𝑂𝑅.

2.1. Model assumptions

We make the following model assumptions in our paper:

• Although certain states may be forbidden in a given network, to ease analysis, 

we generically assume that any state is equally likely at time 𝑡 = 0. Hence, while 

computing all measures in the paper, we consider all possible current states to 

be equally likely.

• Each network that we consider is fully connected (bi-directionally) and no node 

has self-loops unless otherwise specified.

• We assume all networks to be composed of binary logic gates (𝑂𝑅, 𝐴𝑁𝐷 and 

𝑋𝑂𝑅) and both the perturbation and output time series are also binary. However, 

our methods can be extended for networks which are non-boolean.

• At certain places in this paper, we have used the term ‘element’ and ‘system’ to 

mean ‘node’ and ‘network’ respectively.
on.2019.e01181
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Table 1. Integrated informat

Network No. Network

1 𝑋𝑂𝑅–𝑋𝑂𝑅–𝑋

2 𝑋𝑂𝑅–𝑋𝑂𝑅–𝑂

3 𝑋𝑂𝑅–𝑋𝑂𝑅–𝐴

4 𝑂𝑅–𝑂𝑅–𝑋𝑂𝑅

5 𝐴𝑁𝐷–𝐴𝑁𝐷–
6 𝑂𝑅–𝐴𝑁𝐷–𝑋

7 𝐴𝑁𝐷–𝐴𝑁𝐷–
8 𝑂𝑅–𝑂𝑅–𝐴𝑁𝐷

9 𝐴𝑁𝐷–𝐴𝑁𝐷–
10 𝑂𝑅–𝑂𝑅–𝑂𝑅

For each possible network form

for all 8 current states are calc

based on the theoretical framew
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ion (Φ) computed for all current states of different 3-node networks.

s (𝟎, 𝟎, 𝟎) (𝟎, 𝟎, 𝟏) (𝟎, 𝟏, 𝟎) (𝟎, 𝟏, 𝟏) (𝟏, 𝟎, 𝟎) (𝟏, 𝟎, 𝟏) (𝟏, 𝟏, 𝟎) (𝟏, 𝟏, 𝟏) < 𝚽 > ± Stdev.

𝑂𝑅 1.875 4.125 4.125 1.875 4.125 1.875 1.875 4.125 3 ± 1.203
𝑅 2.937 3.229 4.187 0.854 4.187 0.854 2.187 2.104 2.568 ± 1.312
𝑁𝐷 2.104 2.187 0.854 4.187 0.854 4.187 3.229 2.937 2.568 ± 1.312

2.500 0.250 4.167 0.917 4.167 0.917 0.357 0.357 1.704 ± 1.680
𝑋𝑂𝑅 0.357 0.357 0.917 2.042 0.917 2.042 0.250 4.500 1.422 ± 1.434
𝑂𝑅 0.667 0.250 1 1 1.917 1.817 0.250 0.667 0.946 ± 0.636
𝑂𝑅 0.383 0.334 0.264 0.243 0.264 0.243 0.500 0.264 0.312 ± 0.091

0.264 0.500 0.243 0.264 0.243 0.264 0.334 0.383 0.312 ± 0.091
𝐴𝑁𝐷 0.194 0.243 0.243 0.264 0.243 0.264 0.264 0.500 0.277 ± 0.093

0.500 0.264 0.264 0.243 0.264 0.243 0.243 0.194 0.277 ± 0.093

ed by three different logic gates: 𝑂𝑅, 𝐴𝑁𝐷 and 𝑋𝑂𝑅, the values of Φ and < Φ > (± standard deviation) 
ulated. The computation of Φ is done using Python library for Integrated Information [5, 18] which is 
ork of IIT 3.0 [14].

2.1.1. < 𝚽 >: incorporating current states of a network

Taking a cue from the previous section, we performed computer simulations to 

compute the values of Φ for all 3-node networks consisting of 𝑂𝑅, 𝐴𝑁𝐷 and 𝑋𝑂𝑅

gates, and for every current state (details in Methods section). We then compute 

mean value of Φ across all current states of a network – < Φ >. Table 1 shows Φ
for all current states, along with the < Φ > and standard deviation. We repeat this 

exercise for 4 and 5-node networks as well, and the results are presented in Table S1 

(Supplementary Tables).

< Φ > exhibits a unique property of integrated information: the hierarchy in its 

values for all possible 3, 4, 5-node networks formed by all possible combinations 

of 3 distinct mechanisms: 𝐴𝑁𝐷, 𝑂𝑅, and 𝑋𝑂𝑅. As we can observe in Table S1 

(Supplementary Tables), < Φ > leads to a natural hierarchy of networks based on 

the entropy of its individual nodes and how they combine. The higher the number 

of high entropy nodes present in the network, the more it contributes to integrated 

information of the corresponding network (Figure 2). Thus, a 3-node network 

consisting of all 𝑋𝑂𝑅s has higher value of < Φ > (=3.0) as compared to a network 

consisting of all 𝐴𝑁𝐷s (< Φ > = 0.277) (please refer to Table S1(a)). It is easy to 

verify that 𝑋𝑂𝑅s have the highest Shannon entropy (=1.0 bit/symbol) followed by 

𝐴𝑁𝐷 and 𝑂𝑅, both of which have an entropy of 0.8113 bits. It is pertinent to note 

that the natural hierarchy is exhibited by < Φ > alone and not when the values of Φ
are compared across different networks for any single current state.

In order to understand the dependence of < Φ > with entropy of the nodes, we 

performed a linear regression (least squares) between the dependent variable < Φ >

and the explanatory variables ‘entropy’ of the nodes and the ‘number of nodes’ (for 

further details, please refer to ‘Supplementary Text’). The predicted values obtained 

from the linear fit closely tracks the actual values of < Φ > as shown in Figure 2 and 

the linear correlation coefficient values between them are: 0.9746 (3-nodes), 0.9275 
on.2019.e01181
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Figure 2. Linear regression of < Φ > as a function of entropy of nodes for all 3, 4 and 5-node 
networks. A linear fit is obtained between the dependent variable < Φ > and the explanatory variables 
‘entropy’ of nodes and ‘number of nodes’. Y-axis represents the mean value of integrated information 
in all 3 graphs. (A) X-axis represents 10 different 3-node network configurations (refer Table S1(a) 
in ‘Supplementary Tables’). (B) X-axis represents 15 different 4-node network configurations (refer 
Table S1(b) in ‘Supplementary Tables’). (C) X-axis represents 21 different 5-node network configurations 
(refer Table S1(c) in ‘Supplementary Tables’). The blue plot represents the < Φ > values for each network 
configurations and the red plot represents the predicted values of < Φ > as a function of ‘entropy’ for each 
network configuration in all 3 graphs. The predicted < Φ > (in red) obtained from linear regression is a 
good fit when compared to the actual < Φ > (in blue) as indicated by the linear correlation coefficient 
values between them: 0.9746 (3-nodes), 0.9275 (4-nodes) and 0.6262 (5-nodes) respectively. For further 
details, please refer to ‘Supplementary Text’.

(4-nodes) and 0.6262 (5-nodes) respectively. This confirms our intuition that there 

is a linear correlation between the values of < Φ > and the entropy and of the nodes 

and their number.

In this section, we have shown that Φ is heavily dependent on current states of a 

network, which makes it non-robust measure of integrated information and < Φ >

has linear correlation with the entropy of nodes. Φ also suffers from the limitations 

such as computational explosion for estimation in large networks and inability to 

handle neurophysiological data which is continuous in nature (for example, time 

series data) and thus not immediately applicable in the clinic. The new measure Φ𝐶

that we propose tries to address these limitations.

Nevertheless, in spite of the individual drawbacks that IIT 3.0 and PCI have, the 

former is strongly theoretically grounded and latter has succeeded empirically. 

Inspired by the both of these approaches, we propose new approach based on 

perturbational compression-complexity, which attempts to bridge the gap between 

IIT and PCI.

