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ABSTRACT
Several studies have shown that epitope vaccines exhibit substantial advantages over
conventional vaccines. However, epitope vaccines are associated with limited
immunity, which can be overcome by conjugating antigenic epitopes with built-in
adjuvants (e.g., some carrier proteins or new biomaterials) with special properties,
including immunologic specificity, good biosecurity and biocompatibility, and
the ability to vastly improve the immune response of epitope vaccines. When designing
epitope vaccines, the following types of built-in adjuvants are typically considered:
(1) pattern recognition receptor ligands (i.e., toll-like receptors); (2) virus-like particle
carrier platforms; (3) bacterial toxin proteins; and (4) novel potential delivery systems
(e.g., self-assembled peptide nanoparticles, lipid core peptides, and polymeric or
inorganic nanoparticles). This review primarily discusses the current and prospective
applications of these built-in adjuvants (i.e., biological carriers) to provide some
references for the future design of epitope-based vaccines.
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INTRODUCTION
Vaccination is a major preventive measure designed to establish specific immune defenses
(i.e., antibody or cellular immunity) to protect individuals from infectious diseases.
In 1796, the British rural doctor, Edward Jenner, conducted a scientific study on the
prevention of smallpox in humans and demonstrated that vaccination with vaccinia virus
could prevent smallpox, from which the terms vaccinology and immunology originated
(Negahdaripour et al., 2017b). Traditional vaccines typically include inactivated or
attenuated vaccines derived by reducing the virulence of the pathogen by physical or
chemical methods (Skwarczynski & Toth, 2011a; Karch & Burkhard, 2016). Due to the
continuous progress of science and technology (i.e., immunology and molecular
biology), subunit vaccines based on short, specific pathogen fragments have undergone
increased development to compensate for the shortcomings of traditional vaccines,
including low biosafety (reversion to virulence), inefficient cultivation of pathogens,
and the occurrence of allergies and autoimmunity (Skwarczynski & Toth, 2014).
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Moreover, epitope-based vaccines play an important role in current vaccine research
and exhibit several advantages over conventional vaccines, including high specificity,
good safety, ease of production and storage, and stability. As a result of these advantages,
epitope-based vaccines have become an area of growing interest in the field of
vaccine research (Skwarczynski & Toth, 2014; Hajighahramani et al., 2017;
Nezafat et al., 2016, 2017).

Since antigenic peptides are easily degraded by proteases in the body, it is difficult for
the receptors expressed on the immune cells to identify antigen epitopes, and they do not
generate a strong immune response to pathogens. An epitope-based vaccine with a
reasonable design is composed of epitope peptide/s, a delivery system, and an adjuvant
(Rueckert & Guzman, 2012). For multi-epitope vaccines, since the traditional carriers and
adjuvants are associated with poor efficacy, vaccine designs with built-in adjuvants
have been proposed. Therefore, a built-in adjuvant exhibiting both the functions
of a transmission system and a traditional adjuvant, is constructed within the vaccine to
improve the immunogenicity of epitope peptides by stimulating the innate immune
response required for an adaptive immune response. To achieve this goal, the epitopes are
regularly fused with adjuvant proteins (e.g., toll-like receptor (TLR) ligands and
proteins that can spontaneously assemble into virus-like particles (VLPs)) or displayed on
the surface of some particular biomaterials (e.g., liposomes, gold nanoparticles, and
poly(lactic-co-glycolic acid) (PLGA)) and the immunogenicity of the epitopes are
significantly increased by this immune complex (Chen et al., 2017; Rueda et al., 2017;
Kitaoka et al., 2017; Karuturi et al., 2017). This review primarily introduces the methods
for applying built-in adjuvants in the design of epitope-based vaccines, including a few
new delivery systems (e.g., dendrimers, self-assembled peptide nanoparticles (SAPNs),
and hyperbranched polyglycerol (hbPG)) (Busseron et al., 2013; Glaffig et al., 2015;
Indelicato, Burkhard & Twarock, 2017).

SURVEY METHODOLOGY
In this paper, we reviewed articles related to the built-in adjuvants of epitope-based
vaccines. All references in this review paper were retrieved using search engines,
such as PubMed, Google Scholar. Keywords, including epitope vaccine,
built-in adjuvants, biological carriers, and nanoparticles (NPs) were used to search
for relevant references.

MAJOR IMMUNOLOGICAL CONCEPTS OF EPITOPE-BASED
SUBUNIT VACCINES
Epitope-based subunit vaccines are typically composed of multiple epitopes derived from
one or more pathogenic microorganisms (Azmi et al., 2014; Nezafat et al., 2017).
These epitopes are generally composed of B cell epitopes, cytotoxic T cell (CTL) epitopes,
and helper T cell (Th) epitopes. B cells identify thymus-dependent antigen through B-cell
receptors (BCRs) expressed on their surface. The activation of B cells and the transfer
of signals following activation requires two signals: (1) the BCR-specific receptor directly
identifies B cell epitopes of the pathogen; and (2) the interaction between multiple
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co-stimulators on the surface of Th cells and B cells. In addition, activated B cells
expressing a variety of cytokine receptors can proliferate in response to cytokines secreted
by activated Th cells. The interaction between the specific T cell receptor and the
antigen peptide-major histocompatibility complex is known as antigen recognition, which
is the first signal required for T cell activation. The interaction between many of the
co-stimulatory molecules expressed on the surface of T cells and antigen presentation cells
(APCs) (e.g., dendritic cells (DCs)) facilitates the complete activation of T cells. Activated
Th1 cells secrete a variety of cytokines (e.g., IL-2, TNF-β, and IFN-c) some of which
(e.g., IL-2) induce non-professional or professional APCs to express co-stimulatory
molecules that provide the second signal for the activation of CTLs (Moyle & Toth, 2013;
Skwarczynski & Toth, 2014). These cytokines can also promote the activation and
proliferation of Th1, Th2, CTL, and natural killer cells, and expand the cellular immune
response. Th2 cells further promote the proliferation and differentiation of B cells and
assist the humoral immune response by producing cytokines (e.g., IL-4, IL-5, IL-10,
and IL-13) and establishing CD40-CD40L connections with B cells (Fig. 1). However, the
individual specific epitopes of pathogenic microorganisms are often unable to induce
adequate CTL and antibody responses due to a lack of appropriately activated
Th cells and pathogen-derived molecules. Therefore, when designing epitope-based
vaccines, researchers typically concatenate antigen-specific B cell or CTL epitopes with
Th-cell epitopes with appropriate flexible linkers (e.g., GPGPG and EAAK) (Wang et al.,
2011, 2018a; Nezafat et al., 2015).

Figure 1 The basic process of immune response in vivo. The antigen is ingested and processed by
immature antigen-presenting cells (e.g., DCs), APCs becomes mature under the action of immune-sti-
mulating molecules. Mature APCs can express antigen information on its surface in the form of antigen
peptide-MHC molecular complex and present it to T cells. After recognizing this complex, T cells are
activated, proliferated, and differentiated into different subtypes of effector T cells (CD4+ and CD8+) to
participate in the regulation of antigen-specific humoral and cellular immune responses.

Full-size DOI: 10.7717/peerj.6185/fig-1
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Innate immune cells (e.g., monocyte-macrophages and DCs) recognize different
pathogens through pattern recognition receptors (PRRs). Their antigen-presenting and
cytokine regulation effects initiate adaptive immune responses, influence the intensity
and type of an adaptive immune response, and participate in the generation of
immunological memory. In the design of epitope-based vaccines, researchers generally
regard the application of built-in adjuvants as an important platform used to
provide suitable Th-cell epitopes for specific pathogens or pathogen related molecular
patterns (PAMPs) to activate the innate immune response. Thus, some molecular
adjuvants or carriers with no infectious and toxic components can be used as built-in
adjuvants to facilitate the presentation of pathogen epitopes to the immune system
(Moyle & Toth, 2013; Foged, 2011; Shirbaghaee & Bolhassani, 2016).

TOLL-LIKE RECEPTOR AGONISTS AS BUILT-IN
ADJUVANTS
The development of immunotherapeutic vaccines based on T cell immune responses is
essential for the prevention and control of cancer and viral diseases. To achieve this goal,
researchers must identify a built-in adjuvant that can stimulate strong Th1 immune
responses (Felzmann, Gadner & Holter, 2002). One of the strategies for designing
epitope-based vaccines is to use TLR ligands as adjuvants that can polarize CD4+ Th cells
and induce CTL responses (Van Der Burg et al., 2006). TLRs are a type of PRR that
can both induce an innate immune response and activate the adaptive immune
system following PAMP activation (Allison, Benoist & Chervonsky, 2011). To date,
researchers have discovered 10 TLRs, termed TLR1–TLR10 (Table 1). TLR ligands are
expressed by different microorganisms; for example, bacteria harbor a variety of TLR

Table 1 Different subtypes of TLRs and their identified PAMPs.

TLRs PAMPs Biological activity Reference

TLR2/TLR6
TLR2/TLR1

The lipoproteins of bacteria or mycoplasma.
Lipopeptide (MALP-2), Peptidogl,
ycan (PGN)

Activate intracellular signal NF-KB,
induce adhesion molecules and
inflammatory cytokines.

Zhu et al. (2010), Basto &
Leitao (2014), Kaisho &
Akira (2002)

TLR4 Lipopolysaccharides(LPS), Heat shock
protein (HSP), β-defensin, Heparin-
binding hemagglutinin(HBHA)

Induce the expression of adhesion
molecules and inflammatory cytokines.

Reed et al. (2016), Kaisho &
Akira (2002)

TLR5 Gram-negative bacteria flagellin The potent proinflammatory activity by
inducing NF-KB activation, and
expression of IL-8 and inducible NO
synthase in intestinal epithelial cells.

Kaisho & Akira (2002),
Moyle (2017)

TLR3 Double-stranded RNA (ds RNA), Poly(I:C) Induce IL-12 production and DC
maturation and elevate CD40 expression
on APCs.

Kaisho & Akira (2002),
Cheng et al. (2018)

TLR7/TLR8 Single-stranded RNA (ssRNA) Induce the expression of adhesion
molecules and inflammatory cytokines

Vasilakos & Tomai (2013)

TLR9 CpG DNA, Hemozoin, Herpes simplex
virus DNA

Production of Th1 cytokines and
promotion of cytotoxic activity of NK
cells.

