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Abstract: Accurate acquisition of 3-D flight trajectory of individual insect could be of benefit to the
research of insect migration behaviors and the development of migratory entomology. This paper
proposes a novel method to acquire 3-D flight trajectory of individual insect. First, based on the
high range resolution synthesizing and the Doppler coherent processing, insects can be detected
effectively, and the range resolution and velocity resolution are combined together to discriminate
insects. Then, high accuracy range measurement with the carrier phase is proposed. The range
measurement accuracy can reach millimeter level and benefits the acquisition of 3-D trajectory
information significantly. Finally, based on the multi-baselines interferometry theory, the azimuth
and elevation angles can be obtained with high accuracy. Simulation results prove that the retrieval
accuracy of a simulated target’s 3-D coordinates can reach centimeter level. Experiments utilizing
S-band radar in an anechoic chamber were taken and results showed that the insects’ flight behaviors
and 3-D coordinates’ variation matched the practical cases well. In conclusion, both the simulated
and experimental datasets validate the feasibility of the proposed method, which could be a novel
measurement way of monitoring flight trajectory of aerial free-fly insects.

Keywords: insect migration; individual insect; 3-D flight trajectory; range measurement;
angle measurement

1. Introduction

Insects have evolved two general strategies to cope with habitat changes: diapause or migration.
Long-distance migration, a seasonal to and from movement of insect populations between different
regions where conditions are alternately favorable or unfavorable, is a widespread phenomenon
among animals [1]. Billions of insects migrate annually, which makes it an important reason for crop
pests’ sudden outbreaks and plant disease prevalence [2]. Therefore, better understanding of insect
migration could help us develop more effective management strategies against major crop pests and
other relevant diseases.

Insects, together with the fact that most species are nocturnal flying hundreds of meters above
the ground, are too small for movement observing and individual tracking. Therefore, knowledge of
insect migration lags behind that of other vertebrates, such as birds and bats. However, radar provides
a good solution to this difficult problem, with the remote sensing capabilities of extracting information
of free-fly migratory insects [3,4]. With these direct parameters, new discoveries of ecological and
biological behaviors of migration insects were published constantly. For example, the phenomena of
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large-scale taking-off, high-density concentrating, and downwind orientation of insect swarms were
directly observed by entomological radars [5–8].

Although important progresses have been made by entomological radar studies, the accurate
acquisition of 3-D flight trajectory of individual insect remains unsolved by the limitation of working
modes and system functions of traditional entomological radars. Nowadays, entomological radars can
be mainly divided into two types: scanning radar and vertical-looking radar (VLR). Scanning radar can
acquire migration parameters for the overflying population, such as density, speed, and flight direction.
However, it is difficult for scanning radar to acquire information of individual insect [9]. VLR allows
information related to the size, shape, wingbeat frequency and body alignment of overflying insects to
be acquired. However, the narrow beam it emits determines that the spatial scale it monitors is quite
small. Besides, the range information is measured with the time delay of the pulse signal and angle
information is deduced from the echo intensity modulation. Therefore, VLR can just acquire the flight
trajectory of individual insect at a very small spatial scale with low accuracy [10].

Acquisition of the flight trajectory of migratory insects can improve our knowledge on the
migration behavior of insects, and help us model accurately the migration pathway of crop pests.
For example, with high accuracy acquisition of the insects’ flight trajectories, it is possible to figure out
how different insects adjust their flight to orient towards the same direction [11]. As another example,
entomologists found that concentrating behavior related with rainfall could cause large numbers
of insects to land within a short time and pest outbreaks would happen [12]. Combining trajectory
information with rainfall information, effective early warning of pest outbreaks could possibly be
realized. Therefore, studies on new methods of obtaining 3-D flight trajectory of migratory insects are
imperative and important.

The 3-D location of a target can be determined by its range, elevation angle and azimuth angle
in the polar coordinate. The direction of arrival (DOA) of an incoming signal can be determined
with a multi-baselines interferometer. Although the elevation and azimuth angles of a target can be
determined with high accuracy, the DOA method has a disadvantage of strict requirement of baseline
settings to eliminate influence of phase ambiguity [13]. The time summation of arrival (TSOA) method
can also be used to determine a target’s 3-D location. However, this method needs to solve non-linear
equations with iteration calculation. The computationally time-consuming process means it cannot be
used to acquire trajectory information of insects in real-time [14]. Till now, no research on acquiring
the 3-D flight trajectory of migratory insects in entomological radar applications has been carried out.