2.2. Comparing < 𝚽𝑪 > with < 𝚽 >

In this section, we intend to evaluate how < Φ𝐶 > does in comparison with < Φ >

for 3, 4, 5-node networks. It is shown through simulations that < Φ𝐶 > aligns very 

well with < Φ > in terms of hierarchy for 3-node networks and to a certain extent 
on.2019.e01181

lished by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
by-nc-nd/4.0/).

https://doi.org/10.1016/j.heliyon.2019.e01181
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article No~e01181

8 https://doi.org/10.1016/j.heliy

2405-8440/© 2019 The Authors. Pub

(http://creativecommons.org/licenses/
Figure 3. Plots of < Φ𝐶 > and < Φ > (across all current-states) for all (A) 3-node, (B) 4-node, (C) 
5-node networks. X-axis of each graph represents the different configurations of networks and Y-axis 
represents mean values of complexity of brain networks (here, integrated information) corresponding to 
the tables in ‘Supplementary Tables’. (A), (B) and (C) show the mean value of network complexity for 
ten configurations 3-node networks, 15 configurations of 4-node networks, 21 configurations of 5-node 
networks respectively. The trends in the values of < Φ > and < Φ𝐶 > across different networks, depicted 
in this figure, are similar.

Figure 4. Box-plots of the values Φ, 𝐸𝑇 𝐶Φ𝐶 and 𝐿𝑍Φ𝐶 for all (A) 3, (B) 4, (C) 5-node networks and for 
all current states. The resolution of < Φ > across different networks is best among all the three measures.

with 4 and 5-node networks as shown in Table S2 and Table S3 (please refer to 

‘Supplementary Tables’) and Figure 3.

The trends in the values of < Φ > and < Φ𝐶 > across different networks are depicted 

in Figure 3 and they are similar. To quantify this, we compute the linear correlation 

coefficients between < Φ > and < 𝐿𝑍Φ𝐶 >: 0.6851 (3-nodes), 0.6154 (4-nodes) and 

0.4877 (5-nodes). Similarly, linear correlation coefficient values between < Φ > and 

< 𝐸𝑇𝐶Φ𝐶 > were: 0.7118 (3-nodes), 0.5561 (4-nodes) and 0.4977 (5-nodes). The 

linear correlation coefficients between < 𝐿𝑍Φ𝐶 > and < 𝐸𝑇𝐶Φ𝐶 > were very high 

(>0.99 in all cases). Also, as shown in Figure 4, we depict box-plots of the values of 

Φ and Φ𝐶 for all networks and for all current states.

For the sake of exhaustive analysis, we present mean and standard deviation 

of Φ𝐶 and Φ for all current-states of each network (Table S2 and Table S3 in 
on.2019.e01181
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Figure 5. Coefficient of variation (CoV) for measuring the complexity of brain networks. CoV of 𝐿𝑍Φ𝐶 , 
𝐸𝑇 𝐶Φ𝐶 and Φ for (A) 3-node, (B) 4-node, and (C) 5-node networks. X-axis of each graph represents 
the different configurations of networks and Y-axis represents CoV values. (A), (B) and (C) show the 
mean value of integrated information for ten configurations of 3-node networks, 15 configurations of 
4-node networks, 21 configurations of 5-node networks respectively (refer to ‘Supplementary Tables’ for 
the network configurations). Both 𝐿𝑍Φ𝐶 and 𝐸𝑇 𝐶Φ𝐶 have better (lower) values of CoV than Φ in most 
networks barring a few exceptions.

‘Supplementary Tables’). < Φ𝐶 > is observed to have similar hierarchy as < Φ >

but with lesser standard deviation across current-states for all 3, 4, 5-node networks. 

As depicted in Table S1(a), Table S2(a) and Table S3(a) in ‘Supplementary Tables’, 

3-node networks exhibit a similar hierarchy in values of < 𝐸𝑇𝐶Φ𝐶 > and < 𝐿𝑍Φ𝐶 >

when compared to the values of < Φ >. This order is found to some extent in 4 

and 5-node networks (refer to ‘Supplementary Tables’). However, there are some 

departures in the ordering of < Φ𝐶 > and < Φ >. For example, while comparing 

< Φ > and < 𝐿𝑍Φ𝐶 > and taking the < Φ > values in Table S1(a) (‘Supplementary 

Tables’) as a reference for 3-node networks, there is a minor shuffling in the hierarchy 

(this is clear when you look at the column ‘Network No.’). For 4-node and 5-node, 

the departure from the hierarchy with respect to < Φ > is higher. As an example, 

𝐴𝑁𝐷–𝐴𝑁𝐷–𝐴𝑁𝐷–𝐴𝑁𝐷–𝐴𝑁𝐷 and 𝐴𝑁𝐷–𝐴𝑁𝐷–𝐴𝑁𝐷–𝐴𝑁𝐷–𝑋𝑂𝑅 stand 

at #20 and #2 respectively in the hierarchy for < Φ >, whereas for < Φ𝐶 > they are 

much closer in hierarchy. It is more intuitive that a single 𝑋𝑂𝑅 replacement of an 

𝐴𝑁𝐷 gate should not yield such a drastic change in complexity of brain networks.

Also, the standard deviation of Φ𝐶 for 3, 4 and 5-node networks is much lower than 

that of Φ: (0.0–0.184) for 𝐸𝑇𝐶Φ𝐶 , (0.0–0.558) for 𝐿𝑍Φ𝐶 and (0.0–2.062) for Φ. In 

order to measure the dispersion of the three measures across all networks and all 

states, we compute the coefficient of variation (CoV).2 This is plotted in Figure 5, 

2 CoV is defined as the ratio of standard deviation to the mean.
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from which it is evident that both 𝐿𝑍Φ𝐶 and 𝐸𝑇𝐶Φ𝐶 have better (lower) values of 

CoV than Φ, barring a few exceptions (network #9, 10 for 3-node networks, #14, 15
for 4-node networks and #14, 18, 20, 21 for 5-node networks). Therefore, in practice, 

we recommend choosing any single current state at random and then computing the 

value of Φ𝐶 for that current state. This is also one of the reasons why our measure 

is computationally efficient.

2.3. Properties of 𝚽𝑪

1. Current-state independence: Unlike other measures of brain network

complexity such as causal density [12], Neural complexity [11], Φ (IIT 1.0) [9], 

𝜑 (IIT 2.0) [19, 20, 21], Φ𝑀𝑎𝑥 (IIT 3.0) [4, 5], Φ∗ and Φ∗
𝑀𝑀𝑃

, which 

demonstrate the state-dependence of integrated information, the proposed 

measure Φ𝐶 has negligible dependence on the current state of the nodes of 

the network. There have been earlier attempts to propose a state-independent 

measure: (i) Φ𝐸∕Φ𝐴𝑅 proposed by [21] aims to measure the average information 

generated by the past states rather than information produced by the particular 

current state, (ii) 𝜓 proposed by Griffith [22] also suggests stateless 𝜓 as < 𝜓 >, 

but this results in weakening of 𝜓 , (iii) Φ𝐴𝑅
𝑀𝑀𝑃

suggested by Toker et al. 

[23] based on the foundations of Φ𝐴𝑅 using Maximum Modularity Partition 

seems to be state-independent when utilized for neural data that cannot be 

transformed into a normal distribution. But, these measures too, have not been 

extensively tested with different networks to show a lower standard deviation 

when computed across all current states. However, as it can be seen from 

‘Supplementary Tables’, the standard deviation of the values of Φ𝐶 across all 

current states for 3, 4, 5-node networks is very low. We expect this property to 

hold even for networks with larger number of nodes.

2. Linear correlation of Φ𝐶 with entropy of nodes: Similar to < Φ >, < Φ𝐶 >

also exhibits a linear correlation with the entropy of the nodes. As shown in 

Figure 6, linear regression (least squares) is performed with the dependent 

variable < Φ𝐶 > and the explanatory variables ‘entropy’ of the nodes and the 

‘number of nodes’ (for further details, please refer to ‘Supplementary Text’). 

The predicted values obtained from the linear fit closely tracks the actual values 

of < Φ𝐶 > as shown in Figure 6. This is indicated by the linear correlation 

coefficient values between < 𝐿𝑍Φ𝐶 > and the predicted values: 0.6654 

(3-nodes), 0.7524 (4-nodes), 0.9378 (5-nodes); and between < 𝐸𝑇𝐶Φ𝐶 > and 

the predicted values: 0.6879 (3-nodes), 0.6957 (4-nodes), 0.9361 (5-nodes). As 

it can be seen, the prediction improves as the number of nodes increases.