Zhu et al. (2010), Kaisho &
Akira (2002)

Note:
The biological activities of TLRs agonists that can activate the immune system.
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ligands, including TLR2 (macrophage-activating lipoprotein 2 (MALP-2)); TLR4
(e.g., LPS, HSP, and HBHA), TLR5 (e.g., flagellin), and TLR9 (CpG DNA) ligands
(Zhu et al., 2010). The role of TLR10 is to inhibit rather than activate the immune system,
and its ligands are poorly understood (Jiang et al., 2016). The extracellular portion of the
TLR is activated after binding to an appropriate ligand, and the conformational
changes cause convergence of downstream molecules, which triggers associated signaling
pathways and induces the up-regulation and activation of cytokines, chemokines, and
other costimulatory factors (Dowling & Dellacasagrande, 2016) (Fig. 2). Thus, TLR ligands
are promising candidates for the development of novel built-in vaccine adjuvants,
which can enhance the immunogenicity of epitope-based vaccines. According to the
different biological characteristics of various TLRs, appropriate PAMPs are often selected
as the molecular binding proteins of epitope peptides to be used as immune adjuvants
(Basto & Leitao, 2014). In this review, several TLR ligands that are often used as
built-in adjuvants for epitope vaccines are introduced.

Lipopeptides
As a lipopeptide derived from mycoplasma and a potential agonist of TLR2/6
heterodimers in DCs (Takeda et al., 2018), MALP-2 is the most widely studied TLR2
adjuvant and has attracted great interest as a novel and efficient built-in adjuvant for

Figure 2 The signaling pathways of TLRs. The extracellular parts of TLRs are activated after binding
with ligands, and the conformation changes lead to convergence of downstream molecules, which
triggers the signaling pathway and induced the up-regulation and activation of cytokines, chemokines,
and other co-stimulatory factors. With the exception of TLR3, all TLRs initiate MyD88 through the
expressed MyD88 or simultaneous bridging MAL, and then activate the NF-kB and MAPK through
tandem reactions, which induces the production of pro-inflammatory cytokines such as IL-1, IL-6,
TNF-a, etc. The overexpression of both TRIF and TRAM or TRIF alone initiated the TRIF dependent
pathway, the TRIF dependent pathway activates IFN regulatory factors and mediates the production of
type I IFNs. In addition, the activation of TLR4 is related to both pathways.

Full-size DOI: 10.7717/peerj.6185/fig-2
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vaccines against infectious diseases (McDonald et al., 2014;Muhlradt et al., 1997). MALP-2
has been used in phase I and II trials involving pancreatic cancer patients
(Schmidt et al., 2007). McDonald et al. (2014) constructed a variety of self-adjuvating
MUC1-MALP-2 conjugate vaccine candidates and demonstrated that the vaccine
candidates could induce a high level of humoral immunity without the participation of an
external adjuvant and Th epitopes in animal models. Fibroblast stimulating lipopeptide-1
(FSL-1; Pam2CGDPKHPKSF) and synthetic lipopeptide, Pam2CSK4, derived from
the LP44 lipoprotein ofMycoplasma salivarium can activate macrophages as a TLR2/TLR6
ligand (Kurkjian et al., 2017; Liu et al., 2016). Liu et al. (2016) used FSL-1 as a built-in
adjuvant and synthesized a new type of self-adjuvating (glyco) lipopeptide cancer
vaccine. Recently, the TLR2/6 ligand, Pam2CSK4, was used as a Th2 polarizing adjuvant in
the study of Leishmania major and Brugia malayi murine vaccines (Halliday et al., 2016).
In addition, Pam2CSK4 is also used as an adjuvant for major outer membrane
protein antigen of Chlamydia trachomatis to stimulate a robust immune response and
induce effective protection against C. muridarum (Cheng et al., 2014a). The Braun
Escherichia coli lipoprotein is a prototype composed of the three acylated lipoproteins from
the outer membrane of gram-negative bacteria, and some of its synthetic lipopeptides
act as TLR2 stimulators (e.g., Pam3CSK4) (Basto & Leitao, 2014; Arai, Inuki & Fujimoto,
2018). Cai et al. (2017) designed and synthesized an HIV-1 glycopeptide immunogen
containing a V3 glycan-dependent neutralizing epitope, a universal T helper epitope (P30),
and a lipopeptide (Pam3CSK4). After administering the glycopeptide immunogen to
rabbits without any additional adjuvants, a glycan-dependent antibody can be produced
in a short period of time, and the induced serum antibodies can recognize a wide-range
of HIV-1 gp120s across different clades (Cai et al., 2017). Pam2Cys and Pam3Cys
are also molecular adjuvants used in vaccines (Zaman & Toth, 2013; McDonald, Byrne &
Payne, 2015; Nalla et al., 2015) (Table 2; Fig. 3). Synthetic lipopeptides and their analogues
play an important role in the study of built-in adjuvants for epitope-based vaccines.
However, compared with mature protein carriers for conjugated vaccines, TLR ligands
(e.g., lipopeptides and monophosphoryl lipid A derivatives) are still in their early stages as
potential vaccine carriers (Li & Guo, 2018). However, since their interaction with
TLRs has been thoroughly studied and understood, the prospective development of
epitope-based vaccines using TLR ligands as built-in adjuvants is foreseeable. At present,
one of the major challenges is obtaining a sufficient number of vaccines for clinical
research since the structure of these lipopeptides, as well as their synthesis and binding to
target antigens is highly complex. Semi-total and aminoalkyl glucosaminide 4-phosphates
(AGPs) synthesis are important methods that can be used to solve this problem
(Li & Guo, 2018; Persing et al., 2002). AGPs have a less-complex structure that allows for
synthesis to be easier, more efficient, and elicit immunostimulatory activity in preclinical
studies. For example, a Hepatitis B vaccine based on AGP has been approved for use
in Argentina (Dupont et al., 2006). A second challenge is how to make full use of all aspects
of the multicomponent vaccine structure through reasonable considerations in vaccine
design, which can be optimized through structure-activity relationship analysis and
molecular modeling (Jin et al., 2007).
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Heat shock proteins
Heat shock proteins (HSPs) are a type of cellular companion protein produced by
biological cells that are stimulated by environmental stressors and can be divided into
several families, each of which is composed of different members (Juwono &
Martinus, 2016; Craig, 2018; Pearl, Prodromou & Workman, 2008; Tang et al., 2005;
Bolhassani & Rafati, 2008) (Table 3). HSPs can be internalized by APCs through
receptor-mediated endocytosis and can also promote the activity of some cytokines,

Table 2 Various lipopeptides that can be used as build-in adjuvants.

Name Natural analogues Biological activity or structure Reference

MALP2 The M161Ag lipoprotein of
Mycoplasma fermentans

The agonistic ligand of the TLR2/6 heterodimer.
Induces production of inflammatory cytokines from
macrophages, monocytes and DCs.
MALP2s, a short form of MALP2, lacks the last eight
amino acids of the full length MALP2 (Pam2-
CGNNDESNISFKEK). As an adjuvant capable of
inducing DC maturation, MALP2s can be used in
antitumor immunotherapy.

Takeda et al. (2018),
McDonald et al. (2014)

FSL-1 The LP44 lipoprotein from
Mycoplasma salivarium

FSL-1 (Pam2CGDPKHPKSF) contains the structure of
diacylglycerol similar to Pam2CSK4, which play a key
role in immune cell maturation and Th2 immunization
and induces the expression of inflammatory cytokines,
such as monocyte chemotactic protein (MCP)-1, IL-6,
IL-8 and tumor necrosis factor (TNF)-a by monocytes/
macrophages.

Liu et al. (2016),
Kurkjian et al. (2017)

Pam3CSK4 The Braun lipoprotein in
Escherichia coli

Pam3CSK4 is the first mimicking lipopeptide that contains
three highly lipophilic tails and six amino acids and can
activates the TLR2/1 signaling pathway.

Basto & Leitao (2014),
Arai, Inuki &
Fujimoto (2018)

Pam2CSK4 The LP44 lipoprotein from
Mycoplasma salivarium

The palmityl tail on the N-terminal of cysteine of
Pam3CSK4 has been shown to be an dispensable part of
TLR2 activation. Removing this lipophilic tail forms a
highly effective Pam2CSK4.

Halliday et al. (2016),
Arai, Inuki &
Fujimoto (2018)

Pam3Cys The Braun lipoprotein in
Escherichia coli

Modulation of APC Migration and Antigen
Internalization.
More efficient than CpG and resiquimod (TLR9
andTLR7/8 ligands).
The enantiopure Pam3Cys derivatives that contained
R-configured glycerol can induce cytokines and antibody
production in mice when administered with antigens.
The antigen-specific CTL cells induced by S-epimers
were significantly higher in mice. Vaccines containing
Pam3Cys can reduce the burden of breast tumors in mice
and induce the production of CTLs.

Zaman & Toth (2013),
McDonald, Byrne &
Payne (2015)

Pam2Cys Cytoplasmic membrane of
Mycoplasma fermentans

Compared with Pam3Cys, Pam2Cys have higher solubility
characteristics and is a more potential stimulus factor
splenocytes and macrophages. The activity of the natural
R isomer of Pam2Cys is 100 times that of S isomer.
Dependent on the palm acylated cysteine lipid head
group activates downstream signals and activate TLR2 on
DC’s and trigger maturation of DCs.

Zaman & Toth (2013),
Nalla et al. (2015)

Note:
The biological activities or structures of various lipopeptides and their natural analogues.
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chemokines, and co-stimulatory molecules through the NF-kB signaling pathway, since
HSPs are the molecular chaperones of the antigen epitopes in the APC-MHC I delivery
pathway (Robert, 2003; Zachova, Krupka & Raska, 2016). HSPs affect the immune
system in different ways because they can act as carriers of antigens, molecular chaperones,
and ligands for related receptors (e.g., TLR4) (Moyle, 2017). Among the HSPs,
HSP60 obtained from gram-negative bacteria has the ability to stimulate cells of both the
innate and acquired immune system, functions as a linker between immune cells, and
coordinates immunological activities. Therefore, HSP60 appears to be a promising
potential component of subunit vaccines designed to provide protection from infections
with gram-negative bacteria (Bajzert et al., 2018). In addition, some researchers have
confirmed murine HSP110 (mHSP110) to be a biological adjuvant that significantly
enhances the immune response of C57BL/6 mice to the E749–57 or E711–20 epitopes of h-2d
restricted human papilloma virus (HPV) (Ding et al., 2013). In addition, the Gp96-peptide
complex is considered to be a highly effective stimulator of MHC I-mediated antigen
presentation; this strategy makes full use of the built-in adjuvant function and antigen
transfer ability of Gp96 to induce cytotoxic immunity against widespread viral or tumor
antigens (Strbo et al., 2013).