To address the above problem, a novel method to acquire the 3-D flight trajectory of individual
insect is proposed. First, based on the high range resolution synthesizing and the Doppler coherent
processing, insects can be detected effectively, and the range resolution and velocity resolution are
combined together to discriminate insects. Then, high accuracy range measurement with the carrier
phase is proposed. The range measurement accuracy can reach millimeter level and benefits the
acquisition of trajectory information significantly. Finally, based on the multi-baselines interferometry
theory, the azimuth and elevation angles can be obtained with high accuracy. We utilize S-band
(wavelength 9.09 cm) radar, which adopts high resolution technique and employs multi-baselines
interferometry theory, to carry out experiments of several typical migratory insects in an anechoic
chamber. Both the simulated and experimental datasets validate the feasibility of the proposed method,
which lays theoretic foundation for monitoring the 3-D flight trajectories of aerial free-fly insects.

The remainder of the paper is organized as follows: Section 2 introduces the proposed method,
which includes five steps, i.e., signal model, high range resolution synthesizing, Doppler coherent
processing, high accuracy range measurement with carrier phase, and angle measurement with
multi-baselines interferometry. Section 3 demonstrates the performance of the proposed method with
the simulated and experimental datasets. Our conclusions are drawn in Section 4.
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2. Method

2.1. Signal Model

Water is a highly effective scatter of radio waves. An insect’s body contains a mass of water, which
makes it an identifiable target of radar. However, in contrast to the range resolution (decimeter or
meter level) of current radars systems, insects are too small (millimeter or centimeter level). Therefore,
an insect can be regarded as a point target.

The stepped-frequency technique is adopted to realize high range resolution [15]. A frame of
stepped-frequency signal includes a group of subpulses. The difference of the carrier frequencies
between two neighboring subpulses is the same, and it is called the frequency step. Figure 1 shows the
scheme of the stepped-frequency signal. The transmitted signal can be modeled by

S(t) =
N−1

∑
i=0

rect
(

t− iTr − Tp/2
Tp

)
· exp[j2π( f0 + i∆ f )t], (1)

where Tp is the subpulse duration, Tr is the subpulse repetition interval, ∆ f is the frequency step
size, N is the number of subpulses in a frame of stepped-frequency signal and f0 is the carrier
frequency of the first subpulse. rect[· · ·] is a rectangular window function which limits the time range
iTr ≤ t ≤ iTr + Tp. Every subpulse is a linear frequency-modulated signal.
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Figure 1. Scheme of the stepped-frequency signal.

In ideal conditions, as a point target, echo amplitude of individual insect can be considered as one.
Therefore, for a moving insect with initial distance R0 and radial velocity v, the time delay between its
echo signal and transmitted signal is τ(t) = 2(R− vt)/c, where c is the speed of light. The echo signal
can be described by

Sr(t) =
N−1

∑
i=0

rect
(

t− iTr − Tp/2− τ(t)
Tp

)
exp[j2π( f0 + i∆ f )(t− τ(t))]. (2)

Considering the coherent referenced signal as

Sp(t) =
N−1

∑
i=0

rect
(

t− iTr − Tr/2
Tr

)
exp[−2π( f0 + i∆ f )t]. (3)

Mixing the echo signal with the referenced signal, we have

U(t) = Sr(t)S∗p(t) =
N−1

∑
i=0

rect
(

t− iTr − Tp/2− τ(t)
Tp

)
exp(−j2π f0τ(t)) exp(−j2πi∆ f τ(t)). (4)
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2.2. High Range Resolution Synthesizing

In order to acquire the flight trajectory of individual insect, both ability to acquire range
information with high accuracy and ability to distinguish individual insect from insects group are
necessary. Traditional entomological radars emit pulse signal and the typical values of the pulse
durations are 0.1, 0.07 or even 0.05 µs (15, 10 and 7.5 m range resolution, respectively). The low
range resolution makes it easy to have multiple insects in a resolution cell. Therefore, we adopt high
resolution synthesizing technique [16,17].

The total time TF = N · Tr of each frame of the stepped-frequency signal is in the order of
millisecond and the radial flight velocity of an insect is no more than 10 m/s, then the flight distance of
individual insect in TF is very short, which means the time delay τ(t) can be considered as a constant
τ. The first term of Equation (4) limits the time range of the echo signal, the second term exp(−j2π f0τ)

is a constant, while the third term exp(−j2πi∆ f τ) can be regarded as a frequency-domain signal with
linear change frequency at τ. Sample the mixing result at time t = iTr + τ and get

U|t=iTr+τ = exp(−j2π f0τ) exp(−j2πi∆ f τ) . (5)

Take the IDFT (inverse discrete Fourier transform) operation of Equation (5),

V(n) = 1
N

N−1
∑

i=0
exp(−j2π f0τ) exp(−j2πi∆ f τ) · exp

(
j 2πi

N n
)