3. Information theoretic vs. Compression-Complexity measure: Existing

measures of brain network complexity are all heavily based on information 

theoretic measures such as entropy, mutual information, intrinsic information, 
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Figure 6. Linear regression of (A) < 𝐿𝑍Φ𝐶 > and (B) < 𝐸𝑇 𝐶Φ𝐶 > as a function of entropy of nodes 
for all 3, 4 and 5-node networks. A linear fit is obtained between the dependent variable < 𝐿𝑍Φ𝐶 >

(or < 𝐸𝑇 𝐶Φ𝐶 >) and the explanatory variables – ‘entropy’ of nodes and ‘number of nodes’. In each 
of the graphs above, X-axis of each graph represents the different configurations of networks and Y-

axis represents the mean value of brain network complexity. The leftmost, middle and rightmost graph 
in both (A) and (B) shows the mean value of integrated information for ten configurations 3-node 
networks, 15 configurations of 4-node networks, 21 configurations of 5-node networks respectively (refer 
to ‘Supplementary Tables’ for the network configurations). For each network configuration, the blue plot 
represents < 𝐿𝑍Φ𝐶 > or < 𝐸𝑇 𝐶Φ𝐶 > values respectively in (A) and (B) and the red plot represents their 
predicted values as a function of ‘entropy’. For further details, please refer to ‘Supplementary Text’.

etc. However, Φ𝐶 is built on complexity measures (𝐸𝑇 𝐶 , 𝐿𝑍) which have roots 

in lossless compression algorithms. 𝐸𝑇 𝐶 is related to a lossless compression 

scheme known as NSRPS [16, 24] and 𝐿𝑍 is based on a universal compression 

algorithm [25]. These complexity measures do not directly model the probability 

distribution of potential past and future states of a system, but learn from the 

patterns in the time series. This approach is known to be more robust even with 

small set of measurements and in the presence of noise [16].

4. Boundedness:Φ𝐶 is well defined mathematically and is bounded between 0 and 

𝑁−1, where 𝑁 is the number of nodes in the network. Since we use normalized 

values for both 𝐸𝑇 𝐶 and 𝐿𝑍 complexity measures to define 𝜑𝐶 at every node, 

therefore 𝜑𝐶 is bounded between 0 and 1. Further, since Φ𝐶 is computed as the 

maximum of aggregated values of 𝜑𝐶 , and for every atomic bipartition there 

are 𝑁 − 1 pairs of output time series, the maximum aggregated value of the 

differential complexity measure can be utmost 𝑁 − 1 (the maximum value is 

attained if complexity value obtained from MEP time series is 1 and 0 from 

ZEP time series for each bipartition). Therefore, 0 ≤ Φ𝐶 ≤ 𝑁 −1. Even though 

𝐿𝑍 complexity is also normalized, its value can exceed one at times [26, 27]. 

This is a problem due to finite data lengths. But, normalized 𝐸𝑇 𝐶 does not have 

this problem and it is always bounded between 0 and 1 [16]. Hence, we would 
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recommend the use of normalized 𝐸𝑇 𝐶 complexity measure over normalized 

𝐿𝑍 complexity.

5. Process vs. capacity: Φ𝑀𝑎𝑥 measures consciousness as brain network

complexity which is represented by the capacity of the system [21], while PCI 

measures the same as a process by recording the activity of the brain generated 

by perturbing the cortex with TMS using high-density electroencephalography 

[6]. However, Φ𝐶 as a measure of integrated information encapsulates both 

the ideas of ‘capacity’ and ‘process’. The Differential Compression-Complexity 

Response Distribution (dCCRD) for each atomic bipartition is measuring 

integrated information as a process for time-series data from each node. 

The Aggregate Differential Compression-Complexity Measure captures the 

network’s capacity to integrate information. Therefore, Φ𝐶 incorporates ideas 

from both IIT and PCI, for measuring network complexity.

6. Discrete and continuous systems: Φ𝐶 can be easily extended to continuous 

measurements such as neurophysiological data. We could sample the continuous 

measurements to yield discrete samples on which Φ𝐶 can be estimated or 

apply techniques which maximize the information transfer (or minimizes the 

loss) [28]. Thus, our measure applies equally to both discrete and continuous 

systems.

7. Lower computational complexity: Since Φ𝐶 employs atomic bipartitions it has 

lower computational complexity than the case where computation is performed 

over all possible partitions. This is because the number of atomic bipartitions 

increases linearly with the number of nodes in the network whereas the total 

number of bipartitions increases exponentially.

3. Methods

In this section, we detail all the methods pertaining to the new measure Φ𝐶 .

3.1. 𝚽𝑪: moving towards a new approach

To address the aforementioned limitations of Φ (IIT 3.0) and PCI, we propose a new 

measure Φ𝐶 and formally introduce the required steps for its computation.

3.1.1. Data compression and integrated information

As Maguire notes, there is an integration of our current experience with memories 

that already exist within us, and this unique binding lends ‘subjectivity’ to our 

experience [29]. This relates to the notion of integrated information. For example, 
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a video camera which is capable of recording several amounts of visual data, is 

not conscious in the same way as we human beings are [29]. This is because, one 

can selectively delete the memory of the video camera unit whereas it is nearly 

impossible to do so in the human brain. The different parts of the brain are tightly 

integrated such that they have significant causal interactions amongst them and 

the information of an external stimulus is ‘encoded’ (or integrated) to the existing 

information in the brain. Thus, the brain responds more like a singular unified 

integrated system.

The notion of data compression is a good example for integrated information [30]. 

Every character in an uncompressed text file is carrying nearly independent

information about the text while in a compressed (lossless) file, no single bit is 

truly independent of the rest. As observed in [29], “the information encoded by the 

bits of a compressed file is more than the sum of its parts”, highlighting connections 

between data compression and Tononi’s concept of integrated information.

Compressionism is a term coined by Maguire and Maguire [30, 31] to characterize 

the sophisticated data compression which the brain performs to bind information 

with experience that we associate with consciousness. Therefore, information 

integration in brain networks could be captured by data compression.

3.1.2. Compression-Complexity

There is a deep relationship between data compression and several complexity 

measures, especially those measures which are derived from lossless compression 

algorithms. Lempel–Ziv complexity (LZ) [15] measures the degree of

compressibility of an input string, and is closely related to Lempel–Ziv compression 

algorithm (a universal compression algorithm [25] which forms the basis of WinZip, 

Gzip, etc.). Similarly, a recently proposed complexity measure known as Effort-To-

Compress (ETC) [16] characterizes the effort to compress an input sequence by using 

a lossless compression algorithm. The specific compression algorithm used by ETC 

is Non-Sequential Recursive Pair Substitution Algorithm (NSRPS) [24]. ETC and 

LZ have been demonstrated to outperform Shannon entropy for characterizing the 

complexity of short and noisy time series from chaotic dynamical systems [16, 17]. It 

is difficult to evaluate entropy since it involves estimation of probability distribution 

which requires extensive sampling that usually cannot be performed [32]. However, 

LZ and ETC complexities are properties of individual sequences (or time series) 

and much easier to compute in a robust fashion. Hence, we make use of these for 

computing compression-complexity of time series. Brief descriptions of LZ and 

ETC are given below.
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Lempel–Ziv complexity (LZ):

Given the input time series, 𝑋 = {𝑥𝑖}𝑖=𝑛
𝑖=1 = 𝑥1𝑥2 … 𝑥𝑛, it is parsed from left to right 

so as to identify the number of distinct patterns it contains. This parsing scheme has 

been proposed in [15].

We reproduce a slightly modified description of the algorithm for computing LZ 

complexity, adapted from [27]. Let the input sequence be denoted by 𝑆 = 𝑠1𝑠2⋯ 𝑠𝑛; 

and let 𝑆(𝑖, 𝑗) represent a substring of 𝑆 that begins at position 𝑖 and ends at 

position 𝑗; let 𝑊 (𝑆) denote the set of all substrings {𝑆(𝑖, 𝑗), 𝑖 = 1, 2, ⋯ 𝑛; 𝑗 ≥ 𝑖}. For 

example, let 𝑆 = 𝑑𝑒𝑓 , then 𝑊 (𝑆) = 𝑑, 𝑒, 𝑓 , 𝑑𝑒, 𝑒𝑓 , 𝑑𝑒𝑓 . The parsing mechanism 

is a left-to-right scan of the symbolic sequence 𝑆. Start with 𝑖 = 1 and 𝑗 = 1. 