Mycobacterial HSP70 (mHSP70) is widely used as an intramolecular adjuvant for
epitope-based vaccines, and the carboxyl terminal polypeptide binding area (HSP70 aa
359–610) of mHSP70 has a stimulating epitope that can combine with the CD40 receptor
to stimulate the production of Th1-polarizing cytokines (e.g., IL-12, TNF-a, and NO)
to induce DC maturation (Wang et al., 2002; Suzue et al., 1997; Suzue & Young, 1996).
Compared with the T cell epitopes of other proteins, the HSP70 T cell epitope
can be efficiently processed by APCs, so that the polypeptide binding region of HSP70 has
higher affinity with MHC molecules (Basu et al., 2001; Castellino et al., 2000). The single
HSP70, which does not fuse with other exogenous epitopes, only induces a very
weak cellular and humoral immune response. Some studies have shown that removing
the amino end of HSP70 (ATPase domain) and retaining only its carboxyl end
(polypeptide binding region) as an antigen can produce a large amount of IL-12,
TNF-a, NO, and chemokines (Fu et al., 2013). In contrast, neither the ATPase domain

Figure 3 The chemical structures of different TLR2-targeting Pam lipopeptides. (A) Pam2Cys and
Pam3Cys lipopeptides. (B) MALP-2 and FSL-1 lipopeptides. (C) Pam2CSK4 and Pam3CSK4 lipopep-
tides. Full-size DOI: 10.7717/peerj.6185/fig-3
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nor native HSP70 can induce such a powerful immune response (Cheng et al., 2014b;
Li et al., 2006; Ge et al., 2006). For example, the fusion of the hantavirus glycoprotein (GP)
and nucleocapsid protein with the carboxyl end of HSP70 can induce a more
specific immune response (Cheng et al., 2014b). The major antigenic segment of the
Japanese encephalitis virus E protein can fuse with the amino terminus of the peptide
binding domain of HSP70, which can induce a more effective immune response

Table 3 Several major types of heat shock proteins.

HSP family/members Intracellular
localization

Biological function Reference

HSP60/HSP58, HSP60,
HSP65

Mitochondrion
cytoplasm

It plays a role in the folding of proteins in the
mitochondrial matrix.
Hsp60 can affect T cell response in two
ways: as a ligand of toll-like receptor 2
signalling and as an antigen.

Juwono & Martinus (2016),
Bajzert et al. (2018)

HSP70/HSP68, HSP70,
HSP72, HSP73

Cytoplasm or
nucleus
Mitochondrion
Endoplasmic
reticulum

It plays a role in different cell processes, from
protein folding to protein complex
decomposition and cell membrane protein
transfer. Almost every protein that is not
folded into its original state has multiple
accessible Hsp70 binding sites. It is most
commonly used as an adjuvant and
protective antigen.

Craig (2018), Cheng et al.
(2014b)

HSP90/HSP83, HSP84,
HSP87, HSP90, Gp96

Cytoplasm or
nucleus
Endoplasmic
reticulum
Golgiosome

HSP90 regulates the stability of client
proteins, activates intracellular division of
labor, participates in the regulation of
multiple signaling pathways and cell cycle
processes, and plays an important role in
carcinogenic signal transduction,
anti-apoptosis, metastasis, stress injury,
autoimmune and other diseases treatment.
HSP90 can promote the correct assembly,
folding, or restoring the normal
conformation of the damaged protein,
prevent the wrong folding and aggregation
of the protein and also promote the
processing of MHC I antigen through the
generation and assembly of the antigen
determinant cluster of 26s protease
complex.

Pearl, Prodromou & Workman
(2008), Strbo et al. (2013)

HSP110 Cytoplasm or
nucleus

HSP110 has a strong molecular chaperone
function and can present antigen peptides
to APCs to activate specific antitumor
cellular immunity. Moreover, HSP110 can
also up-regulate the expression of MHC-II,
CD40 and costimulatory molecules of APC,
thus enhancing the antigen-presenting
ability of APC.

Tang et al. (2005), Ding et al.
(2013)

Small HSPs/HSP22
HSP23, HSP26, HSP27,
HSP28, aβ-crystallin

Cytoplasm or
nucleus
Mitochondrion

Stable cytoskeleton
Heme catabolism or antioxygenic property
Actin dynamics

Bolhassani & Rafati (2008)

Note:
The intracellular localizations and biological functions of several major types of heat shock proteins.
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than the major antigenic segment of the E protein alone (Ge et al., 2006). HSP70s and
HSP90s have been also found to act as carriers of tumor-derived peptides, adjuvants
for antigen presentation, and can target the innate immune system by inducing anti-tumor
immune responses (Shevtsov & Multhoff, 2016).

Heparin-binding hemagglutinin
With regards to Mycobacterium tuberculosis antigens, several Mycobacterium lipid and
glycolipid antigens (e.g., mycolic acid, lipoarabinomannan, glucose monomycolate) can be
recognized by specific T cells by the CD1 antigen-presentation pathway in humans,
suggesting the possible application of Mycobacterium tuberculosis lipid molecules in
subunit vaccine preparation (Moody et al., 2000). Dascher et al. (2003) developed a vaccine
which included lipids from Mycobacterium tuberculosis that were incorporated into
liposomes with an adjuvant; the studies using a guinea pig aerosol tuberculosis challenge
model demonstrated that lipid antigens play an important role in the immune
response to tuberculosis infection, potentially through the production of CD1-restricted
T cells. In addition, the Mycobacterium tuberculosis 6-kilodalton early secreted antigenic
target protein (ESAT-6) is considered to be an important mediator in mycobacterial
virulence, has strong antigenicity, and can induce a protective Th1 immune response
against Mycobacterium tuberculosis (Pandey et al., 2018). Khader et al. (2007) vaccinated
mice with an ESAT-6 peptide (amino acids 1–20 of ESAT-6) in an adjuvant composed of
MPLA, trehalose dicorynomycolate, and dimethyl dioctadecylammonium bromide.
The vaccination was found to induce antigen-specific T cells that produced IFN-c, T cells
that persisted in the central lymphoid organs, and antigen-specific IL-17-producing T cells
that persisted in the lung (Khader et al., 2007). Recently, heparin-binding
hemagglutinin (HBHA), a component of Mycobacterium tuberculosis, has been closely
investigated for its strong immune potential, which can stimulate the migration of DCs
and promote the expression of a variety of surface molecules (e.g., CD40, CD80,
and CD86), MHC I and MHC II molecules, as well as inflammatory cytokines (e.g., IL-6,
IL-12, IL-1β, and TNF-a) in a TLR4-dependent manner (Jung et al., 2011;
Eraghi et al., 2017). For example, HBHA can induce immunological protection against
Mycobacterium tuberculosis by stimulating the production of IFN-c, IL-2, and
IL-17-coexpressing CD4+ T cells (Fukui et al., 2015). As an effective immune adjuvant,
HBHA can induce a strong Th1 cell immune response and plays an important role
in the research of multi-epitope vaccines for immunotherapy (i.e., tumor vaccines).
It has also been reported that the amino acid sequence of the epitope for the MAP1611
immunization region of the Mycobacterium avium subsp., paratuberculosis multiple
antigenic peptide (MAP), is connected to the conservative amino acid sequence of HBHA.
In addition, this recombinant subunit vaccine exhibited good immunogenicity and was
identified to have a no allergenicity as predicted by employing a hybrid approach
using the AlgPred program (Rana, Rub & Akhter, 2014; Rana & Akhter, 2016).
Some researchers have designed a multi-epitope vaccine that includes CTL epitopes of
Wilms tumor-1 and HPV E7 antigens, helper T lymphocyte epitopes of the tetanus toxin
fragment C (TTFrC) and HLA PADRE, and HBHA as the intramolecular adjuvant
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of epitope-based vaccines and is connected with appropriate linkers to enhance the
effect of this recombinant multiple-epitope vaccine against cancer (Nezafat et al., 2014,
2015). As a built-in adjuvant with a powerful immune enhancement effect, HBHA is
rarely used in epitope vaccine research and is worthy of further study in the
development of antiviral and cancer epitope-based vaccines.