= 1
N exp

(
−j2π

(
f0 +

(N−1)∆ f
2

)
τ
)
· exp

(
jπ
(

1− 1
N

)
n
)
· sin(π(n− R

∆R ))
sin( π

N (n− R
∆R ))

. (6)

where n = 0, 1, . . . , N − 1, and ∆R = c/(2N · ∆ f ) is the range resolution. V(n) is the high resolution
synthesizing result and a frame of wideband signal in time domain. Its amplitude is

|V(n)| =

∣∣∣∣∣∣
sin
(

π
(

n− R
∆R

))
sin
(

π
N

(
n− R

∆R

))
∣∣∣∣∣∣. (7)

|V(n)| is a discrete sinc function. When n equals R/∆R, |V(n)| gets its max value. The range
resolution ∆R commonly used in the high resolution radar systems is in decimeter level. Considering
that n is an integer and R/∆R might not be, range measurement error cannot be avoided if the target
range R is just determined by n, which is the location of the max amplitude of the high resolution
synthesizing result. The measurement error is approximately several centimeters or decimeters.

Adoption of the high resolution synthesizing technique benefits the distinction of individual insect
from insects group. Besides, high resolution synthesizing can improve signal-to-noise ratio (SNR),
since the synthesized result is a sinc function and the signal power is concentrated. The detection
performance of weak targets can be improved greatly with the high resolution technique.

2.3. Doppler Coherent Processing

Current research has proven RCS (Radar Cross Section) of individual insect is very small and
RCS of tiny insects can even lower to −80 dBsm [18,19]. Therefore, random noise affects the effective
detection of individual insect. The phase variation of the random noise is stochastic, while that of the
high resolution synthesizing result is coherent. Doppler processing is a coherent integration method,
so it can be used to further improve SNR and benefits the detection of insects flying at the high
altitude [20].

To acquire 3-D flight trajectory of individual insect on a large spatial scale, a wide beam is essential.
However, it causes a large resolution cell and makes it easy for multiple insects to fly in the same
resolution cell. Doppler processing can acquire velocity information based on the shift of Doppler
frequency and provide another dimension of velocity resolution. Therefore, multiples insects flying



Sensors 2016, 16, 2166 5 of 17

in the same resolution cell can be discriminated in a new 2-D joint domain of range domain and
velocity domain.

The Doppler processing method takes DFT (discrete Fourier transform) operation to multi-frames
of high resolution synthesizing results. Assume that multi-frames of high resolution synthesizing
results constitute a group and each group includes M frames. If too many frames are used to take
Doppler processing, the flying distance of an insect within the time of M frames may cross multiple
range resolution cells and then velocity compensation is essential to make effective Doppler analysis.
To simplify this problem and avoid velocity compensation, M should not be too large. Assuming the
insect target moves uniformly relative to the radar in each group, the time delay between the echo and
transmitted signals is

τ(t) =
2(R0 − vt)

c
=

2(R0 −mTF · v)
c

m = 0, 1, . . . , M− 1, (8)

where R0 means the initial distance between the insect target and the radar. The high resolution
synthesizing result in Equation (6) can be further described as

V(n, m) = exp
(
−j2π

(
f0 +

(N−1)∆ f
2

)(
2(R0−mTFv)

c

))
· exp

(
jπ
(

1− 1
N

)
n
)
· 1

N
sin
(

π
(

n− R0−mTFv
∆R

))
sin
(

π
N

(
n− R0−mTFv

∆R

))
= exp

(
−j2π

(
2(R0−mTFv)

λ

))
· exp

(
jπ
(

1− 1
N

)
n
)
· 1

N
sin
(

π
(

n− R0−mTFv
∆R

))
sin
(

π
N

(
n− R0−mTFv

∆R

))
, (9)

where λ = c/( f0 + (N − 1)∆ f /2) is the wavelength of the radar signal. n is a variable, so the complex
term exp(jπ(1− 1/N)n) should be compensated before taking Doppler processing. Compensating
the complex term including n of Equation (9), we can get

V(n, m) = exp
(
−j2π

(
2(R0 −mTFv)

λ

))
· 1

N

sin
(

π
(

n− R0−mTFv
∆R

))
sin
(

π
N

(
n− R0−mTFv

∆R

)) . (10)

When taking Doppler processing, regard n as a constant and m a variable, so the phase of
the first term shows linear variation with m. The second term is a sinc function. When n equals
(R0 − mTFv)/∆R, the second term gets its max value 1, but m is a variable when take Doppler
processing, so its max value will change with m. In order to avoid velocity compensation, the max
value of the second term should approach 1 when m varies. Under the condition that the amplitude
fluctuation of the max value is no more than 5%, we can get the condition that M should satisfy is