A substring 𝑆(𝑖, 𝑗) is compared with all strings in 𝑊 (𝑆(𝑖, 𝑗 − 1)) (let 𝑊 (𝑆(1, 0)) =
{}, the empty set). If 𝑆(𝑖, 𝑗) is present in 𝑊 (𝑆(1, 𝑗 − 1)), then increase 𝑗 by 1 and 

repeat the process. If the substring is not present, then place a dot after 𝑆(𝑖, 𝑗) to 

indicate the end of a new component, set 𝑖 = 𝑗 + 1, increase 𝑗 by 1, and the 

process continues. This parsing procedure continues until 𝑗 = 𝑛, where 𝑛 is the 

length of the symbolic sequence. For example, the sequence ‘𝑎𝑎𝑐𝑔𝑎𝑐𝑔𝑎’ is parsed as 

‘𝑎.𝑎𝑐.𝑔.𝑎𝑐𝑔𝑎.’. By convention, a dot is placed after the last element of the symbolic 

sequence and the number of dots gives us the number of distinct words which is 

taken as the LZ complexity, denoted by 𝑐(𝑛). In this example, the number of distinct 

words (LZ complexity) is 4. To facilitate the comparison of LZ complexity values 

of sequences of different lengths, a normalized measure is used [26]:

𝐶𝐿𝑍 = (𝑐(𝑛)∕𝑛)𝑙𝑜𝑔𝛼𝑛, (1)

where 𝛼 denotes the number of unique symbols in the input time series.

Effort-To-Compress complexity (ETC):

At the first iteration of ETC, that pair of symbols (in the input time series/sequence) 

which has maximum number of occurrences is replaced by a new symbol. For 

example, the input sequence ‘22020020’ is transformed into ‘23303’ in the first 

iteration since the pair ‘20’ has maximum number of occurrences (when compared 

with the pairs ‘00’, ‘02’ and ‘22’). In the second iteration, ‘23303’ is transformed to 

‘4303’. The algorithm proceeds in this manner until the length of the transformed 

string shrinks to 1 or the transformed sequence reduces to a constant sequence. In 

either cases, the algorithm terminates. For our example, the algorithm transforms 

the input sequence 22020020 ↦ 23303 ↦ 4303 ↦ 503 ↦ 63 ↦ 7, and thus takes 

5 iterations to halt.

The ETC complexity measure, 𝐸𝑇 𝐶𝑣𝑎𝑙, is given by the number of iterations required 

to transform the input sequence to a constant sequence by repeated application of the 

pair substitution algorithm just described. 𝐸𝑇 𝐶𝑣𝑎𝑙 is always a non-negative integer, 
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bounded between 0 and 𝐿 − 1, where 𝐿 is the length of the input sequence. The 

normalized version of the measure is given by: 𝐸𝑇 𝐶𝑛𝑜𝑟𝑚. =
𝐸𝑇𝐶𝑣𝑎𝑙

𝐿−1 . Note that 0 ≤
𝐸𝑇𝐶𝑣𝑎𝑙

𝐿−1 ≤ 1. For our example, 𝐸𝑇 𝐶𝑛𝑜𝑟𝑚. =
5

8−1 = 5
7 = 0.7143.

Difference that makes a difference:

In the light of the advantages which LZ and ETC provide over information theoretic 

measures such as entropy, we are motivated to employ these in determining 

complexity in brain networks. Therefore, we introduce “Compression-Complexity” 

measures which characterize complexity of brain networks using lossless

compression algorithm based complexity measures.

Our goal is to use these complexity measures (LZ and ETC) to propose a network 

complexity measure which can approximate the integrated information in a network. 

When a single node of a network is perturbed by a random input, this perturbation 

travels through the network to other nodes. By capturing the output at all the other 

nodes and computing the complexity of their outputs, we intend to study the degree 

of information integration in the network. As a baseline, we also compute the 

complexity of the response of all the other nodes for a zero-entropy perturbation 

of the input node. We then compute the difference between the two responses 

and aggregate them. A network which is more strongly integrated will exhibit 

strong causal interactions among its nodes. This means that in such a network, the 

perturbations travel throughout the network causing high entropy output in other 

nodes as well (since the input is a random perturbation, it is a high entropy input to 

the network). By aggregating the differential compression-complexity of the output 

of all the other nodes (leaving out the input node which is perturbed), we get a 

sense of integrated information. This is because, we are computing information as 

difference that makes a difference [33], here the difference is calculated between the 

response for a maximum-entropy perturbation and a zero-entropy perturbation. We 

then take a maximum of all such aggregated differential compression-complexity 

measures across all possible perturbations (if a network has 𝑁 nodes, then we 

have 𝑁 pairs of perturbations in total). The reason for taking the maximum is 

that it indicates that specific atomic bipartition which characterizes integrated 

information as maximum difference in the input perturbations (as measured by 

Shannon entropy or compression-complexity) that makes a maximum difference 

in the aggregated output response (measured by compression-complexity). Thus, 

we define the maximum differential compression-complexity (aggregated) response 

that is triggered by a maximum differential entropy perturbation as a measure of 

the capacity of the network to integrate information. In a way, this is what PCI is 

also measuring, but it makes use of a single perturbation (which is not a maximum 

entropy one either).
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Figure 7. Algorithm for the computation of Φ𝐶 is illustrated through diagrams. The network 𝐴𝐵𝐶

(current state = (1, 0, 0)) constitutes three logic gates: 𝑂𝑅, 𝐴𝑁𝐷, 𝑋𝑂𝑅 for which the value of Φ𝐶

is computed. (i) The network is partitioned into 3 possible atomic bipartitions, (ii) each atomic bipartition 
is perturbed with a Maximum Entropy Perturbation (MEP) which is a random input binary time series 
(length = 200) as well as Zero Entropy Perturbation (ZEP) which is a constant sequence (length = 200), 
(iii) Differential Compression-Complexity is computed by taking the difference between complexities 
for MEP and ZEP for each output time series from the remaining two unperturbed nodes. This forms the 
Differential Compression-Complexity Response Distribution (dCCRD) for each bipartition. For example, 
{ETC𝜑

C

B(A)
= 0.241, ETC𝜑

C

C(A)
= 0.307}, represents the dCCRD of the time series obtained from the 

nodes 𝐵 and 𝐶 respectively, when the node 𝐴 is perturbed. Similarly, the dCCRD for the other two 
bipartitions are: {ETC𝜑

C

A(B)
= 0.241, ETC𝜑

C

C(B)
= 0.296} and {ETC𝜑

C

A(C)
= 0.186, ETC𝜑

C

B(C)
=

0.281}, (iv) the individual values of each dCCRD are summed up to obtain ‘Aggregate Differential 
Compression-Complexity Measure’ for each bipartitioned-perturbed network. Therefore, ETC𝜙

C

(A)
=ETC

𝜑C

B(A)
+ETC 𝜑C

C(A)
and similarly ETC𝜙

C

(B)
and ETC𝜙

C

(C)
can be computed. All corresponding values 

are: ETC𝜙
C
(A)

= 0.548, ETC𝜙
C
(B)

= 0.537, ETC𝜙
C
(C)

= 0.467, (v) Maximal-Aggregate Differential 
Compression-Complexity, Φ𝐶 , is nothing but the maximum of the Aggregate Differential Compression-

Complexity measures: max(ETC𝜙
C

(A)
,ETC 𝜙C

(B)
,ETC 𝜙C

(C)
). Thus, ETCΦC = 0.548. For more details, 

please refer to ‘Supplementary Text’.

3.1.3. Defining and computing the new measure 𝚽𝑪

Φ𝐶 for a network (with randomly chosen current state of the network) is computed 

by performing the following steps, as also depicted in Figure 7: (i) bipartitioning 

a network into its all atomic bipartitions, (ii) perturbing the atomic node for each 

bipartition with random input time series (maximum entropy), and followed by a zero 
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entropy time series (constant sequence), (iii) recording the output time series from 

all the other nodes of the network and computing the LZ/ETC complexities of these 

individual time series for each bipartition, for both perturbations and computing 

their difference (denoted by LZ𝜑
C

or ETC𝜑
C
), (iv) computing the aggregate of 

these differential complexity measures (LZ/ETC) for each bipartition of network, 

(v) reporting the maximum value across all such computed aggregate differential 

complexity measures (LZ𝜙
C

or ETC𝜙
C
) obtained in step (iv) as the value of LZΦC

(or ETCΦC
).