Bacterial flagellin
Flagellins are TLR5 and NOD receptor ligands that can activate both innate and acquired
immune cells (Huleatt et al., 2008; Wang et al., 2014; Hajam et al., 2017). Both the
N- and C-terminals of flagellin are composed of conservative alpha helices that
function as TLR5 recognition sites, and the portion between the N- and C-terminals
comprises a highly variable flagellin antigen region (Murthy et al., 2004). It has been
found that deletion of part of the highly variable region of flagellin disables the
ability of the host to produce antibodies against bacterial flagellum but does not affect its
adjuvant activity (Deng et al., 2017). Therefore, researchers typically replace this region
with exogenous antigen epitopes (e.g., the HPV prophylactic peptide vaccine)
(Nempont et al., 2008; Negahdaripour et al., 2017a). For example, replacing the FliC
variable region with the M2e protein of influenza A does not obstruct TLR signaling
pathways (Smith et al., 2003; Deng et al., 2017). A truncated flagellin (tFL) with deletion
of the hypervariable regions was used as a carrier by chemical conjugation with a
malaria antigen M.RCAg-1 (M312), and compared with the physical mixture of M312
and tFL, the conjugates M312-PEG-tFL elicited higher M312-specific antibody titers
(Guo et al., 2018). In addition, two HPV epitopes and some universal Th epitopes
have been linked to the different flagellin positions via different linkers, and the
optimal construction of a multiepitope vaccine was screened using protein structure
analysis, modeling, optimization, and an evaluation of immunogenicity (Negahdaripour
et al., 2018). In addition, four copies of the ectodomain of matrix protein 2 (f4M2e)
of the influenza A virus (IAV), H1, HA2 domain (fHApr8), or H3 HA2 domain
(fHAaichi) were used to replace the high immunogenicity region of flagellin, and the
fusion proteins were crosslinked with propionate (DTSSP) to form protein NPs,
thereby retaining the agonist activity of FliC to TLR5, and ability to assist the epitope
protein in stimulating the immune response against IAV (Deng et al., 2017).
The combination of flagellin with multiple copies of HPV L2 neutralization epitopes
have demonstrated a strong broad spectrum anti-HPV effect without the participation
of other adjuvants, thus demonstrating a significant advantage of this strategy in
enhancing the cross-protection of the HPV vaccine (Kalnin et al., 2014, 2017;
Gambhira et al., 2007). In addition, Ajamian et al. (2018) found that inserting the
HIV gp41607–683 (MPER) into a flagellin-based scaffold could significantly enhance the
immunogenicity of gp41607–683 in a TLR5-dependent manner and induce strong
humoral responses specific to MPER in a mouse model. Various flagellin antigen fusion
proteins have been studied in human clinical trials. Furthermore, flagellin is also
commonly used as an antigen skeleton of SAPN-based vaccines (El et al., 2017),
for which the associated content is described below.
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Outer membrane vesicles
Outer membrane vesicles (OMVs) are naturally secreted on the surface of most
gram-negative bacteria, and the vesicle membrane typically consists of lipopolysaccharide
(LPS), glycerophospholipids, and outer membrane proteins (OMPs) (Tan et al., 2018).
Due to their intact outer membrane and periplasmic contents, OMVs possess good
intrinsic stimulation ability and strong immunoreactivity, which can induce strong
humoral and cellular immune responses. In addition to research focused on the possibility
of using OMVs as candidate antigens for vaccine development, there is growing interest
in the application of OMVs as a self-adjuvant for immunostimulatory molecules.
This function is mediated by the interaction between the OMV-associated PAMPs and
the TLRs expressed on the surface of APCs, thus enhancing the immune response
to exogenous antigens (Gnopo et al., 2017). OMVs can also even be used as a mucosal
transporter to transport antigens to the mucosal barriers (Jang et al., 2004). In addition,
designed glycoengineered OMVs, which can display the O-antigen and surface
glycans from different bacteria could be used as bacterial vaccine platforms to
prevent bacterial infections (Valguarnera & Feldman, 2017). In addition, plasmids
can be transported into OMVs to further modify the intracavity content, including LPS
functionality and attenuate toxicity (Tan et al., 2018). Hekmat et al. (2018) developed a
novel hepatitis C virus (HCV) therapeutic vaccine candidate, rC/N-NMB OMVs,
formulated as a targeted synthesized recombinant fusion protein consisting of a truncated
core and NS3 (rC/N) of HCV as a bipartite antigen accompanied by Neisseria meningitidis
serogroup B OMVs (NMB OMVs), has the ability to induce Th1, Th2, and Th17
immune responses. Compared with MF59 and Freund adjuvant, NMB OMVs can
significantly increase the level of Th1 immune responses (Hekmat et al., 2018).
Liu et al. (2018) have demonstrated OMVs from flagellin-deficient Salmonella
Typhimurium can serve as an adjuvant when combined with OMPs from different
Salmonella serotypes, and enhances the cross-protection capacity of this combined
vaccine. Additionally, novel vaccine adjuvant OMVs have been reported, which can serve
as delivery carriers to improve vaccine safety and protective efficacy. ClyA is a 34 kDa
pore-forming toxin enriched on OMVs, for which exogenous antigens are fused at the
C terminus of ClyA to produce ClyA-antigen fusion proteins on OMVs (Kim et al., 2008).
Chen et al. (2010) demonstrated that rOMVs carrying ClyA-GFP fusion proteins could
induce a high level of anti-GFP IgG titers in mice, which was similar to that of GFP
adjuvanted with alum. Rappazzo et al. (2016) immunized mice with ClyA-M2e4xHet
OMVs displaying an influenza-derived antigen, M2e4xHet, which was associated with
100% survival following subsequent influenza challenge. In addition to ClyA, other
prospective proteins also have the potential to display an antigen of interest, such as the
hemoglobin protease (Hbp) autotransporter platform (Daleke-Schermerhorn et al., 2014).
Jong et al. (2014) introduced a mutation to preserve the integrity of Hbp to avoid cleavage
following translocation to the outer membrane. Kuipers et al. (2015) demonstrated that
rOMVs displaying the pneumococcal antigens, pneumococcal surface protein A and
pneumolysin, by the Hbp system could prevent pneumococcal colonization. Although
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some obstacles to the development of OMV adjuvants remain (e.g., large number of
clinical and preclinical assessments, and limited knowledge of the OMV manufacturing
process), we believe that the use of OMVs as an epitope-based vaccine delivery system
would also be of great value in controlling all types of pathogen infections due to their
comprehensive immune potency, higher safety, and substantial mucosal delivery efficacy
(Tan et al., 2018).

In addition, generalized modules for membrane antigens (GMMA) as an OMV
technology are outer membrane particles consisting of outer membrane lipids,
OMPs, and soluble periplasmic components (Gerke et al., 2015). GMMA are derived from
gram-negative bacteria (i.e., Salmonella and Shigella) which are genetically modified
(deletion of the tolR gene) to enhance the associated advantages of being cost-effective with
high-production yields. Further gene deletions (i.e., the late acyltransferases genes HtrB175
and MsbB) resulted in GMMA with penta-acylated LPS with no possibility of
infection (Rossi et al., 2014). Due to the self-adjuvanting properties of GMMA that deliver
innate immune signaling through PAMPs (i.e., TLR ligands), many studies have
shown that GMMA vaccines can simultaneously deliver surface polysaccharides and
OMPs to the immune system and display greater immunogenicity compared to
glycoconjugate vaccines (Micoli et al., 2018; MacLennan, Martin & Micoli, 2014).
Moreover, it has been demonstrated that the GMMA technique can be used as a carrier to
display the salmonella LPS O-antigen to the immune system. It is envisaged that
GMMA could also be considered as a built-in adjuvant platform for epitope-based vaccines
against pathogens other than gram-negative bacteria. More importantly, clinical trials
(currently under way with Shigella sonnei GMMA vaccines) are required to further assess
the safety and tolerance of this vaccine platform in humans.

Salmonella porin
Salmonella Typhi expresses a variety of porins. While the major S. Typhi OmpC and
OmpF porins can be expressed constitutively, the expression of other porins (e.g., OmpS1
and OmpS2) is relatively low in vitro and during potential infection (Perez-Toledo
et al., 2017). Both the major and minor S. Typhi porins can effectively activate the innate
immune system through the TLR2 and TLR4 signaling pathways, resulting in the
increased expression of costimulatory molecules and cytokines in DCs and B cells
(Moreno-Eutimio et al., 2013; Cervantes-Barragan et al., 2009). Due to such
immune-activating properties, some of these porins have been used as potential vaccine
adjuvants. Perez-Toledo et al. (2017) have shown that the S. Typhi porins, OmpC
and OmpF, are multipurpose vaccine adjuvants, which can be used to polarize the T cell
response toward a Th1/Th17 profile and enhance the antibody response generated toward
T-dependent and T-independent antigens with poor immunogenicity. In addition,
Leclerc et al. (2013) used malva mosaic virus NPs as a vaccine platform to improve the
stability of the M2e peptide of influenza A in conjunction with OmpC purified from
Salmonella typhi as an adjuvant; their data demonstrate that OmpC increased the immune
response to the M2e peptide and provided protection against a heterosubtypic influenza
strain in a mouse model. Moreover, Moreno-Eutimio et al. (2013) investigated the
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immunogenic and protective capacities of the OmpS1 and OmpS2 porins and determined
that these porins can be potent inducers of the innate immune response, exhibiting
adjuvant properties that can promote increased antibody titers and long-term antibody
responses when co-immunized with antigens.

b-Defensin
β-Defensins are antimicrobial peptides involved in the innate immune response of the host
and are responsible for stimulating innate and adaptive immune responses by recruiting
naïve T cells and immature DCs through interactions with corresponding immune
receptors (e.g., CCR6 or TLRs) (Narula et al., 2018). Kim et al. (2018) have concluded that
human β-defensin 2 can induce the primary antiviral innate immune response and
may also mediate the induction of antigen-specific immune response against a conjugated
antigen. Using immunoinformatic methods, a multi-epitope vaccine for dengue was
developed that included Tc and Th cell epitopes with β-defensin included as a molecular
adjuvant at the N-terminal of the construct (Ali et al., 2017). Similarly, researchers
developed an anti-chikungunya multi-epitope vaccine that included B cell and
T cell-binding epitopes and IFN-c inducing epitopes with β-defensin added as a
built-in adjuvant (Narula et al., 2018).