MTFv ≤ ∆R/7. (11)

Now the max value of the second term can be regarded as a constant, so when taking Doppler
processing, we can just consider the first term of Equation (10). Get the first complex term,

g(m) = exp
(
−j2π

(
2(R0 −mTFv)

λ

))
. (12)

Take Doppler processing to g(m),

G(k) = 1
M

M−1
∑

m=0
exp

(
−j2π

(
2(R0−mTFv)

λ

))
exp

(
−j 2πk

M m
)

= 1
M exp

(
−j 4π

λ

(
R0 − (M−1)TFv

2

))
· exp

(
−jπ

(
1− 1

M

)
k
)

sin(π(k− v
∆v ))

sin( π
M (k− v

∆v ))

, (13)
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where k = 0, 1, . . . , M− 1, ∆v = λ/(2MTF) is the velocity resolution. In order to extract carrier phase
of the target, the complex phase term exp(−jπ(1− 1/M)k), including k, should be compensated and
we can get

V(n, k) = DFT[V(n, m)] = 1
NM exp

(
−j 4π

λ RM

)
·

sin
(

π
(

n− RM
∆R

))
sin
(

π
N

(
n− RM

∆R

)) sin(π(k− v
∆v ))

sin( π
M (k− v

∆v ))
, (14)

where RM = R0 − (M− 1)TFv/2 is the mean value of the distance between the insect target and radar
within the time of M frames. V(n, k) is the Doppler coherent processing result. Other than range
resolution ∆R, V(n, k) also has velocity resolution ∆v. Therefore, the Doppler processing result can
provide another dimension of velocity resolution, which benefits the discrimination of insects in a new
2-D joint domain of range domain and velocity domain. Amplitude of V(n, k) is

|V(n, k)| =

∣∣∣∣∣∣
sin
(

π
(

n− RM
∆R

))
sin
(

π
N

(
n− RM

∆R

))
∣∣∣∣∣∣ ·
∣∣∣∣∣ sin

(
π
(
k− v

∆v
))

sin
(

π
M
(
k− v

∆v
)) ∣∣∣∣∣. (15)

|V(n, k)| is a discrete 2-Dsinc function. When n equals R/∆R and k equals v/∆v, |V(n, k)| reaches
its maximum value. The complex information of the maximum value is

V
∣∣n=R/∆R,k=v/∆v =

1
NM

exp
(
−j

4π

λ
RM

)
. (16)

We can see that taking Doppler coherent processing to the high resolution synthesizing results is
equivalent to making secondary compression. Moreover, the Doppler processing result has velocity
resolution besides range resolution. In conclusion, with Doppler coherent processing, SNR can be
further improved to benefit the detection of insects and velocity resolution is introduced to benefit
discrimination of insects.

2.4. High Accuracy Range Measurement with Carrier Phase

From Equation (15), the Doppler processing result is a discrete 2-D sinc function. According to
the location of the maximum amplitude, the target’s range R and radial velocity v can be determined.
Traditional high resolution radars utilize the time delay of the echo signal, i.e., according to the
location of the maximum amplitude of the Doppler processing results, to take range measurement.
Common accuracy of range measurement with the time delay is in the order of centimeter or decimeter.
The measurement accuracy is not high enough. To acquire 3-D flight trajectory of individual insect
with high accuracy, high accuracy range measurement is essential.

Considering the phase term shown in Equation (16), the carrier phase is very sensitive to
the radial range variation of the target and it is potential for high accuracy range measurement.
The half-wavelength motion in range could cause 2π phase change. If the range change is larger
than λ/2 between two adjacent groups to take Doppler processing, the phase difference could be
ambiguous. Thus, the frame number of signals to take Doppler processing should be limited and high
pulse repetition frequency is essential. After satisfying the unambiguous condition, the accurate range
can be deduced with the carrier phase difference. Moreover, the Doppler processing result has a high
SNR, so the accuracy of range measurement based on carrier phase difference can be ensured [21,22].
The accurate range information is quite critical for the acquisition of 3-D trajectory information.

From Equation (16), in an ideal case, carrier phase of the target is

ϕ
(
tp
)
= −

4πR
(
tp
)

λ
, (17)
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where p = 0, 1, 2, . . . means the pth group to take Doppler processing, tp is the discrete sampling
interval and equals MTF. The carrier phase difference of two adjacent groups is

∆ϕp+1 = ϕ
(
tp+1

)
− ϕ

(
tp
)
= −

4π
(

R
(
tp+1

)
− R

(
tp
))

λ
. (18)

It can be noted that the phase difference information includes range difference information.
Under the condition that R(tp) is known, R(tp+1) can be acquired with high accuracy from the
phase difference.

