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Abstract: The tremendous progress of big data acquisition and processing in the field of neural
engineering has enabled a better understanding of the patient’s brain disorders with their neural
rehabilitation, restoration, detection, and diagnosis. An integration of compressive sensing (CS) and
neural engineering emerges as a new research area, aiming to deal with a large volume of neurological
data for fast speed, long-term, and energy-saving purposes. Furthermore, electroencephalography
(EEG) signals for brain—computer interfaces (BCIs) have shown to be very promising, with diverse
neuroscience applications. In this review, we focused on EEG-based approaches which have benefited
from CS in achieving fast and energy-saving solutions. In particular, we examine the current practices,
scientific opportunities, and challenges of CS in the growing field of BCIs. We emphasized on
summarizing major CS reconstruction algorithms, the sparse basis, and the measurement matrix
used in CS to process the EEG signal. This literature review suggests that the selection of a suitable
reconstruction algorithm, sparse basis, and measurement matrix can help to improve the performance
of current CS-based EEG studies. In this paper, we also aim at providing an overview of the
reconstruction free CS approach and the related literature in the field. Finally, we discuss the
opportunities and challenges that arise from pushing the integration of the CS framework for
BCI applications.

Keywords: compressive sensing; EEG; low power BCls; neurofeedback; assistive technology;
sampling; data acquisition

1. Introduction

As the fourth industrial revolution has accelerated, big data is growing in the field of healthcare,
and the field of neural engineering is no exception. The neurological big brain data comes from
a number of sources including hospitals, research labs, and consumer-directed neurotechnological
devices. This brain data may be used to understand the brain structure and function for improving an
individual’s health. For instance, the Image and Data Archive (IDA), a neurocognitive data archiving,
and sharing platform, presently contains over 130 terabytes of neurological data to study the brain
structure and functions [1]. Since each wire implanted in the brain tracks the activity of multiple
neurons at once, it is difficult to identify which electrical bursts belong to which cell because of the
biological complexity of the brain. Neuroscientists are now studying how an entire living brain
functions by understanding different neuronal dynamics. For instance, one of the initial researches
towards a scalable high-bandwidth brain research and an integrated model proposed by Musk [2] can
collect brain signals from 3072 electrodes simultaneously. Few initial studies on other species brains

Sensors 2020, 20, 3703; d0i:10.3390/s20133703 www.mdpi.com/journal/sensors


http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7025-9451
https://orcid.org/0000-0002-8937-031X
https://orcid.org/0000-0002-1185-2773
https://orcid.org/0000-0002-4659-564X
http://dx.doi.org/10.3390/s20133703
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/13/3703?type=check_update&version=2

Sensors 2020, 20, 3703 2 of 21

also confirm the immensity of cortical activity. For example, 20 min of neural activity in a mouse brain
recording produces about 500 petabytes of flickering data [3]. In another brain study, the brain needed
a few terabytes of images to reconstruct 1000 nerve cells (less than 1% of total cells) from the Drosophila
brain, and researchers spent a decade to collect data from 60,000 neurons at a rate of 1 gigabyte per cell.
According to the same study, the human brain would take an estimated 17 million years [3] to collect
the data from the 86 billion neurons using the same protocol. Furthermore, neural interface technology
is trending towards wireless options as it has a significant advantage that the user can wear it for the
long-term. Measuring neural activity throughout the day across a wide range of activities can provide
a greater possibility for medical specialists to develop an effective patient-specific preventive solution.
However, the more data these wireless neurotechnological devices gather, the more challenges we face,
including high bandwidth, complex hardware, and more battery power required to handle the large
amounts of data transferred from sensor end to decoder end of the wireless system.