VIRUS-LIKE PARTICLES AS BUILT-IN ADJUVANT
PLATFORMS
Hepatitis B virus core antigen
Hepatitis B virus core antigen can act both as a Th cell-dependent or Th cell-independent
antigen (Roose et al., 2013), and the Th-priming effects of HBcAg can easily transfer
the adaptive response to the inserted related epitopes (Milich et al., 1987). In addition, the
nanoscale structure of HBcAg can be more effectively identified and processed by
APCs (Lee et al., 2009; Ong, Tan & Ho, 2017). Therefore, HBcAg has been used as an
vaccine carrier for several exogenous pathogens (e.g., hepatitis B, C, and E virus, influenza
virus, foot-and-mouth disease virus, Human enterovirus 71, coxsackievirus A16, and
C. trachomatis), and the immunogenicity of recombinant HBc-based VLP vaccines against
pathogens has also been verified in animal models (Dai et al., 2016; Su et al., 2013;
Zheng et al., 2016; Chu et al., 2016; Zhu et al., 2016; Wu et al., 2017; Jiang et al., 2017).
VLPs are the self-assembled structural proteins of most viruses and can stimulate the
immune response in the absence of an adjuvant by exposing pathogen epitopes and
simulating the structure of natural viruses (Plummer & Manchester, 2011; Yang et al.,
2016). In addition, VLPs can stimulate an innate immune response by activating PRRs
(e.g., TLRs) (Shirbaghaee & Bolhassani, 2016). In addition, the autoantigen molecules
displayed by HBcAg VLPs can escape immune tolerance and produce specific
auto-antibodies (Long et al., 2014). Due to these advantages, the HBc is often used as a
powerful carrier protein and built-in adjuvant to display exogenous epitopes (Chen et al.,
2017; Jiang et al., 2017; Roose et al., 2013; Liang et al., 2018). In general, researchers
will insert pathogen epitopes into the HBcAg major immunogenic region (MIR; HBcAg aa
78–82 in the spike tip of HBV), which does not affect the self-assembly of the fusion
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protein into VLP NPs, to generate immune activation; therefore, antigen epitopes will be
presented on the surface of the particles (Wang et al., 2017a; Chen et al., 2017) (Fig. 4A).
As the main insertion site of exogenous epitopes, MIR can significantly enhance the
immunogenicity of such epitopes (Dai et al., 2016; Reynolds et al., 2015). Recently,
Wu et al. (2017) developed a novel vaccine against chickenpox and hand-foot-mouth
disease by constructing three VLPs with HBcAg used as a carrier protein, and epitopes
derived from varicella-zoster virus-gE, EV71 (enterovirus71)-VP1, and EV71-VP2 were
displayed by HBcAg. This study also fully demonstrated the significant potential of HBcAg
as a carrier protein for epitope vaccines used in multivalent epitope vaccine research
(Wu et al., 2017). The tandem core (TC) contains two HBcAg molecules that are
connected by the appropriate linker and has two independent MIRs which can individually
accommodate multiple exogenous antigens (Fig. 4B). This VLP platform is associated with
beneficial prospects for the development of multivalent vaccines (Roose et al., 2013).
Alejandro et al. inserted the four conserved antigenic regions of the matrix protein 2
ectodomain and hemagglutinin stalk of an existing IAV into the MIR region of TC, thereby
constructing a VLP vaccine called Tandiflu1, which can induce the production of
cross-protective antibodies (Ramirez et al., 2018).

Figure 4 Recombinant HBc-based VLPs or HBs-based VLPs. (A) (1) The HBc proteins naturally form
the dimers, the building blocks that forms the VLPs. It takes about 60 such dimers (i.e., 120 copies of
HBc) to form a HBc-based VLP. The results showed that there were about 40 amino acid residues
inserted into the N-terminal of HBc. In the MIR region of HBc, 50 or 100 amino acid residues can be
inserted, and as many as 100 or more residues at the C-terminal do not interfere with the formation of
particles. (2) Hepatitis B surface antigen (HBsAg) can also self-assemble into highly organized viroid
particles with a diameter of 22 nm. These HBs-derived VLPs contain about 100 HBsAg molecules and
provide a unique opportunity to display multiple exogenous epitopes. (B) Hepatitis B virus tandem core
platform. The two replicas of HBc protein are linked together by covalent bonds through flexible amino
acid sequences so that the fused dimers can be folded correctly and assembled into HBc particles. In the
assembled HBc particles, the four helix bundles formed at each dimer interface appear on the surface as
prominent “spikes”. The tip of the spike is the preferred site for inserting foreign sequences for bivalent
vaccine. Full-size DOI: 10.7717/peerj.6185/fig-4
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Hepatitis B virus surface antigen
The tertiary structure of hepatitis B virus surface antigen (HBsAg) can form a highly
conserved hydrophilic loop. Additionally, it has been reported that the existing immunity
to HBsAg does not impede the immune response to foreign epitopes carried by
HBsAg particles, which is often used as a carrier to insert exogenous antigens into the
external hydrophilic loop or the end of the HBsAg N- or C-terminal (Bellier & Klatzmann,
2013). Czarnota et al. (2016) inserted a highly conserved epitope (amino acid residues
412–425) of the HCV E2 GP into the hydrophobic loop of HBsAg, and the chimeric
protein was then expressed in an unconventional Leishmania tarentolae expression system
and independently assembled into VLPs, which demonstrated high immunogenicity
and induced cross-reactive antibodies against HCV (Czarnota et al., 2016). Wei et al.
(2018) also used HBsAg to display neutralizing HCV epitopes to obtain chimeric
HCV–HBV VLPs as a novel strategy for developing a bivalent prophylactic HCV–HBV
epitope vaccine (Wei et al., 2018). The envelope protein domain III (EDIII) of dengue
viruses (DENV) contains good serotype-specificity and cross-reactive epitopes.
Ramasamy et al. (2018) fused the EDIII of all four DENV serotypes with four copies of
HBsAg and expressed the construct in the P. pastoris GS115 strain to obtain a tetravalent
VLP vaccine termed DSV4, which has a high immunogenicity and produces effective
and persistent neutralizing antibodies against all four DENV serotypes in mice.

Phage-based VLPs
The over-expression of the single-chain dimer coat proteins (CPs) of MS2 and PP7 RNA
phages in bacteria can spontaneously assemble into recombinant MS2 or PP7 VLPs
containing 90 dimer copies and 90 exogenous epitopes. In addition, for the Qβ
bacteriophage, 180 copies of single-chain dimer capsid proteins can spontaneously
assemble into a VLP; thus, at least 180 exogenous epitopes can be displayed on the surface
of a Qβ VLP (Basu et al., 2018). Recent reports have shown that the Qβ bacteriophage
contains TLR ligands that can enhance Qβ-VLP-induced T cell-independent and
-dependent Ab reactions, including a germinal center reaction via of TLR/MyD88
signaling in B cells (Tian et al., 2018). This VLP platform which contains no viral genome
can be used in the future as a carrier system for the administration of safe vaccines
against many pathogens (Pumpens et al., 2016). Basu et al. (2018) described potential B cell
epitopes located on the envelope proteins of Zika virus on the surface of a highly
immunogenic bacteriophage VLP platform (MS2, PP7, and Qβ), and evaluated the
immunogenicity of these VLPs in mice. Zhai et al. (2017) also displayed consensus
peptides from HPV L2 and tandem HPV31/16L2 peptides on the surface of bacteriophage
MS2 VLPs. These MS2-L2 VLPs can induce high antibody titers in mice and are
cost-effective vaccine candidates against HPV; however, HPV vaccines with greater
cross-protection should be further evaluated to prevent more types of HPV (Zhai et al.,
2017). Recently, Qβ VLPs have been applied as carriers for the development of
carbohydrate-based anticancer vaccines (Sungsuwan, Wu & Huang, 2017). Additionally,
researchers have developed a size-exclusion chromatography-based purification method
for an VLP-based influenza A vaccine derived from the MS2 phage that displays an
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epitope from the extracellular domain of the IAV matrix two protein. Moreover, the
purification procedure provides an improved strategy for the future large-scale production
of VLP-based epitope vaccines (Lagoutte et al., 2016).

Tobacco mosaic virus
Tobacco mosaic virus (TMV) is a widely studied and identified filamentous plant virus.
TMV particles are hollow with tubular rods (300 nm length � 18 nm diameter) consisting
of about 2,130 CP subunits encase a single-stranded, plus-sense RNA genome
(Culver, 2002). As an antigen carrier, TMV has two important functions: (1) due to the
architecture and size of TMV, TMV carrying antigen epitopes is robustly and readily taken
up by DCs, leading to the activation of key surface markers (Smith et al., 2007); and
(2) TMV also provides adjuvant effects, due to either repetitive antigen displayed on the
surfaces of TMV or the presence of non-functional viral RNA that is important for
inducing cellular-mediated immunity (Banik et al., 2015). Kemnade et al. (2014)
demonstrated that TMV is capable of boosting TMV-induced antigen-specific T cell
responses, but does not induce neutralizing self-immunity. In addition, since TMV is not a
human pathogen, it is intrinsically secure (Liu et al., 2013). These findings further
confirm that TMV has great potential as an epitope-based vaccine vector.McCormick et al.
(2006) fused well-characterized T cell epitopes that provide protection against tumor
challenge in mice into a TMV CP and demonstrated that C57BL/6 mice inoculated with
TMV displayed significantly improved protection against tumor challenge in both the
EG.7-Ova and B16 melanoma models. Moreover, Zhao et al. (2015) reported that
when efficient copper (I)-catalyzed azide–alkyne cycloaddition reaction was performed
for the conjugation of the small molecule estriol (E3) onto TMV capsid, TMV can
induce a strong and long-term antibody response. Furthermore, Banik et al. (2015)
developed a multivalent subunit vaccine against tularemia using a TMV-based delivery
platform and demonstrated TMV can serve as a suitable built-in adjuvant for multiple
protective antigens (PAs) of F. tularensis, as well as induce cell-mediated immune
responses and long-lasting humoral immunity against tularemia.

Papaya mosaic virus
As a member of the potexvirus family, papaya mosaic virus (PapMV) displays a
flexible rod-like structure composed of 1,400 subunits of the viral CP assembled around a
positive-strand RNA (Lacasse et al., 2008). Since PapMV-based VLPs comprised
of PapMV CPs assembled around an ssRNA can efficiently trigger an innate immune
response, they can be used as a vaccine adjuvant platform. Following phagocytosis,
PapMV-based VLPs can reach the endosome of immune cells and release ssRNA, which
engages and activates TLR7 (Therien et al., 2017). The direct fusion of antigenic
peptides to the open reading frame (ORF) of the PapMV CP can lead to the formation of
chimeric VLPs that can trigger a humoral or CTL response against the fused antigen
(Bolduc et al., 2018). Additionally, Carignan et al. (2015) have shown that the fusion of a
short M2e (sM2e) epitope (nine amino acids) to the N-terminus of the PapMV CP
allows for the assembly of highly immunogenic VLPs. This group further demonstrated
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that an intramuscular injection of PapMV-sM2e VLPs is sufficient to induce a powerful
anti-M2e humoral response that protects mice against subsequent challenge with
influenza A. Similarly, Bolduc et al. (2018) have developed a PapMV-based VLP vaccine
candidate capable of inducing robust and broad protection against two different
influenza A strains (H1N1 and H3N2). Lacasse et al. (2008) have shown that PapMV
VLPs carrying the H-2b-restricted dominant p33 CTL epitope from the lymphocytic
choriomeningitis virus can induce DC maturation and cross-presentation of the p33
CTL epitope, which triggers a protective antiviral T cell response. Furthermore,
Therien et al. (2017) engineered a PapMV-based VLP platform with a SrtA receptor
motif and allowed SrtA to attach to the long peptides of the VLPs. This approach was
found to be more versatile than the fusion of only small peptides to the ORF of the
PapMV CP. Therefore, PapMV NPs with SrtA-conjugated peptide antigens may
represent a promising tool in vaccine design against various diseases (Therien et al., 2017).