R
(
tp+1

)
= R

(
tp
)
− λ

4π
∆ϕp+1. (19)

Utilizing Equation (19), range information at any moment can be acquired as

R
(
tp
)
= R(t0)−

λ

4π

p

∑
l=1

∆ϕl , (20)

where R0 is the initial range.
The accuracy of range measurement is determined by the extraction accuracy of carrier phase

difference. Actually, insects’ RCS are related with their aspect—the direction they are facing relative to
the radar beam. Therefore, insects’ flight can cause variation of RCS because of the variation of their
aspect angles [15]. Otherwise, cloud, atmosphere and other meteorological conditions can reflect radar
clutter. All above factors could affect the extraction accuracy of phase information. Problems such
as phase ambiguity and phase jump would occur, so suitable filtering method should be adopted to
reduce influence of stochastic phase noise.

2.5. Angle Measurement with Multi-Baselines Interferometry

To acquire 3-D coordinate of individual insect, angle measurements of the azimuth and elevation
angles are also needed. Based on multi-baselines interferometry theory, range differences between the
target and different antennas can be used to take angle measurement. Contrast to the DOA method, which
is based on the phase interferometry, the proposed method has an advantage of no phase ambiguity
and angle measurement accuracy can be guaranteed with high accuracy range information [13,23].

Diagram of angle measurement with multi-baselines interferometry is shown in Figure 2.
The radar system includes three receiving antennas and one transmitting antenna. The transmitting
antenna A0 is on the z-axis and the three receiving antennas A1, A2 and A3 can form two independent
baselines. We adopt antennas A1, A2 and A1, A3 to form baselines A1 A2 and A1 A3, respectively.
Ranges from the target to the four antennas are R0, R1, R2 and R3, respectively. Considering that
insect migration occurs at heights of up to (and sometimes over) 2 km, the ranges are much larger
than the length of the baselines (decimeter level). Therefore, angle measurement can be realized with
the equations,

∆R1 = D · cos θ, (21)

∆R2 = D · cos ϕ · sin θ, (22)

where ∆R1 = R2− R1 and ∆R2 = R3− R1 represents the range differences and D is the baseline length.
Baseline A1 A3 is parallel to the x-axis and A1 A2 is parallel to the z-axis. H is the vertical height from
transmitting antenna A0 to the baseline A1 A3. θ is the elevation angle between the echo direction and
z-axis, and ϕ is the azimuth angle between the projection direction of the echo signal in the x-y plane
and x-axis.

Utilize Equations (21) and (22) to get θ and ϕ,{
θ = arccos(∆R1/D)

ϕ = arccos(∆R2/(D sin θ))
(23)



Sensors 2016, 16, 2166 8 of 17

The central point of the baseline A1 A3 is the coordinate origin O. Once R1 and R3 are acquired
accurately, range R from the target P to the origin O can be obtained, so the target’s coordinate (R, θ, ϕ)

in the polar coordinate system can be determined. The target’s coordinate (xT , yT , zT) in the rectangular
coordinate system can be obtained with

xT = R · sin θ · cos ϕ

yT = R · sin θ · sin ϕ

zT = R · cos θ

. (24)
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3. Simulated and Experimental Validation

3.1. Simulated Validation

3.1.1. Simulation Results

To validate the feasibility of the proposed method to acquire 3-D flight trajectory of individual
insect, simulated datasets based on MATLAB are processed. The simulation scenario is shown in
Figure 2. The target P makes a curve movement in the 3-D space. The height difference H is 1.1 m and
the length of the baseline D is 0.4 m.

Table 1 shows the basic parameters of the S-band radar system. The time duration of each frame
of stepped-frequency signal is TF = NTr = 102.4 µs, the range resolution is ∆R = 0.469 m and the
wavelength is λ = 0.0909 m.

Table 1. Parameters of the S-band radar system.

Parameters Symbol Value

Number of subpulses N 64
Subpulse repetition interval Tr 1.6 µs

Subpulse duration Tp 0.1 µs
Frequency step size ∆ f 5 MHz
Carrier frequency f0 3.3 GHz

Sampling frequency fs 100 MHz

Under the condition that the target’s radial velocity in the simulation is no more than v = 3 m/s,
the value range of M is M ≤ 217 according to Equation (11). M = 100 is selected. Projection components
of the flight track of the target P along the three axes are x(t) = −15 + 3t, y(t) = 100 + 2 cos(2π/5t)
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and z(t) = 100+ sin(πt/10), respectively. The time range is 0 < t < 10 s. Simulation results are shown
in Figure 3.Sensors 2016, 16, 2166 10 of 18 
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Figure 3. Simulation results: (a) Amplitude curves of the transmitted and echo signals; (b) dB image 
of the high resolution synthesizing result; (c) Doppler coherent processing result; (d) high accuracy 
range measurement result with carrier phase; (e) retrieved result of the elevation angle; (f) retrieved 
result of the azimuth angle; (g) retrieved result of the target’s 3-D track; and (h) retrieved error of the 
target’s 3-D track. 