As neuroscientists push the limits to understand the immense complexity of the brain with big
data, researchers are developing efficient computational methods to handle and interpret the resulting
data. Various data compression methods have been used for effective storage and transmission of
multichannel electroencephalography (EEG) signals including, discrete cosine transform (DCT) based,
discrete wavelet transform matrix (DWT) based, and run-length encoding. These methods need two
independent steps, which are signal acquisition followed by compression. In contrast, compressive
sensing (CS) allows data acquisition and compression simultaneously, which provide on-chip data
compression and leads to efficient hardware implementation for signal acquisition. Therefore, CS has
become an increasingly utilized paradigm for efficient data acquisition. The theory of CS was first
introduced in [4] by Donoho et al. as a new paradigm for efficient data acquisition. The CS-based signal
acquisition of an analog signal can be implemented with a continuous sensing operator that randomly
sub-samples the input data and provides compressed measurements that consist of very few linear
projections of the original signal. The theory of CS works well with the signals that can be represented
by a significant k coefficients (i.e., k-sparse signals) over a N-dimensional basis. In other words, in
contrast to the Nyquist-Shannon sampling theorem, CS relies on the sparsity data, and can be used for
sampling the sparse signal below the Nyquist-Shannon limit, allowing its reconstruction from much
fewer samples. In addition, CS offers synergistic time, and bandwidth reduction for wireless signal
transmission with sparse sampling, and hence decreases the hardware and power requirements of the
sensing devices.

The theory of CS was initially proposed for low-rate image acquisition. It was then developed for
many other applications such as ultrasound imaging [5], face recognition [6,7], single- pixel camera [8],
wireless sensors networks [9,10], cognitive radio networks [11,12], sound localization [13], audio
processing [14,15], radar imaging [16,17], image processing [18,19], and video processing [20,21].
Similarly, CS has contributed to various neural engineering research including, neuronal network
connectivity [22], magnetic resonance image (MRI) acquisition [23], MRI reconstruction [24],
electroencephalogram (EEG) monitoring [25], compressive imaging [26,27], and other applications.

Furthermore, the CS framework has been also extensively used in Brain-Computer Interfaces
(BCIs) in dealing with many challenges and to make current EEG-based approaches faster, and
more energy-efficient. This paper provides a comprehensive review of the CS-related EEG studies
by summarizing the related research papers published in the last two decades in terms of the CS
reconstruction algorithms, the sparse basis, and the measurement matrix used in the BCI field.
This work also highlights the current state of knowledge of the CS used in EEG studies and explains
the possible challenges of the current BCIs are facing that lead to the development of effective future
CS-based BCIs. Since a systematic review of CS for BCIs is missing in the literature, and this review
will be useful for researchers and practitioners.

The rest of the paper is organized as follows. The motivation to use CS for BCI applications
and an overview of currently available CS-based EEG studies are in Section 2. A detailed theoretical
description of CS theory is discussed in Section 3, in which we also discuss the state-of-the-art about
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reconstruction algorithms, the sparse basis, and the measurement matrix being used in current BCIs.
The idea of reconstruction free learning and related studies are discussed in Section 4. In Section 5, we
provide the challenges and opportunities that future CS-based wireless neurotechnological devices
may encounter. Finally, we conclude the review in Section 6.

2. Need and Applications of CS for EEG

With recently growing progress in neural engineering research, EEG based methods have
been revealed to be a promising approach for diagnosis, rehabilitation, and restoration of motor
functions. In wireless EEG based devices, batteries have been used as the primary source of
energy. Sophisticated tasks in practical wireless BCI applications—including signal acquisition,
signal processing, and wireless EEG transmission for long term—result in heavy power consumption.
Furthermore, the data recorded from multi-channel neural recording implants and neurological devices
result in large storage space. The CS-based EEG compression and sensing can provide saving in signal
acquisition, and transmission to facilitate signal processing in the resource constraints circumstances.
Roughly, the general CS-based EEG framework can be broadly divided into four main steps (shown in
Figure 1), which are signal acquisition and compression at the sensor node, and signal reconstruction,
feature extraction, and decoding at the receiver node.