KEYHOLE LIMPET HEMOCYANIN AND BOVINE SERUM
ALBUMIN
Keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA) are easily identified
by the immune system as non-self components, which is useful for enhancing the
immunogenicity of small antigens or a low antigen dose. KLH and BSA are easily processed
APCs and can recruit Th cells to assist in antigen uptake (Mora et al., 2017).
These characteristics of KLH and BSA have promoted their frequent use as epitope carrier
proteins. For example, researchers have developed the novel epitope peptide vaccine,
Aβ3-10-KLH, by coupling the B cell epitope, Aβ3-10, from amyloid-β peptide (Aβ) with
KLH, for the potential treatment and prevention of Alzheimer’s disease (AD) (Ding et al.,
2016, 2017a). In another study, an anti-PCSK9 (proprotein convertase subtilisin/kexin
type 9) peptide vaccine using KLH as the carrier protein was shown to produce long-lasting
anti-PCSK9 antibodies and is considered to be the primary vaccine for the treatment of
dyslipidemia in the future (Kawakami et al., 2018). In addition, a short peptide (UPK3A
65-84) from Uroplakin 3A (UPK3A) covalently coupled with KLH and CpG as adjuvant was
found to be an immunotherapeutic vaccine for bladder cancer (Izgi et al., 2015). In addition,
BSA is often used as a carrier protein for small antigens in glycoconjugate vaccines
(Prasanphanich et al., 2015). For example, Cai et al. (2013) combined a synthesized MUC1
glycopeptide with BSA or three different T-helper cell epitopes of TTox and demonstrated a
beneficial effect. Furthermore, the immune complex formed by coupling the synthetic
trisaccharide Gala(1,3)Galβ(1,4)GlcNAca of Trypanosoma cruzi with BSA as a carrier
protein was reported to be a vaccine candidate for Chagas disease (Schocker et al., 2016).

BACTERIAL TOXIN PROTEINS
Heat-labile toxins and cholera toxin
Heat-labile toxins (HLTs) are produced by some enterotoxigenic E. coli strains and
can be fused with other antigenic proteins to function as an adjuvant (Da et al., 2011;
Luiz et al., 2015; Hu et al., 2014) (Table 4). HLTs and cholera toxins (CTs) are
highly homologous, consisting of five subunit-Bs and one subunit-A, and are members of
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the bacterial protein toxin AB5 family. Subunit-A is a toxic subunit, noncovalently
bound to the B pentamer and has ADP ribosyltransferase activity, whereas subunit-B is a
nontoxic receptor-binding subunit (Lencer, Hirst & Holmes, 1999). Generally,
non-toxic HLTs (e.g., subunit-B and mutant forms of HLT) also act as immune adjuvants
to activate DCs, B cells, and T cells, regulate epitope specificity, and improve the immune
response (Batista et al., 2014; Rodrigues et al., 2011). The fusion of the HLT B
subunit (HLTB) with the linear B cell epitope of the outer membrane protein (OmpC)
of Aeromonas hydrophila can stimulate the production of neutralizing antibodies against
this linear epitope and generate a Th2 type mixed auxiliary T cell immune response

Table 4 Summary of several bacterial toxin build-in adjuvants listed in this paper.

Objective Advantages and characteristics Application example Reference

Heat labile
toxins (HLT)

1. B subunit of LT or the mutant form of
LT can activate the dendritic cells and B
and T lymphocytes.

1. Fused the Heat-labile LTB with the linear B
cell epitope of Aeromonas hydrophila
outer membrane protein (OmpC) or two
epitopes of Zairian Ebola virus GP1
protein.

Rodrigues et al. (2011), Sharma
et al. (2017), Rios-Huerta et al.
(2017)

Cholera toxin
(CT)

1. CTB’s strong affinity to GM1
ganglioside receptor.

2. Reduce the minimum concentration of
antigens required for activation of
immune cells.

1. A multivalent epitope-based vaccine
CWAE against h. pylori and anti-
atherosclerosis multi-epitope vaccine.

2. CTB-Human Mucin 1(MUC1) vaccine.

Guo et al. (2017), Tourani,
Karkhah & Najafi (2017)

Diphtheria
toxin (DT)

1. CRM197 is a mutant of DT, which can
effectively combine and present
peptides and rapidly activate CD4 T
cells by multiplicity of Th1 and Th2
cytokines.

2. The DTT is no safety hazard and
contains four Th cell epitopes.

3. DTT can form a turn-helix-turn
structure completely exposed to the
surface, which may be a potential site
for insertion of exogenous epitopes.

1. Several short B cell epitopes on the Her-2/
neu protein were coupled with CRM197.

2. The epitope of TNF-a is coupled to the
insertion site of DTT, developed an anti
TNF-a vaccine DTNF.

Tobias et al. (2017), Zhang et al.
(2016)

Tetanus toxoid
(TT)

1. TT has multiple CD4+ Th cell epitopes
and associated memory Th subsets.

2. Helper epitopes selected from Tetanus
toxin fragment C (TTFrC).

1. A new type of anti-gastrin vaccine.
2. As the carrier protein of glycoconjugate

vaccine.
3. The anti-brucellosis multi-epitope vaccine

and anti-atherosclerosis multi-epitope
vaccine.

Saadi, Karkhah & Nouri (2017),
Broker (2016),Arcuri et al. (2017)

Anthrax toxin 1. The N-terminal (the first 255 amino
acids) of lethal factor (LF) of anthrax
toxin termed LFn, retains protective
antigen (PA)-binding and translocation
capabilities but has no toxic activity.

2. LFn has been used to transfer foreign
proteins and peptides into the
cytoplasm.

1. A chicken ovalbumin (Ova) recombinant
protein (LFn-Ova).

2. LFn as the delivery carrier of ESAT-6
antigen.

Wesche et al. (1998), Shaw &
Starnbach (2008), Chandra et al.
(2006)

Note:
The advantages and characteristics and some application examples of several bacterial toxin build-in adjuvants.
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(Sharma et al., 2017). The two epitopes of the Zairian Ebola virus GP1 protein, which
can be recognized by neutralizing antibodies, were coupled with HLTB protein to form
recombinant antigen HLTB-EBOV expressed in plant tissues, and immunizing mice with
the recombinant antigen presented by the plant induced a higher level of IgA and IgG
responses (Rios-Huerta et al., 2017). The CT subunit-B (CTB) can be used as a powerful
adjuvant to generate mucosal immunity due to its strong affinity to the GM1 ganglioside
receptor which is primarily located on mucosal epithelial cells (i.e., M cells) (Pinkhasov
et al., 2010). The multivalent epitope-based vaccine against Helicobacter pylori, CWAE,
and an anti-atherosclerosis multi-epitope vaccine have been developed using CTB as
intramolecular adjuvant (Tourani, Karkhah & Najafi, 2017; Guo et al., 2017).

Diphtheria toxin
The carrier protein cross-reacting material 197 (CRM197) is an inactivated and non-toxic
form of diphtheria toxin (DTT) created using an enzymatic reaction, and has been
successfully applied in many vaccines against infectious diseases because it can effectively
combine and present peptides (Caro-Aguilar et al., 2013) (Table 4). Moreover, CRM
can rapidly activate CD4+ T cells by generating a multitude of Th1 and Th2 cytokines,
thereby promoting the proliferation of B cells and regulating the level of antibody
production (Kamboj et al., 2001). Several short B cell epitopes (P4, P6, and P7) on the
Her-2/neu protein were combined with the polyepitope peptide, P467, using CRM197 as a
carrier protein to conjugate with this complex epitope, demonstrated a strong anti-tumor
response (Tobias et al., 2017). The function of DTT is to assist the enzyme active
region (C-domain) in passing through the endocytosis membrane, and there are no
associated risks when the transmembrane domain of DTT is used as the protein carrier for
exogenous antigen (Ladokhin, 2013; Malito et al., 2012). Xu et al. (2017) developed a
vascular endothelial growth factor (VEGF)-based antigen DTT-VEGF consisting of the
receptor-binding domain of VEGF and DTT stimulated neutralizing antibody
response and induced type 1 immune response as well as anti-tumor CTLs in mice,
and their data demonstrated that DTT is an effective antigen carrier to break immune
self-tolerance and DTT-VEGF has potential to be used a promising cancer vaccine.
In addition, DTT contains four Th cell epitopes (aa 69–88, 119–138, 129–148,
and 149–168) and the 89–96 amino acid residues form a turn-helix-turn structure that
is completely exposed to the surface, which may be a potential site for the insertion of
exogenous epitopes (Diethelm-Okita et al., 2000). For individuals who have been
previously vaccinated with the DTT vaccine, the Th cell epitopes based on the DTT vaccine
will induce a rapid CD4+ memory T cell response (Fraser et al., 2014). For example, a
TNF-a epitope has been coupled to the insertion site of DTT to develop an anti-TNF-a
vaccine, DTNF, demonstrating the potential advantage of a DTT-based epitope
vaccine gainst autoimmune diseases (Zhang et al., 2016).

Tetanus toxoid
Since tetanus toxoid (TT) is a carrier protein possessing multiple CD4+ Th cell epitopes
and is associated memory Th subsets, it can be recognized by APCs and presented to
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CD4+ Th cells (Table 4). As mentioned previously, these Th cells can provide the second signal
required for B cell activation (Van Der Heiden et al., 2017;Da et al., 2017). Recently, it has been
reported that a new type of anti-gastrin vaccine using TT as a carrier protein for multiple
complex antigens can significantly enhance the immunogenicity of the vaccine (He et al.,
2018). Jarzab et al. (2018) used TT as the carrier protein for the several synthetic linear or cyclic
OmpC epitope peptides and demonstrated that cyclic peptide conjugated to TT as a potential
candidate gainst shigellosis. Helper epitopes selected from TTFrC are typically associated
with the target epitope to stimulate a CD4+ T cell response (e.g., anti-brucellosis and
anti-atherosclerosis multi-epitope vaccines) (Saadi, Karkhah&Nouri, 2017; Tourani, Karkhah
& Najafi, 2017). TT is also commonly used as a carrier protein for glycoconjugate vaccines
(Broker, 2016). For example, the Vi polysaccharide of typhoid has been combined with
TT via chemical bonding to compare the immunogenicity with that of diphtheria toxoid (DT)
and CRM197 as a carrier protein (Arcuri et al., 2017).