Figure 3. Simulation results: (a) Amplitude curves of the transmitted and echo signals; (b) dB image of
the high resolution synthesizing result; (c) Doppler coherent processing result; (d) high accuracy range
measurement result with carrier phase; (e) retrieved result of the elevation angle; (f) retrieved result of
the azimuth angle; (g) retrieved result of the target’s 3-D track; and (h) retrieved error of the target’s
3-D track.
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Figure 3a shows that in an ideal case, the amplitude of the transmitted signal is a rectangular
wave. However, under the condition of strong stochastic noise, it is hard to determine the target
just by the amplitude of the echo signal. As shown in Figure 3b, with high resolution synthesizing,
the SNR can be increased obviously to about 15 dB and the target can be detected with the max
amplitude. Figure 3c shows the Doppler coherent processing result. The detection performance of
the target can be improved further in the 2-D joint domain of range domain and velocity domain.
The curve in Figure 3d shows the measurement result of range R1 between the target P and the
receiving antenna A1. To evaluate the measurement accuracy, we analyze the differences between
the measured and theoretical ranges. The mean value and standard deviation of the differences are
0.083 mm and 0.045 mm, respectively. The range measurement accuracy is superior to millimeter level.
The curve in Figure 3e shows the retrieved result of the elevation angle and it is noisy because of the
range measurement error. The curve in Figure 3f shows the retrieved result of the azimuth angles.
Since the target P moves along the positive direction of the x-axis, its azimuth angle decreases with
time. The red and blue lines in Figure 3g show the retrieved and theoretical results of the target’s
3-D track, respectively. The measurement error of the target’s 3-D coordinate is shown in Figure 3h.
The mean values of the measurement error of the target’s x-, y-, and z- coordinates are −0.757 cm,
−4.152 cm and 4.151 cm, with standard deviations 2.120 cm, 2.094 cm and 2.049 cm, respectively.
Therefore, the measurement precision can reach centimeter level.

From the simulation results above, it can be noted that the 3-D flight track of a target under the
condition of strong stochastic noise can be acquired accurately with the proposed method and the
measurement accuracy of the target’s 3-D coordinates can reach centimeter level.

3.1.2. Methods Comparison

To better prove the effectiveness of the proposed method, detailed comparisons are made with
other methods.

Range Measurement with Time Delay

The most important step of the proposed method is the high accuracy range measurement with
carrier phase. Although the range information can be acquired with the time delay of the echo signal
according to the location of the max amplitude of the Doppler coherent processing results, the accuracy
of range measurement is not high enough for the retrieval of angle information and can affect the
accurate acquisition of 3-D trajectory information.

Figure 4 shows the range measurement result and retrieved result of the target’s 3-D track
with range information derived from the time delay of the echo signal. Figure 4a shows the range
measurement result and Figure 4b shows the range measurement error. The range resolution of
the S-band radar system is ∆R = 0.469 m. Although the Doppler processing results are ten-times
oversampled in the range direction, the largest measurement deviation is about ∆R/2/10 = 2.345 cm.
By contrast, the range measurement accuracy with carrier phase is superior to millimeter level.
Figure 4c shows the retrieved results of the target’s track and Figure 4d shows the corresponding
retrieved error. Via statistics, the mean values of the retrieved error of the target’s x-, y-, and
z-coordinates are −14.46 m, −1.89 m and 0.66 m, with standard deviations 3.45 m, 3.40 m and
2.36 m, respectively. The measurement accuracy is worse than meter level. It can be noted that accurate
range information is quite critical for the acquisition of 3-D trajectory information.
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measurement error; (c) retrieved result of the target’s 3-D track with range information derived
from the time delay; and (d) retrieved error of the target’s 3-D track.

TSOA Method

For the TSOA method, the time summations of arrival of an incoming signal by three or more
radars are processed to determine the location of a target. In 3-D space, the range summation of the
target to two radars defines one ellipsoid. A minimum of three ellipsoids are required to acquire
the intersection, which defines the target’s location [14]. Utilizing the S-band radar system shown in
Figure 2, the range summation can be defined as the summation of the range from the target to the
transmitting antenna and that from the target to one receiving antenna. Therefore, the transmitting
antenna A0 and three receiving antennas A1, A2 and A3 can be combined together to realize the TSOA
algorithm. It can be expressed as,
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, (25)

where (x0, y0, z0), (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) are the 3-D coordinates of the transmitting
antenna A0 and receiving antennas A1, A2, and A3, respectively. (xT , yT , zT) is the target’s coordinate.,
and RS1, RS2, and RS3 are the corresponding range summations.