Definition. Φ𝐶 is defined as the maximally-aggregate differential normalized 

Lempel–Ziv (LZ) or normalized Effort-To-Compress (ETC) complexity for the time 

series data of each node of a network, generated by perturbing each possible atomic 

bipartition of an 𝑁-node network with a maximum entropy perturbation and a zero 

entropy perturbation. The mean of Φ𝐶 across all states of a network is denoted as 

< Φ𝐶 >. 𝐸𝑇𝐶Φ𝐶 and 𝐿𝑍Φ𝐶 denote Φ𝐶 computed using ETC and LZ complexity 

measures respectively.

For the sake of clarity and completeness, we define the following terms:

Network: A system with 𝑁 nodes 𝐴1, 𝐴2, … , 𝐴𝑁 with all bi-directional connections 

and no self-loops.

Atomic bipartition: A division of a network with two parts with one part containing 

only one node (𝐴𝑖) and the other part containing the rest {𝐴1, 𝐴2, … , 𝐴𝑗, … , 𝐴𝑁}
where 𝑗 ≠ 𝑖.

Maximum Entropy Perturbation (MEP): It is defined as the uniform random 

input perturbation time series (with maximum entropy) injected to 𝐴𝑖 of the atomic 

bipartition.

Zero Entropy Perturbation (ZEP): It is defined as a constant input perturbation 

time series (with zero entropy) injected to 𝐴𝑖 of the atomic bipartition.

Differential Compression-Complexity Response Distribution (dCCRD): It is 

defined as the distribution of difference between complexities of the responses from 

each node of the network in each atomic bipartition of the network when one of the 

nodes is perturbed – first with a random maximum entropy perturbation and next 

with a zero entropy perturbation (see Methods for details).

3.1.4. An example of 𝚽𝑪

Φ𝐶 serves as a measure of integrated information (similar to Φ). We provide two 

examples to demonstrate the correspondence of Φ𝐶 with Φ. For two 2-node networks 
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Figure 8. Resemblance of Φ𝐶 with Φ for two 2-node networks. (A): 𝑂𝑅–𝐴𝑁𝐷 network, (B) 𝑂𝑅–𝑋𝑂𝑅

network. (C) The table lists the corresponding values of Φ𝐶 and Φ for the current state (1, 1). It can be 
seen that similar to Φ, Φ𝐶 is lower for 𝑂𝑅–𝐴𝑁𝐷 when compared to 𝑂𝑅–𝑋𝑂𝑅.

as shown in Figure 8, the values of Φ𝐶 and Φ are similar – both are lower for 

𝑂𝑅–𝐴𝑁𝐷 than 𝑂𝑅–𝑋𝑂𝑅 network.

3.2. Calculation of 𝚽𝑪 (𝑳𝒁𝚽𝑪 and 𝑬𝑻𝑪𝚽𝑪)

To compute the proposed compression-complexity measure, Φ𝐶 , the methods 

employed are described below.

3.2.1. Maximum Entropy Perturbation (MEP)

The input to the perturbed node is a maximum entropy time series {𝑃𝑡} which is 

obtained as follows:

𝑅𝐴𝑁𝐷𝑡 = 𝑟𝑎𝑛𝑑(0, 1),
𝑃𝑡 = 0, if 0 ≤ 𝑅𝐴𝑁𝐷𝑡 ≤ 0.5,

= 1, if 0.5 < 𝑅𝐴𝑁𝐷𝑡 ≤ 1, (2)

where 𝑟𝑎𝑛𝑑(0, 1) generates a uniform random variable between 0 and 1; discrete time 

𝑡 = 1, 2, … , 𝐿𝐸𝑁 , where 𝐿𝐸𝑁 is the length of the time series generated. We have 

chosen 𝐿𝐸𝑁 = 200 in our computations.

3.2.2. Zero Entropy Perturbation (ZEP)

The input to the perturbed node is a zero entropy time series {𝑄𝑡} = constant of 

length 𝐿𝐸𝑁 = 200.

3.2.3. Differential Compression-Complexity Response Distribution 

(dCCRD)

The perturbation to the 𝑖-th node is done by independently injecting the MEP and 

ZEP time series {𝑃𝑡} and {𝑄𝑡} to node 𝑖. The two independent sets of output time 
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series {𝑇 𝑀𝐸𝑃
𝑗

} and {𝑇 𝑍𝐸𝑃
𝑗

} from the remaining 𝑁 − 1 nodes (indexed by 𝑗 ≠ 𝑖) 

are collected. We compute the differential compression-complexity of the 𝑗-th time 

series for the 𝑖-th perturbed node as follows:

ETC𝜑
C

𝑗(𝑖)
= Compute_ETC_Complexity(𝑇 𝑀𝐸𝑃

𝑗
)

− Compute_ETC_Complexity(𝑇 𝑍𝐸𝑃
𝑗

), (3)

where 𝑗 = 1, 2, … , 𝑁 and 𝑗 ≠ 𝑖. Thus, dCCRD for the 𝑖-th perturbed node is 

obtained as the following set:

𝑑𝐶𝐶𝑅𝐷𝐸𝑇𝐶 (𝑖) = {ETC𝜑
C

1(𝑖)
,ETC 𝜑

C

2(𝑖)
,… ,ETC 𝜑

C

𝑗(𝑖)
,… ,ETC 𝜑

C

𝑁(𝑖)
}, 𝑗 ≠ 𝑖. (4)

We thus obtain {𝑑𝐶𝐶𝑅𝐷𝐸𝑇𝐶 (𝑖)} for all perturbed nodes 𝑖 = 1, 2, … , 𝑁 . The 

subroutine Compute_ETC_Complexity(⋅) employs the normalized Effort-To-

Compress (ETC) complexity measure. ETC uses the lossless compression algorithm 

called Non-Sequential Recursive Pair Substitution (NSRPS) and it denotes the 

number of iterations needed for NSRPS to transform the input sequence to a constant 

sequence. ETC has been found to be more successful as a complexity measure in 

practical applications (in short and noisy real-world sequences) than infotheoretic 

measure such as entropy [16, 17].

3.2.4. Aggregate Differential Compression-Complexity Measure

Once we have the dCCRD for all the perturbed nodes, the aggregate differential 

compression-complexity measure is obtained as follows:

ETC𝜙
𝐶

(𝑖) =
𝑗=𝑁∑

𝑗=1
ETC𝜑

C

𝑗(𝑖)
, 𝑗 ≠ 𝑖, (5)

where 𝑖 = 1, 2, 3, … , 𝑁 .

3.2.5. Maximal Aggregate Differential Compression-Complexity

We finally obtain:

ETCΦ𝐶 = max(ETC𝜙
𝐶

(1),ETC 𝜙
𝐶

(2),… ,ETC 𝜙
𝐶

(𝑁)). (6)

For obtaining the other measure 𝐿𝑍Φ𝐶 , we replace Compute_ETC_Complexity(⋅)
in Eq. (3) with Compute_LZ_Complexity(⋅). The subscript 𝐿𝑍 instead of 𝐸𝑇 𝐶

is carried forward, but the steps remain effectively the same.

Compute_LZ_Complexity(⋅) employs the normalized Lempel–Ziv complexity

measure.
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3.2.6. An example implementation of 𝑬𝑻𝑪𝚽𝑪 in MATLAB

As supplementary code to this paper, we provide MATLAB program

‘PhiC_ETC_Fig7.m’ which performs step-by-step computation of 𝐸𝑇𝐶Φ𝐶 for the 

example network 𝐴𝐵𝐶 with 3 nodes, as depicted in Figure 7. ‘ETC.m’ is the 

MATLAB subroutine for the computation of normalized “Effort-To-Compress” 

(ETC) measure (required to run ‘PhiC_ETC_Fig7.m’). ‘MEP_TimeSeries.txt’ and 

‘ZEP_TimeSeries.txt’ are the text files containing the time-series for the network 

𝐴𝐵𝐶 when each of its bipartition is perturbed with a random binary sequence and a 

constant binary sequence (either all zeros or all ones) respectively.