Anthrax toxin
The lethal toxin produced by Bacillus anthracis is a bipartite toxin consisting of PA as
the cell binding moiety and lethal factor (LF) as the effector component. PA has the
inherent ability to transport the enzymatically active LF across the host cell membrane into
the cytoplasm, leading to the death of the host cell (Liu et al., 2017). PA binds to
receptors on host cells, and the resulting PA heptopolymer can bind to three LF molecules.
Subsequently, the entire toxin complex is endocytosed by cells. PA undergoes
conformational changes due to endocytosis-associated acidification, resulting in
transmembrane pores which can facilitate the translocation of LF molecules from the
endosome into the cytosol (Shaw & Starnbach, 2008; Arora, Misra & Sajid, 2017).
The N-terminal (the first 255 amino acids) of LF (PA binding region) termed LFn, retains
PA-binding and translocation capabilities but has no toxic activity. LFn has been used to
transfer foreign proteins and peptides into the cytoplasm, where they are processed
through the MHC class I antigen presentation pathway, and subsequently induce CTL
responses. However, it has been reported that LFn (as a fusion protein) cannot transfer all
proteins into the cytoplasm (Wesche et al., 1998). Shaw & Starnbach (2008) fused
two epitopes (one CD4+ T-cell epitope and one restricted epitope byMHC-I) from chicken
ovalbumin (Ova) to LFn and demonstrated that this recombinant protein induced
both Ova-specific CD4+ T cell and Ova-specific CD8+ T cell responses in mice.
Additionally, Chandra et al. (2006) demonstrated that the anthrax toxin system can be
used as an ESAT-6 delivery carrier of to induce CTL response against tuberculosis by the
ability of LFn to deliver genetically fused ESAT-6 into the cytosol.

OTHER POTENTIAL CO-DELIVERY SYSTEMS OF EPITOPE-
BASED VACCINES
Multiple antigenic peptide
Although the synthesis of long linear peptides with one or more epitopes can promote
their presentation on MHC I and II molecules and enhance their immunogenicity, these
vaccines continue to fail to demonstrate adequate efficacy or improve the overall survival
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rate (Simanovich et al., 2017). To solve this problem, epitopes can be displayed on a
MAP system which contains a core matrix of lysine residues that form a scaffold
(Tam, 1988). Currently, the most common strategy is to couple a number of epitope
peptides to the dendritic polylysine-scaffold using standard solid phase chemistry
(Moyle et al., 2006;Horvath et al., 2004) (Fig. 5A). It has been reported that the MAP-based
vaccine, (B4T(thi)), which is composed of four copies of B cell epitopes (amino acid (aa)
residues 136–154 of the FMDV VP1 protein) which are linked to a T cell epitope
(aa residues 21–35 of the FMDV non-structural protein 3A) via thioether bonds can
significantly induce an immune response against FMDV (Cubillos et al., 2012). Moreover,
Wen et al. (2016) designed a novel tetra-branched MAP vaccine, M2e-MAP, which
combines four copies of M2e with a foreign Th epitope to provide cross-protection against
influenza viruses and may serve as a promising platform for influenza vaccine
development. The immunogenicity of both adjuvanted and non-adjuvanted MAP vaccines
composed of three conserved HCV envelope peptides (E1 peptide (aa 315–323) and
E2 peptide (aa 412–419 and aa 516–531)) were studied. The results showed that the
three HCV envelope MAP peptides exhibit strong immunogenicity and produce higher
levels of neutralizing antibodies (Abdelhafez et al., 2017). Tumor vaccines based on
MAP may also be an effective way to treat and prevent certain types of cancer
(Simanovich et al., 2017).

Self-assembled peptide nanoparticles
In the field of epitope vaccine research, natural self-assembled particles that are often used
by researchers are proteins derived from viruses (HBsAg or HBcAg (mentioned above)
and (TMV) capsid proteins) (Lopez-Sagaseta et al., 2016). With the development
of advanced molecular machinery and the construction of sophisticated instruments and
materials at an atomic level, a wide-range of materials are being used in SAPN systems
(Yang et al., 2012). The SAPN complex is primarily dependent on the selection of
suitable building blocks. In the SAPN β-sheets, both polar and hydrophobic amino
acids are arranged in an alternating pattern, and self-assembly can occur spontaneously
under suitable conditions (Mandal, Nasrolahi & Parang, 2014) (Fig. 6). Indelicato,
Burkhard & Twarock (2017) designed a mathematical procedure for the structural

Figure 5 The schematic diagram of MAP system and LCP nanoparticles. (A) MAP epitope vaccine
based on lysine scaffold. (B) The LCP nanoparticles. Full-size DOI: 10.7717/peerj.6185/fig-5
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classification of a specific class of SAPNs, which provides a toolkit for a systematic
exploitation of SAPNs and predicting the density of epitopes on the SAPN surface.
In addition, epitopes can be integrated on the surface of peptide NPs by synthesizing in the
SAPN system (Friedrich, Beasley & Rudra, 2016). In addition, monomeric peptides
containing self-assembled regions and epitopes can be produced by high throughput
expression in vitro (El et al., 2014). Recent studies have shown that the SAPN malaria
vaccine, FMP014, based on flagellin can be produced by replacing the D0 and D1 regions
of bacterial flagellin with repeated sequences of several antigenic epitope regions
(e.g., aTSR and circumsporozoite protein (PfCSP) of Plasmodium falciparum) (Seth et al.,
2017). In addition, a vaccine was reported to be constructed by combining two conserved
influenza virus antigens, M2e and Helix C, with SAPNs as the carrier and flagellin as
the self-assembled adjuvant, and the experimental results from animal models show
that the SAPN vaccine demonstrates substantial potential for the prevention and control
of influenza viruses (Karch et al., 2017). A novel peptide-based SAPN HPV16 vaccine
may also be a promising method of improving the efficacy of cervical cancer vaccines
and can be used as a useful reference for the study of virus-related diseases and specific
tumor immunotherapy (Tang et al., 2012).

Lipid core peptide
As a form of vaccine delivery, the lipid core peptide (LCP) system allows for lipid amino
acids in water with a poly-lysine core to combine with exogenous epitopes to form
NPs displaying a polydispersity of 0.3–0.5 (Skwarczynski & Toth, 2011b). It appears that
the key to self-assembly into small NPs is to ensure there is a proper balance between
the composition of hydrophilic and hydrophobic components (Schulze et al., 2017). In
the process of vaccine development, antigen epitopes are surrounded by phospholipid
bimolecular layers, thus avoiding the degradation of antigenic peptides by enzymes
(Azmi et al., 2014) (Fig. 5B). Using the LCP vector system, the B cell epitope, J14, on the
M protein of Streptococcus pyogenes and the epitope peptides of the SfbI protein can be
coupled (Zaman et al., 2012, 2011; Moyle et al., 2014). One study demonstrated that
an LCP system using BPPCysMPEG as a mucosal adjuvant was more effective at

Figure 6 Self-assembled peptides nanoparticles (SAPNs). Systematic self-assembling peptides (b-sheet
nanofiber vaccine) with antigen epitopes. Full-size DOI: 10.7717/peerj.6185/fig-6

Lei et al. (2019), PeerJ, DOI 10.7717/peerj.6185 23/48

http://dx.doi.org/10.7717/peerj.6185/fig-6
http://dx.doi.org/10.7717/peerj.6185
https://peerj.com/


Table 5 Different investigational built-in adjuvants for epitope-based vaccines.

Build-in
adjuvant

Disease Clinical phase Reference

Gp96 Late stage melanoma Pilot Shevtsov & Multhoff (2016)

Metastatic colon
carcinoma

Phase I Mazzaferro et al. (2003)

Gastric carcinoma Phase I Shevtsov & Multhoff (2016)

Pancreatic carcinoma Phase I Maki et al. (2007)

Hodgkin lymphoma Phase I Shevtsov & Multhoff (2016)

Glioblastoma Phase I–II Bloch & Parsa (2014)

HSP70 Malignant melanoma Phase I Shevtsov & Multhoff (2016)

Chronic lymphatic
leukemia

Phase I Shevtsov & Multhoff (2016)

Advanced solid tumors Pilot Guzhova et al. (2013)

Glioblastoma Phase I Guzhova et al. (2013)

HIV Phase I SenGupta et al. (2004)

Bacterial
flagellin

Bacterial diarrhea and
Guillain–Barré syndrome

Phase I Moyle (2017)

Influenza A virus Phase I/II Taylor et al. (2011, 2012)

Dengue viruses/Zika virus Preclinical Liu et al. (2015)

Respiratory syncytial virus Preclinical Liu et al. (2015)

MALP-2 Pancreatic cancer Phase I/II Schmidt et al. (2007)

HBcAg P. falciparum Phase I Roose et al. (2013)

Influenza A virus Phase I Roose et al. (2013)

Hepatitis B virus Licensed Effio & Hubbuch (2015)

Qβ VLP Melanoma Phase I, II, IIa Goldinger et al. (2012)

Persistent allergic asthma Phase II Beeh et al. (2013)

Hypertension Phase I Ambühl et al. (2007)

Nicotine dependence Phase I Cornuz et al. (2008)

Alzheimer’s disease Phase I/IIa Winblad et al. (2012)

SAPNs Hepatitis B Phase III Shirbaghaee & Bolhassani
(2016)

Cervix cancer Phase III Shirbaghaee & Bolhassani
(2016)

Parvovirus porcine
infection

Phase I/II Kushnir, Streatfield &
Yusibov (2012)

Influenza A Phase I/II Kushnir, Streatfield &
Yusibov (2012)

Malaria Phase III Kushnir, Streatfield &
Yusibov (2012)

Alzheimer’s disease Phase II Lopez-Sagaseta et al. (2016)

Malignant melanoma Phase II Lopez-Sagaseta et al. (2016)

Liposome Influenza Phase I/II Tandrup et al. (2016)

Streptococcus mutans Phase I Tandrup et al. (2016)

Neisseria meningitides Phase I Tandrup et al. (2016)

HIV Phase I Tandrup et al. (2016)

Mycobacterium tuberculosis Phase I Tandrup et al. (2016)
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presenting synthetic epitope peptides (Schulze et al., 2017; Olive et al., 2007). Noushin et al.
combined the antigen site of pre-fusion respiratory syncytial virus (RSV) F GP (Ø and
II (B cell epitopes)) with PADRE (T helper cell epitope) using the LCP delivery
system and found that the LCP constructs could induce a high level of RSV-specific
antibodies (Jaberolansar et al., 2017). In addition, Nirmal et al. coated the group A
streptococcus (GAS) lipopeptide-based vaccine candidate (LCP-1) on the surface of PLGA
to form NPs that induced a high antibody response, suggesting that the PLGA-based
LCP delivery system may be a promising method in vaccine research (Marasini et al.,
2016). Due to several advantageous properties, lipid-based antigen complexes can
effectively stimulate both humoral and cellular immune responses. Therefore, lipid-based
delivery systems represent potential efficient vaccine adjuvants (Kabiri et al., 2018).
For example, several liposome vaccines are currently being investigated in clinical
studies (Table 5).