To better evaluate the TSOA method, range information derived from the time delay and that
derived from the carrier phase are both utilized to retrieve the target’s 3-D track based on Equation (25).
Simulation results are shown as Figure 5. Obviously, accurate range information benefits the retrieval
of the target’s 3-D track. With range information derived from the carrier phase, the mean values of
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the retrieved error of the target’s x-, y-, and z-coordinates are −0.75 cm, 4.15 cm and 4.15 cm, with
standard deviations 2.12 cm, 2.09 cm and 2.05 cm, respectively. Compared with the simulation results
with the proposed method shown in Section 3.1.1, the statistical results of the measurement errors
show that the measurement accuracy of our method is almost the same as that of the TSOA method.
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Figure 5. Measurement results: (a) Retrieved result of the target’s 3-D track with range information
derived from the time delay; (b) retrieved result of the target’s 3-D track with range information derived
from the carrier phase; (c) retrieved error of the target’s 3-D track with range information derived from
the time delay; and (d) retrieved error of the target’s 3-D track with range information derived from
the carrier phase.

The TSOA method utilizes accurate calculating formulas to realize target localization. To solve the
non-linear equations as shown in Equation (25), an iteration method is commonly used. However, this
is computationally time-consuming and an initial iteration value close to the true solution is required,
which might be difficult to select in practice. These disadvantages mean the TSOA method cannot be
used to acquire the 3-D flight trajectory of individual insect in real-time.

DOA Method

For the DOA method, the direction of arrival of an incoming signal is determined with
a multi-baselines interferometer [13]. The azimuth and elevation angles of a target are retrieved by
measuring the phase differences between different antennas. Two independent baselines can be formed
with the S-band radar system shown in Figure 2. The phase differences related with the two baselines
can be expressed as follows: {

Ψ12 = (2πD/λ) cos θ

Ψ13 = (2πD/λ) sin θ cos ϕ
, (26)
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where Ψ12 is the phase difference of echo signals received by the receiving antennas A1 and A2, and
Ψ13 is the phase difference by the receiving antennas A1 and A3. θ and ϕ are the spherical coordinates
specifying the direction of arrival of the echo signal. If Ψ12 and Ψ13 are known, the direction of arrival
of the echo signal can be computed.

However, when the baseline of the interferometer is larger than λ/2, the possible range of phase
differences can exceed 2π. This leads to an ambiguity in determining the direction of arrival of the
echo signal. The baseline of the S-band radar system is D = 0.4 m, and the wavelength is λ = 0.0909 m.
The length of the two baselines D almost equals 4λ, and therefore the problem of phase ambiguity
cannot be avoided when taking DOA measurement with the S-band system.

Figure 6 shows the simulation results of the phase differences of echo signals from the receiving
antennas A1 and A2. It can be noted that the ambiguous and actual phase differences are different,
and measurement results indicate a difference of 6π. The phase ambiguity has to be resolved before
taking the angle measurement. Unfortunately, the S-band radar system lacks extra antennas to help
resolve the phase ambiguity. The DOA method has disadvantage of phase ambiguity and should only
be applied to some specific radar systems.
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From the comparison results above, it can be noted that the modification to take range
measurement with the carrier phase rather than the time delay benefits the acquisition of the target’s
3-D track significantly. The retrieval accuracy of the target’s 3-D coordinates can be improved from
meter level to centimeter level. As for the TSOA method, it is built upon accurate non-linear equations.
An iteration method is commonly adopted to solve the non-linear equations. The process is much
more computationally time-consuming than the proposed method, and an initial iteration value close
to the true solution is required, which might be difficult to select in practice. These disadvantages
mean the TSOA method cannot satisfy the need of acquiring 3-D flight trajectory of individual insect
in real-time. Moreover, the measurement accuracy of the TSOA method is almost the same with the
proposed method. As for the DOA method, it has an obvious disadvantage of phase ambiguity and
should be applied to some specific radar systems. In conclusion, simulation results prove that the
proposed method can acquire 3-D flight trajectory of individual insect with high accuracy. Besides,
it is easy to be realized without problems such as time consuming and phase ambiguity.