Compressive | ((g) ((z))_’ cs || [Feature
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—  Application

Data
Acquisition

Figure 1. Block diagram of CS-based EEG studies

In this regard, the researchers around the world are working on improving these four steps and
proposed various interesting applications. For instance, R. Meenu et al. [28] used the idea of CS
for detecting the presence or absence of epileptic seizures in the EEG signal. The work proposed
by K. Zeng et al. [29] used the compressibility calculated using the CS theory in EEG for automatic
detection of seizure states. The authors used continuous wavelet transform (CWT) to extract features
from time-frequency representation, related to ictal, pre-ictal, and ictal EEG. T. Moy et al. [30] proposed
CS-based EEG signal acquisition and biomarker-extraction system with flexible, thin-film electronics.
They successfully demonstrated the reconstruction of compressed EEG signals at up to 8 x compression
and spectral feature extraction for seizure detection from compressively sampled EEG signals. Another
study by A. Abdulghani et al. [31] discussed the trade-offs related to the practical performance of CS
for long term EEG signals. The work proposed by K. Abualsaud et al. [32] also utilized the idea of CSin
wireless EEG-based epileptic seizure detection and investigated the trade-off between the complexity
of CS-based framework in terms of power and classification accuracy. A few other studies [33-35] also
used the theory of CS for seizure detection and showed a significant reduction in computational power
and storage.

Furthermore, to address the issue of the massive amount of data originating from EEG acquisition,
the study proposed by N. Mammone et al. [36] also utilized the theory of CS to compare the
characteristics of the brain network organization in Alzheimer’s disease (AD), mild cognitive impaired
(MCI), and healthy elderly subjects by analyzing their EEG recordings. F. Morabito et al. [37] also
proposed an interesting study on finding the compressibility property of EEG signals collected from AD
patients, MCI patients, and healthy elderly. The finding of this study shows that it is possible to use the
CS framework to compress and reconstruct the EEG signal with the signal quality required by clinical
constraints, which not only reduces the throughput but also discriminate brain states among AD, MCI,
and normal healthy elderly. A hardware implementation of a low power multichannel EEG signal
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acquisition system based on distributed CS is proposed by B. Kaliannan et al. [38], which enables lower
power and lesser complexity in the sensing end. In order to reduce the power consumption and area
overhead, M. Hosseini et al. [39] also proposed a new microelectronic system for compressive recording
of multichannel high density intracranial neural signals. The performance of efficiently reconstructed
multi-channel neural signals in this study is evaluated through the system and circuit-level simulations.
As another application of CS in BCIs, R. Shriwastav et al. [40] proposed a novel BCI based on CS and
a deep learning framework, where the authors reconstruct the motor imagery EEG signal using a
convolutional neural network (CNN). The study proposed by H. Lee et al. [41] presented an automatic
sleep-stage classification system by utilizing CS for EEG data compression. This work used a radial
basis function (RBF) neural network for sleep-stage classification utilizing the temporal statistical and
spectral features extracted from the reconstructed EEG signal. The results of this study showed that
the CS-based approach achieved high classification accuracy and reduced the hardware complexity of
the system with respect to the previously reported sleep-stage approaches.

3. CS for EEG Signal

As discussed before, CS randomly sub-samples the input data and directly generates compressed
measurements while still preserve the information of interest. To understand CS mathematically,
consider x be the signal of interest of dimension N x 1. A measurement vector y can be computed
using an M x N matrix ®. Mathematically, the signal sampling model using the CS framework can be
given by (1)

y = @x, 1

where, xe RV is the input signal, ® e RM*N is the CS measurement matrix and yeRM is the
compressed measurements. Furthermore, N represents the number of samples in the input signal, and
M represents the number of measurements. In a typical CS setting M << N, so that there are fewer
measurements in y than the original signal x.

Here, it is important to emphasize that certain conditions should be fulfilled for an efficient CS
scenario, which includes input signal sparsity and incoherence between ® and the sparsity basis.
Important methodological considerations for CS such as sparse representation, sensing matrix design,
and reconstruction algorithms will be covered in detail in the following sub-sections.

3.1. Sparse Representation

In Equation (1), the recovery must incorporate some prior knowledge on original signal x.
The structure that is widely assumed in CS is sparsity, and, therefore, the theory of CS relies on
the assumption that the signals being processed are sparse in nature. A signal x is called k-sparse if it
has only a few nonzero entries (i.e., k nonzero coefficients). However, for several practical applications,
signals such as EEG are not explicitly sparse but near sparse. If the signals of interest are not sparse
enough, it can be sparsified with respect to such overcomplete dictionaries ¥ into its transformed
domain; this is known as a dictionary or sparse basis. These dictionaries obtain the sparse form of the
signal by transforming it into other domains, such as wavelet, Gabor, splines, and Fourier domain.
The dictionary is a fixed matrix, which maps the input signal as a sparse linear combination of its
elementary signals called "atoms". These dictionaries are highly redundant, which allows us to obtain
a sparser representation with a variety of atoms. A study by D. Wen et al. [42] discussed more on
sparsity of an EEG signal and presented a review of sparse representation-based EEG classification
methods for epilepsy detection, BCIs and cognitive impairment.