Polymeric and inorganic nanoparticles
Some polymers exhibit good stability and biocompatibility, and can encapsulate and carry
antigens to target cells (Negahdaripour et al., 2017b), such as PLGA, thermo-responsive
synthetic polymers, and N-(2-hydroxypropyl) methacrylamide (HPMA) (Li, Zhou &
Huang, 2017). Thus, these polymers are often used as organic biological carriers to present
multiple epitopes to the immune system (Tam, 1988). Multi-alkyne-functionalized
hbPG is a globular polymer with multiple branches that displays good biocompatibility
and is not immunogenic; its multi-functional dendrimer-like structure provides sufficient

Table 5 (continued).

Build-in
adjuvant

Disease Clinical phase Reference

PLGA Hepatitis B Clinical trial Yang et al. (2016)

HIV Phase I Bolhassani et al. (2014)

Solid tumors Preclinical Bolhassani et al. (2014)

Cervix cancer Phase II/III Bolhassani et al. (2014)

Hepatitis C Preclinical Bolhassani et al. (2014)

Chitosan RSV Preclinical Bolhassani et al. (2014)

Tuberculosis Preclinical Bolhassani et al. (2014)

Allergy Preclinical Bolhassani et al. (2014)

Gold nanoparticle Influenza Clinical trial Vartak & Sucheck (2016),
Zhao et al. (2014)

HIV Clinical trial Vartak & Sucheck (2016),
Zhao et al. (2014)

RSV Clinical trial Vartak & Sucheck (2016),
Zhao et al. (2014)

Foot-and-mouth disease Clinical trial Vartak & Sucheck (2016),
Zhao et al. (2014)

Malaria Clinical trial Vartak & Sucheck (2016),
Zhao et al. (2014)

Note:
The clinical phases of various built-in adjuvants and their applications in the treatment of different diseases.
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space to present multivalent antigens (Glaffig et al., 2014). Based on these characteristics,
B cell epitopes of the tumor-associated antigen, MUC1, glycopeptide, and the T cell
epitopes of the tetanus toxin, P2, can be coupled in series to each branch of the hbPG;
moreover, these nanoscale branched spheres can express the glycopeptide on its surface,
resulting in enhanced exposure of the antigens to the immune system (Glaffig et al.,
2014, 2015). Currently, various vaccines based on polymer NPs are being tested in
preclinical and clinical trials, including those for tuberculosis, cancer, and HIV (Table 5).

Nanoparticles based on the conjugation of peptide epitopes and polymers display
highly promising self-adjuvant properties; however, their lack of biodegradability may lead
to serious deficiencies (Skwarczynski et al., 2010). Chitosan is a non-toxic, muco-adhesive,
and biodegradable natural polymer that can be recognized by a variety of receptors
(e.g., mannose receptors, TLR2, C-type lectin receptor, Dectin-1, and leukotriene B4
receptors) on the surface of APCs (Li et al., 2013). Chitosan NPs are typically prepared by
interacting with anionic crosslinkers, antigens or polymers; anionic tripoly-phosphate
was typically used as a crosslinking agent in previous studies (Prego et al., 2010).
However, Nevagi et al. (2018) developed a novel chitosan NPs-based vaccine delivery
system produced by the conjugation of a short anionic polymer (PGA) to a peptide antigen
possessing a conserved B cell epitope derived from GAS and a universal Th epitope to form
NPs with trimethyl chitosan via ionic interactions. The GAS peptide antigen-based
chitosan NPs were formulated without the use of a crosslinking agent and evaluated in
mice upon intranasal administration; such studies have determined that NPs can induce
specific mucosal and systemic opsonic antibodies (Nevagi et al., 2018).

Some inorganic materials (e.g., gold, aluminum hydroxide, and carbon nanotubes) also
have excellent biological properties (e.g., good biocompatibility, as well as ease of
modification and processing). Among these, gold NPs have attracted increased attention as
antigen carriers in vaccine research (Negahdaripour et al., 2017b) (Fig. 7). Compared
with other inorganic NPs, gold NPs have been widely investigated in clinical studies
for epitope-based vaccine delivery (e.g., influenza, HIV, and Malaria) (Table 5).
For example, the Cap protein of porcine ring type 2 is used to directly react with AuNPs via
a unique cysteine sulfhydryl group to form Cap-AuNPs, which expose neutralized

Figure 7 The inorganic nanoparticles. The formation of gold nanoparticles carrying antigen epitopes.
Full-size DOI: 10.7717/peerj.6185/fig-7
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epitopes to the outer surface of gold NPs, and mice immunized with Cap-AuNP showed
that Cap-AuNP could efficiently activate T lymphocytes and balance the immune
response of Th1 and Th2 cells (Ding et al., 2017b). Recently, researchers have developed a
variety of gold nano-vaccines against influenza viruses that are associated with
favorable application prospects (Tao et al., 2017; Wang, Zhu & Wang (2017b)).
Wang et al. (2018b) coupled recombinant trimetric influenza A/Aichi/2/68 (H3N2) HA
onto the surface of AuNPs and used flagellin as a built-in adjuvant to develop a
FliC-coupled AuNP-HA nano-vaccine. These studies indicate that there is promising
future for polymeric and inorganic NPs in vaccine development.

CONCLUSIONS
With the expansion of knowledge in the fields of immunology and pathogenic biology, a
new era of vaccine science has been established. Such advances have provided a basis
for the development of various epitope-based vaccines that have been extensively studied
due to their unique advantages, particularly the ability to overcome the safety problems
associated with traditional vaccines. To overcome the obstacles associated with
epitope-based vaccines (e.g., enzymatic degradation), facilitate recognition by the target
cells of the immune system more efficiently, as well as maintain and enhance the efficiency
and immunoreactivity of the constructed vaccines, the development of novel built-in
adjuvants is a key step in the design of epitope-based vaccines. It is essential to optimize
the subunit vaccine antigen design and understand the trends in adjuvant applications,
including target antigen processing and its in vivo presentation. To efficiently separate
the constructed multi-epitope domains, flexible linkers are often used (e.g., GPGPG and
EAAK). The lack of suitable linkers in epitope-based vaccines may lead to the
production of novel structural regions which may interfere with the immunogenicity of
exogenous epitopes. In this review, we briefly introduced several commonly used built-in
adjuvants (e.g., TLR ligands, VLPs, and several bacterial toxin proteins) with different
features and several new potential co-delivery systems for epitope-based antigens.
These systems are capable of forming NPs, have no immunogenicity or toxicity, and can
display antigen epitopes on the surface of the particles, including MAP, SAPNs, LCP, and
polymeric or inorganic nanomaterials. Additionally, carrier proteins with epitopes can
serve as chaperones and stimulate the production of immune-related factors, possess
CTL and Th-cell epitopes required to generate a humoral and cellular immune
response, or spontaneously assemble into VLPs. The majority of built-in adjuvants
(e.g., HSP70, flagellin, and Chitosan) mentioned in this review are already in clinical
trials (Table 5). The carbohydrate-based conjugate vaccines were prepared using
TT, DT, meningococcus B outer membrane protein complex (OMPC), and other
proteins (e.g., KLH) used as the carrier molecules (Pichichero, 2013). Additionally, these
protein carriers have achieved great success. For example, a range of glycoconjugate vaccines
against infectious diseases (e.g., Haemophilus influenzae type B, Neisseria meningitidis
and pneumonia) have been licensed for clinical use (Astronomo & Burton, 2010). There are
some approved VLP-based vaccines currently on the market, including recombinant
HBV, hepatitis E virus, and HPV vaccines. Several VLP vaccines for different diseases are

Lei et al. (2019), PeerJ, DOI 10.7717/peerj.6185 27/48

http://dx.doi.org/10.7717/peerj.6185
https://peerj.com/


also being tested in clinical trials (Negahdaripour et al., 2017b). However, the clinical
development of HBc-based VLPs for prophylactic vaccines is likely to experience little
growth in the next few years. This is because for HBV-infected patients, the use of
HBV particles as an immunogen may lead to poor responses. Thus, it is particularly
important to develop alternative VLPs, such as hepadnaviral or plant virus-derived VLPs
(e.g., TMV-based VLPs), some of which could be tested in future clinical trials (Roose et al.,
2013). Although some adjuvants are currently used in vaccines licensed for human use,
they are usually used as mixtures with antigens. In comparison, antigen-adjuvant fusion
can significantly improve immunogenicity and display greater potential to induce an
antigen-specific immune response. Based on clinical studies of conjugate vaccines, it is
difficult to conclude which built-in adjuvant has a greater influence on vaccine
immunogenicity. This is because, in addition to adjuvants and selected epitopes, there are
other parameters that affect the immunogenicity of epitope vaccines, including conjugation
chemistry, the presence of a spacer, and degree of conjugation. The development of
future multivalent epitope-based vaccines is primarily dependent on future advances in
research involving built-in adjuvants, which have the characteristics of being easily obtained,
good biological safety, and a high efficiency for displaying epitopes. In the future,
we hope to see the marketing approval of several multiepitope-adjuvant fusion vaccines,
as well as increased interest in the field of built-in adjuvants.
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