3.3. Calculation of 𝚽

For the sake of completeness, we give details of computation of Φ in this work. We 

compute Φ for the following configuration – all possible 3-node networks with logic 

gates: 𝑋𝑂𝑅, 𝑂𝑅, 𝐴𝑁𝐷. The network is fully connected i.e. each node is connected 

to every other node in the network with a bi-directional connection and no node has 

any self-loop. In this case, there are a total of 10 distinct possible networks and for 

each 3-node networks there are 8 possible current states of the network.

Using the PyPhi 0.7.0 Python library [5, 18] for computing integrated information, 

we calculate the values of Φ for the current state of each network and then calculate 

the mean of all values (< Φ >). We repeat the same experiment for 4 and 5-node 

networks. For further details on computing Φ, refer to [5].

4. Discussion

In this paper, we proposed a new measure for quantifying complexity in brain 

networks (which could also contribute in developing a potential measure of

consciousness) called Φ𝐶 , which is defined as the largest aggregated differential 

compression-complexity measure (ETC/LZ) computed from time series data of each 

perturbed node of the atomic bipartition of an 𝑁-node network.

We have discussed the motivation behind such a compression-complexity approach 

to measure integrated information. The perturbational perspective to measure 

compression-complexity is inspired by PCI and is also computationally efficient 

(we need to consider only 𝑁 bipartitioned perturbations). Φ𝐶 is a measure of the 

maximum difference in complexity of outputs resulting from a maximum difference 

in entropy of input perturbations across all nodes of a network. Φ𝐶 exhibits the 

following salient innovations: (i) negligible current state dependence (as indicated 

by a very low standard-deviation of Φ𝐶 across all current states of a network), 
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(ii) network complexity measured as compression-complexity rather than as an 

infotheoretic quantity, and (iii) quick computation by a perturbational approach 

over atomic bipartitions (which scales linearly with number of nodes), thus avoiding 

combinatorial explosion. Our computer simulations showed that < Φ𝐶 > has similar 

hierarchy to < Φ > for 3, 4, 5-node networks, thus conforming with IIT. Moreover, 

the hierarchy of < Φ𝐶 > follows intuitively from our understanding that integrated 

information is higher in a network which has more number of high entropy nodes (for 

example, more number of 𝑋𝑂𝑅 gates than 𝐴𝑁𝐷, 𝑂𝑅 gates) for a fully connected 

network.

4.1. Advantages of 𝚽𝑪

Our novel approach provides several advantages over other measures of measuring 

brain network complexity: i) suggesting atomic bipartitioning instead of MIP which 

avoids combinatorial explosion, ii) introducing Maximum Entropy Perturbation 

(MEP) and Zero Entropy Perturbation (ZEP), and iii) proposing Differential

Compression-Complexity Response Distribution (dCCRD) allowing us to measure 

Φ𝐶 for continuous time series data.

Φ𝑀𝑎𝑥 as a measure of Integrated Information to quantify consciousness needs 

the identification of MIP in a network [5]. But, finding MIP faces practical 

and theoretical roadblocks which are unresolved till now [14]. The practical 

issue is: locating MIP requires investigation of every possible partition of the 

network, which is realistically unfeasible as the total number of possible partitions 

increase exponentially with the size of the network leading to combinatorial 

explosion [14, 23, 34]. In fact, this approach is impractical for a network with more 

than dozen nodes [5]. In order to overcome these issues, other approaches have 

been suggested, such as Minimum Information Bipartition (MIB) and Maximum 

Modularity Partition (MMP). Though MIB is faster to compute than MIP [23]

and has been used by various measures of integrated information [7, 9, 14, 20, 

35, 36, 37], it also has two issues to be addressed. Firstly, the time to find MIB 

also grows exponentially with larger networks and secondly, it is not certain if 

MIB is a reasonable approach to disintegrate a neural network (since it is dubious 

that functional subnetworks divide the brain exactly in half) [23]. Hence, MIB is 

inapplicable to real brain networks as of now. We tackle this practical issue by using 

atomic bipartitions, whose number increases linearly with the size of the network. 

Atomic bipartitions have been recommended by other researchers too in lieu of 

MIP [14, 23].

Compression-Complexity approach conferred certain desirable properties to Φ𝐶 . 

Firstly, this approach allowed us to measure the dynamic complexity of networks 

as a process for the output time-series data in the form of distribution of differential 
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Figure 9. Interplay between differentiation, integration and entropy. (i) 𝐴𝐴𝐵𝐵 has < Φ > = 0.119, 
< 𝐸𝑇 𝐶Φ𝐶 > = 0.318, < 𝐿𝑍Φ𝐶 > = 1.020, (ii) 𝐴𝐴𝐵𝐶 has < Φ > = 0.325, < 𝐸𝑇 𝐶Φ𝐶 > = 0.720, 
< 𝐿𝑍Φ𝐶 > = 2.444, (iii) 𝐴𝐴𝐶𝐶 has < Φ > = 2.083, < 𝐿𝑍Φ𝐶 > = 0.730, < 𝐸𝑇 𝐶Φ𝐶 > = 2.683. 
The complexity of the simulated network 𝐴𝐴𝐵𝐵 is lower than that of 𝐴𝐴𝐵𝐶 , which is lesser than the 
complexity of 𝐴𝐴𝐶𝐶 . This may seem counter-intuitive, but it is not, since the entropy of 𝐶 (𝑋𝑂𝑅 gate) is 
higher than the entropies of both 𝐵 (𝐴𝑁𝐷 gate) and 𝐴 (𝑂𝑅) gate. Thus, heterogeneity alone is insufficient 
to increase the value of integrated information of the network; the entropy of the individual nodes and 
their number in the network also matter.

responses (dCCRD) to Maximum Entropy Perturbation (MEP) and Zero Entropy 

Perturbation (ZEP) and secondly, dCCRD provided us with the distribution of 

differential complexity values which could be useful in multitude of ways to be 

explored in the future. Furthermore, since Φ𝐶 employs complexity measures such as 

LZ and ETC instead of infotheoretic quantities (such as entropy, mutual information, 

etc.), it is more robust to noise, and efficient with even short and non-stationary 

measurement time series. Also, we have already noted that Φ𝐶 has negligible 

dependence on current-state of a network, unlike other measures.

Thus, Φ𝐶 is a potentially promising approach for fast and robust empirical

computation of brain network complexity.

4.2. Interplay between differentiation, integration and entropy

Researchers have already acknowledged that consciousness could be a result 

of the complexity of neuronal network in our brain which depicts ‘functional 

differentiation’ and ‘functional integration’ [6, 7, 8, 9, 10, 21, 38]. For example, 

referring to Figure 9, when we compare the two networks (i) and (iii) with the 

network (ii), we note that the latter is more heterogeneous (since it has three 

different types of gates as opposed to the former which has only two types of gates). 

Griffith [22] makes the point that in such a scenario, it is intuitive that the integrated 

information is larger for the more heterogeneous network. But, it is not as intuitive 

as it seems, since the entropy of the gates play an important role as well.
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As shown in the Figure 9, the integrated information (< Φ >, < 𝐿𝑍Φ𝐶 > and 

< 𝐸𝑇𝐶Φ𝐶 >) of the network 𝐴𝐴𝐵𝐵 is lower than that of 𝐴𝐴𝐵𝐶 which is in turn 

lesser than the integrated information of 𝐴𝐴𝐶𝐶 (with 𝐴 = 𝑂𝑅, 𝐵 = 𝐴𝑁𝐷, 𝐶 =
𝑋𝑂𝑅). This may appear counter-intuitive at first, but it makes sense when we realize 

that the entropy of 𝐶 is higher than both 𝐴 and 𝐵. Thus, it is not universally true that 

heterogeneous networks have higher amounts of integrated information, as it very 

much depends on the entropy of the individual nodes as well as their number. In 

the case of the brain, cortical neurons are known to exhibit different firing patterns 

whose entropy varies widely. As an example, we simulate a cortical neuron from 

the Hindmarsh–Rose neuron model [39] which is a widely used model for bursting-

spiking dynamics of the membrane voltage of a single neuron which we describe 

below.