3.2. Experimental Validation

To validate the feasibility of the proposed method to acquire the 3-D flight trajectory of individual
insect in practice, experimental datasets acquired in the anechoic chamber are processed. Experimental
scene is shown in Figure 7. Figure 7a shows the photo of the S-band radar system including one
transmitting antenna and four receiving antennas, three of which are utilized. System parameters and
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the coordinate system keep the same with the simulated scene. The radar parameters are shown in
Table 1. Figure 7b shows the photo of the anechoic chamber. Since we cannot let the insects fly free in
the anechoic chamber, we put two plastic poles about 5 m high at both sides of the anechoic chamber.
A cotton thread is tied to the top end of the both poles and an insect is tied to another cotton thread
about 1 m long in the middle of the first thread. The insect can still fly, but under the constraint of the
second thread, it flies in circles in the experiments. In the experiments, the insects fly at a height of
about 3 m to 4 m above the ground and the radial range to the radar varies at the range of 10 m to
15 m. Figure 7c is the diagram of a flying insect. The radar system is put on a high platform and the
insects fly below relative to the radar, so their z-coordinate is negative.
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Figure 7. Experimental scene: (a) Photo of the S-band radar system; (b) photo of the experimental
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Table 2 shows the insects’ information in the anechoic chamber experiments, including insects’
names, photos, body sizes and the environment information. We select four typical migratory insects to
take experiments. This paper takes a greenish brown hawk as an example to present the experimental
results and validate the feasibility of the proposed method.

Table 2. Insects’ information in the anechoic chamber experiments.

Name Photo
Body Size (mm) Measurement Environment

Body Length Wing Width Temperature (◦C) Humidity (%)

Sweet Potato
Hornworm
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Experimental results are shown in Figure 8. Figure 8a shows that contrast to wavelength (9.09 cm)
of the S-band radar system, the body length of the insect is shorter than half-wavelength, and
echo amplitude of the insects is very small, so it is difficult to detect the insect effectively just by
the amplitude of the high resolution synthesizing result. As shown in Figure 8b, with Doppler
coherent processing, the SNR is increased obviously and the insect can be detected effectively.
Detection performance of the insect as a weak radar target can be improved in the 2-D joint domain of
range domain and velocity domain. The curve in Figure 8c shows the measurement result of range R1

between the insect and the receiving antenna A1. With a time-domain filtering, range measurement
accuracy is further improved. The curve in Figure 8d shows the retrieved result of the elevation angle.
Under the constraint of a thread, the insect’s flight height changed little. Therefore, the variation of
its elevation angle is small. The curve in Figure 8e shows the retrieved result of the azimuth angle.
The curve in Figure 8f shows the retrieved result of the insect’s flight trajectory. Considering that the
insect flew in circles, the result corresponds to the practical situation. In addition, 3-D coordinates
variation of the retrieved result fit well with the actual situation.
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show that insects’ flight behaviors and 3-D coordinates’ variation match well with actual situations. 

This proposed method provides a novel way to monitor 3-D flight trajectory of the aerial 
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method, benefiting the research of insect migration behaviors and the development of migratory 
entomology. 

Acknowledgments: The work was supported by the National Natural Science Foundation of China (NSFC) 
under Grants No. 61120106004, No. 61471038 and No. 61225005; the 111 Project of China under Grant B14010; 
and Science and Technology Innovation Plan of Beijing Institute of Technology under Grant 2016CX01002. 

Figure 8. Experimental results: (a) Amplitude curve of the high resolution synthesizing result;
(b) Doppler coherent processing result; (c) high accuracy range measurement result with carrier phase;
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4. Conclusions

This paper proposes a novel method to acquire the 3-D flight trajectory of individual insect.
The most important step is the high accuracy range measurement with carrier phase. Compared with
traditional range measurement method with the time delay of the echo signal, the modification to take
range measurement with the carrier phase benefits the acquisition of a target’s 3-D track significantly.
The retrieval accuracy of a simulated target’s 3-D coordinates can be improved from meter level to
centimeter level. To prove the effectiveness of the proposed method, comparison results with other
localization methods such as the TSOA method and the DOA method prove that the proposed method
is easy to be realized without problems such as time consuming and phase ambiguity. To prove the
feasibility of the proposed method, utilizing a high resolution S-band radar system, experimental
datasets acquired in the anechoic chamber are processed. Experimental results prove that the Doppler
coherent processing can improve SNR significantly and benefit the effective detection of insects.
In addition, the retrieved trajectory results show that insects’ flight behaviors and 3-D coordinates’
variation match well with actual situations.

This proposed method provides a novel way to monitor 3-D flight trajectory of the aerial free-fly
insects. Forthcoming experimental analysis of 3-D flight trajectory of the aerial free-fly migrating
insects will give a better verification of the feasibility of the proposed measurement method, benefiting
the research of insect migration behaviors and the development of migratory entomology.
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DFT Discrete Fourier Transform
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