Hindmarsh–Rose neuron model

The equations of the Hindmarsh–Rose neuron model [39] in dimensionless form are:

𝑆̇ = 𝑃 + 3𝑆2 − 𝑆3 − 𝑄 + 𝐼,

𝑃̇ = 1 − 5𝑆2 − 𝑃 ,

𝑄̇ = −𝑟
[
𝑄 − 4(𝑆 + 8

5
)
]
, (7)

where S(t) is the membrane voltage of a single neuron, P(t) measures the rate of 

sodium and potassium ions through the fast ion channel, and Q(t) measures the rate 

of other ions through slow channels. P(t) is called the spiking variable and Q(t) is 

called the bursting variable. The model has the following control parameters: 𝐼 and 𝑟, 

where the former is the external current applied and the later is the internal state of 

the neuron. In our simulations we have chosen 𝑟 = 0.0021. The values of 𝐼 chosen are 

𝐼 = 3.31 for simulating regular spiking and 𝐼 = 3.28 for simulating irregular/chaotic 

spiking. We have used a window of length 2 and if the value of 𝑆(𝑡) exceeded a 

threshold of −0.1 in this window, we count it as a spike (‘1’). The resulting sequence 

of 0s (no-spike) and 1s (spike) is used for computing Shannon entropy, LZ and ETC 

complexities.

The same neuron exhibits regular spiking (Figure 10(A)) when the external current 

applied is 𝐼 = 3.31 and chaotic or irregular spiking (Figure 10(B)) when 𝐼 =
3.28. We computed the Shannon entropy, 𝐸𝑇 𝐶 , and 𝐿𝑍 complexity values for the 

two cases. It can be seen that the same neuron shows a lower value of entropy 

and complexities (𝐻 = 0.8342 bits, 𝐸𝑇 𝐶 = 0.1910 and 𝐿𝑍 = 0.6879) 

when it is spiking in a regular manner as compared to its behavior in a chaotic 

manner (𝐻 = 0.9295 bits, 𝐸𝑇 𝐶 = 0.2211, 𝐿𝑍 = 0.7262). Thus, for the same 

neuronal network, under two different excitations, the neurons can behave with 
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Figure 10. A single neuron exhibits low and high entropy firing patterns. Simulation of a single cortical 
neuron from the Hindmarsh–Rose neuron model [39] showing two different kinds of behavior. (A) 
Membrane voltage as a function of time for regular firing exhibited by the neuron when the external 
current applied is 𝐼 = 3.31. Entropy and Complexities: 𝐻 = 0.8342 bits and 𝐸𝑇 𝐶 = 0.1910, 𝐿𝑍 =
0.6879. (B) Membrane voltage as a function of time for chaotic or irregular spiking exhibited by the neuron 
when 𝐼 = 3.280. Entropy and Complexities: 𝐻 = 0.9295 bits and 𝐸𝑇 𝐶 = 0.2211, 𝐿𝑍 = 0.7262. Thus, 
for the same neuron, under two different excitations, the neuron manifests low as well as high entropy 
behavior (low and high ETC/LZ complexities correspondingly). Note: The model in [39] treats voltage 
and time as dimensionless quantities.

different entropies/complexities. This will have a significant impact on the values of 

integrated information and it is hard to predict how this interplay between functional 

integration, differentiation and entropy will pan out in reality.

4.3. A remark on Aggregate Differential 
Compression-Complexity Distribution

One drawback of integrated information as well as < Φ𝐶 > (mean value), is the fact 

that they are scalar quantities and thus there is a possibility of ambiguity.

It is possible that two different networks could end up having the same value for 

the measure. For example, consider two 5-node networks (current state ‘11101’): 

Network I – 𝑋𝑂𝑅–𝑋𝑂𝑅–𝑋𝑂𝑅–𝐴𝑁𝐷–𝑋𝑂𝑅 and Network II – 𝑋𝑂𝑅–𝑋𝑂𝑅–

𝑋𝑂𝑅–𝑂𝑅–𝑋𝑂𝑅, both of which turn out to have the same mean 𝐸𝑇𝐶Φ𝐶 =
1.175. However, the ‘Aggregate Differential Compression-Complexity Distribution’ 

(Aggregate dCCRD) turns out to be different for the two networks. Aggregate 

dCCRD for Network I is [0.709, 0.709, 0.709, 1.176, 0.884] and that for Network II 

is [0.719, 0.719, 0.719, 1.176, 1.161]. Thus, aggregate dCCRD is able to resolve this 

ambiguity by providing a rich vector-valued distribution worth of complexity values 

for all the nodes of the network. Further uses of aggregate dCCRD need to be 

explored in future.
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4.4. Testing 𝚽𝑪 on larger sized networks

Testing of our proposed measure on real-world brain networks is outside the purview 

of this work. However, we shall demonstrate how our measure performs on various 

simulated directed graphs with different topologies (by varying the number of edges 

and their connectivity).

We simulated directed graphs with 𝑉 = 100 nodes and different number of directed 

edges 𝐸. We consider three well known topologies namely – (a) Ring, (b) Random, 

(c) Perfect graph. In the case of Ring topology, the nodes are connected in a circular 

fashion with each node having only 2 neighbors (a node 𝑣𝑘 has a node 𝑣𝑘−1 that feeds 

into it and in turn the node 𝑣𝑘 feeds into 𝑣𝑘+1). In case of Perfect graph topology, 

every node feeds into every other node (except itself). For the Random network 

topology, we generated the adjacency matrix with every entry having a 1 as its value 

with probability of 0.5 (we eliminated self-loops). This would mean that between any 

two distinct nodes the probability of having a directed edge is 0.5. This resulted in a 

random network with 𝐸 = 5012 edges. We additionally changed this probability of 

edge formation to create several random networks with different number of directed 

edges (𝐸 = 986, 2964, 3953, 6929, 8019). Thus we have generated a total of 8 

directed networks (1 each for Ring and Perfect and 6 for Random).

The nodes are assumed to have chaotic dynamics (similar to Hindmarsh–Rose neuron 

in chaotic spiking mode). For this, we simulated different time series of length 200 

samples from the well known discrete chaotic dynamical system – Logistic map3 [40]

with a randomly chosen initial value from the interval (0, 1) (with bifurcation 

parameter set to 4.0). We quantized the resulting real-valued chaotic time series 

into a symbolic sequence of two symbols with 0.5 as the threshold. For a directed 

edge between vertices 𝑣𝑖 and 𝑣𝑗 , we assumed an 𝑋𝑂𝑅 operation of the input node 

dynamics at 𝑣𝑖 with the output node dynamics at 𝑣𝑗 . When the vertex 𝑣𝑖 is perturbed, 

we replace its input time series with ZEP (or MEP) before taking the 𝑋𝑂𝑅 operation. 

In this case, we took ZEP to be the all-zero sequence and MEP to be a perfectly 

random binary sequence, both with a length 𝐿 = 200.

From Table 2 and Figure 11 we can infer that the proposed complexity measure 

𝐸𝑇𝐶Φ𝐶 is quite low for both ring topology and perfect graph topology. It is 

generally higher for a random network topology, and highest when the probability 

of having a directed edge between any two nodes is 0.5. This is intuitive since a 

random network exhibits heterogeneous nodes (nodes with different degrees) and 

should have higher complexity when compared to ring and perfect graph topologies 

which have homogeneous nodes (all nodes have the same number of edges). Small-

3 The 1D Logistic map is given by the iteration: 𝑥𝑛+1 = 𝑎 ∗ 𝑥𝑛(1 − 𝑥𝑛) where 𝑎 is the bifurcation parameter and 𝑛
stands for discrete time.
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Table 2. Performance of Φ𝐶 on directed networks (nodes 
modeled as chaotic neurons) with different topologies. Number of 
vertices or nodes 𝑉 = 100 and number of directed edges 𝐸 varies 
as indicated.

No. Topology Number of directed edges 𝑬𝑻𝑪𝚽𝑪

1 Ring 100 0.0402
2 Random 986 0.1106
3 Random 2964 0.1960
4 Random 3953 0.2513
5 Random 5012 0.3266
6 Random 6929 0.2513
7 Random 8019 0.2462
8 Perfect 9900 0.1357

Figure 11. Performance of 𝐸𝑇 𝐶Φ𝐶 on networks with 𝑉 = 100 nodes (chaotic neurons) with very different 
topologies: Ring topology (𝐸 = 100), Perfect graph topology (𝐸 = 9900) and Random graph topology 
(𝐸 = 986, 2964, 3953, 5012, 6929, 8019.)

world networks (a type of random network) are believed to exist in the brain. It is 

considered to be a vital aspect of efficient brain organization that confers significant 

advantages in information processing and is deemed essential for healthy brain 

function [41]. Deviation from small-world features are observed in patient groups 

with various brain-related disorders. We conjecture that such small-world networks 

(being random networks) would also exhibit a high amount of 𝐸𝑇𝐶Φ𝐶 and worth 

further exploring.

5. Conclusions

In Table 3, we provide an exhaustive chronological list of brain complexity measures 

with their short definitions, theoretical strengths, process/capacity, current state 

dependency, experimental readiness and remarks. Since Φ𝐶 provides certain benefits 

over other measures of complexity of brain networks, it has potential in transitioning 

it to the real-world – for measuring brain complexity in the clinic. We list below a few 
on.2019.e01181
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nological list of brain complexity measures with their short definitions, theoretical strengths, 
e dependency, experimental readiness and remarks.

nition Tht. 
strength

Process/
capacity

Ct. St. 
dependency

Exp. 
readiness

Remarks

e mutual 
r all 
 the system.

Strong Process Yes Low

 causal 
at captures 
erogeneity 
k elements 
) as well as 
namical 
].”

Strong Process Yes Low Calculated by applying 
“Granger causality”.

t of causally 
ation that can 

cross the 
weakest link of 
ments.

Medium Capacity Yes Low Provided the hypothesis 
for “Information Integrated 
Theory of Consciousness.” 
Applicable only to 
stationary systems.

 information 
 system when it 
ne particular 
epertoire of 
, to the extent 
ation 

the whole 
r and above the 
nerated 
 by the parts.

Strong Capacity Yes Low Extension of IIT 1.0 to 
discrete dynamical 
systems.

easuring 
nerated by 
 a 

aximum 
ate, Φ𝐸 instead 
ual distribution 
e. “Φ𝐴𝑅 can be 
a measure of 
hich the present 
 the system 
st global state 
as compared to 
sed on the most 
composition of 
 its component 

Strong Process No Medium Φ𝐸 is applicable to both 
discrete and continuous 
systems with either 
Markovian or 
non-Markovian dynamics. 
Φ𝐴𝑅 is same as Φ𝐸 for 
Gaussian systems [21]. 
Φ𝐸 and Φ𝐴𝑅 fail to satisfy 
upper and lower bounds of 
integrated 
information [14]. 
However, the authors 
propose variants of these 
measures which are well 
bounded.

ed Lempel–Ziv 
the 
l pattern of 
tion triggered 
nscranial 
ulation (TMS) 
].”

Weak Process Unknown High While PCI proves to be a 
reasonable objective 
measure of consciousness 
in healthy individuals 
during wakefulness, sleep 
and anesthesia, as well as 
in patients who had 
emerged from coma, it 
lacks solid theoretical 
connections to integrated 
information theories.

(continued on next page)
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 Information 
d by a system 
ble to that 
s parts. “It is 
he distance 
nceptual 
fied by the 
nd that 

s minimum 
rtition [43].”

Strong Capacity Yes Low IIT 3.0 introduces major 
changes over IIT 2.0 and 
IIT 1.0: (i) considers how 
mechanisms in a state 
constrain both the past and 
the future of a system; (ii) 
emphasis on “a difference 
that makes a difference”, 
and not simply “a 
difference”, (iii) concept
has proper metric – Earth 
Mover’s Distance 
(EMD) [5]. Limitations: 
Current-state Dependency, 
Computational 
intractability, Inability to 
handle continuous 
neurophysiological data.

ed infotheoretic 
educibility to 
derived using 
ation 
n (PID), that 
within Shannon 
heory.

Medium Capacity No Low 𝜓 compares to 𝜑 (IIT 2.0) 
instead of Φ𝑀𝑎𝑥 (IIT 3.0). 
Address the three major 
limitations of 𝜙 in [20]: 
State-dependency and 
entropy; issues with 
duplicate computation and 
mismatch of the intuition 
of “cooperation by diverse 
parts” [22]. Has desirable 
properties such as not 
needing a MIP 
normalization and being 
substantially faster to 
compute.

the difference 
al” and 
 mutual 
tween the past 
tes of the 
omputed using 
matched 
loped from 
eory [14].

Strong Capacity Yes Medium Emphasis on theoretical 
requirements: First, the 
amount of integrated 
information should not be 
negative. Second, the 
amount of integrated 
information should never 
exceed information 
generated by the whole 
system. Focuses on IIT 
2.0, rather IIT 3.0.

(continued on next page)

of these ways and provide tentative approaches towards harnessing the true potential 

of Φ𝐶 . By no means is this an exhaustive list.

• Test on very large sized networks. We have demonstrated our measure on 

networks with chaotic dynamics (100 nodes) but it is still nowhere close to the 
on.2019.e01181
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Table 3. (continued)
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nition Tht. 
strength

Process/
capacity

Ct. St. 
dependency

Exp. 
readiness

Remarks

f Maximum 
rtition (MMP), 
er than MIP to 
tegrated 
r larger 
ombination 
𝐴𝑅, MMP 
 measures 

𝐴𝑅
𝑀𝑀𝑃

.

Strong Capacity 
(Φ∗

𝑀𝑀𝑃
), 

Process 
(Φ𝐴𝑅

𝑀𝑀𝑃
)

Yes 
(Φ∗

𝑀𝑀𝑃
), 

No (Φ𝐴𝑅
𝑀𝑀𝑃

)

Medium The new measures are 
compared with Φ∗, Φ𝐴𝑅

and Causal Density and 
based on the idea that 
human brain has modular 
organization in its 
anatomy and functional 
architecture. Calculating 
Integrated Information 
across MMP reflects 
underlying functional 
architecture of neural 
networks.

y-aggregate 
rmalized

Z) or 

press (ETC) 
 the time series 

ode of a 
rated by 
opy and zero 
bations of each 
c bipartition of 
twork.

High Both Low Medium Bridges the gap between 
theoretical and empirical 
approaches for computing 
brain complexity. Based 
on the idea that brain 
behaves as an integrated 
system and acknowledging 
the similarity between 
compressionism and 
integrated information, 
Φ𝐶 is based on 
compression-complexity 
measures and not 
infotheoretic measures.

size of brain networks. We need to explore how the measure behaves with very 

large sized networks.

• Examining the appropriate bipartitions of realistic applications. Even though 

number of required perturbations for atomic bipartitions scale linearly with the 

increase in the number of nodes, it is still a mammoth task to perturb all atomic 

bipartitions for a larger network like the human brain. A heuristic approach can 

be developed to Φ𝐶 to determine the right number of bipartitions for evaluating 

Φ𝐶 to differentiate different levels of consciousness.

• Generate MEP and ZEP using TMS. It may be possible to shape the TMS 

perturbation to yield different entropy perturbations. Whether can we exactly 

replicate a ZEP and MEP is difficult to say (without doing the actual

experiments). But, we believe that an innovation in shaping the perturbations 

empirically to simulate low and high entropies may be a worthwhile

generalization of PCI that needs to be explored. This will also enable our 

measure to be applied in a clinical setting.

In summary, we proposed a perturbation based Compression-Complexity measure of 

network complexity which operates on time series measurement and can approximate 
on.2019.e01181
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Tononi’s integrated information (which is known to be computationally intractable). 

The new measure Φ𝐶 incorporates various well-supported approaches to estimate 

network complexity such as: using atomic bipartitions which reduces computational 

effort, moving beyond MIP approach [23], MEP and ZEP and then recording activity 

from all the nodes of the network (to measure ‘difference that makes a difference’), 

employed ETC measure which outperforms LZ and Shannon Entropy. Furthermore, 

we have proposed, for the first time, the Differential Compression-Complexity 

Response Distribution (dCCRD), which can potentially play an important role going 

forward in understanding the distribution of compression-complexity values in a 

network.
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