Assume that a one-dimensional discrete-time signal s of length N exhibits sparsity in certain
orthonormal basis ¥ defined by the basis vectors ¥ = [¥1 | ¥2 | ¥3 | ... ¥n]. Therefore, the signal s
can be represented using its sparse transform domain vector x as follows:

N
x=Ys = Z s;¥;, (2)
i=1
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where s is the N x 1 column vector of the signal of interest. Here, it is clear that both x and s are
different representations of the same signal with time and ¥ domains, respectively. The value of x in
(1) can be replaced by ¥s using (2), and, therefore, it is obtained

y = ®(¥s), 3)

y = As, 4)

where A in (4) is a M x N dimension matrix, which transforms and compresses a k-sparse signal x
into a M X 1 measurement y.

In the last few years, researchers have devoted lot of effort for developing a suitable dictionary
that helps to find the sparser representation of the EEG signal. In the literature, the Gabor dictionary,
which can be defined by Gaussian envelope sinusoidal pulses [31] is widely used as a sparse
basis. For instance, the work proposed by M. Mohsina et al. [43] and S. Aviyente et al. [44] uses
Gabor transform as the sparsifying basis of EEG with the focus of reducing energy consumption for
processing and transmission. However, they did not consider the inter-channel correlation of the
EEG signal in their study. P. Dao et al. [45] evaluated the effect of different time and frequency
step sizes in building Gabor atoms [43,44] on EEG signal compression using CS. Furthermore,
P. Dao et al. [46] also discussed on a quantitative comparison of CS using Gabor and K- singular
value decomposition (SVD) dictionaries. Similarly, R. Kus et al. [47] also proposed a novel construction
of an optimal Gabor dictionary for multichannel and multi trial EEG, which allows a priori assessment
of maximum a one-step error of the matching pursuit (MP) algorithm. The work proposed by
H. Zhang et al. [48] also used the over-complete Gabor dictionary for the EEG signal. Few researchers,
such as L. Chen et al. [49] and R. Quian et al. [50] also used the Gabor coefficients of the EEG signals
for seizure detection. Furthermore, F. Morabito et al. [37] used the classical Gabor wavelet dictionary
for the dictionary functions for Alzheimer’s disease (AD) analysis. They claimed that a joint use of
different channels with the same approach could further improve the compressibility of EEG signals
from AD patients, as AD is also known to be responsible for perturbed synchrony among channels.
However, a technical issue still persisting for most of Gabor dictionary is the over complete redundant
representation.

The discrete cosine transform as a dictionary basis is another commonly used approach. The study
proposed by Z. Zhang et al. [51] used the idea of DCT and inverse DCT matrix as the dictionary
matrix ¥ to find the sparse representation of the EEG signal. In this study, the authors compared the
performance of the DCT dictionary ¥ in combination with a few representative CS reconstruction
algorithms. Another research conducted by D. Birvinskas et al. [52] also used DCT domain
representation by expressing an EEG signal as a DCT coefficient vector for signal compression.
The Mexican hat function defined by the second derivative of Gaussian functions [45] as a dictionary
basis is also used to find the sparse basis for the time-frequency analysis of EEG signals [53].

The research growth in the above-mentioned various sparse basis for the EEG signal offers
researchers an opportunity to explore more on EEG signal sparsity. However, these methods have
difficulty in reconstructing accurate EEG signals because of the apriori assumption of signal structures,
and fixed basis function selection. Recently, data-driven dictionary learning has been explored to
represent EEG signals into its sparse domain, which is more suitable for the sparseness of neural
activity signals such as EEG. The work proposed by M. Fira et al. [54] proposed a data-driven
dictionary design by building the dictionary using the EEG signal from the training dataset itself
rather than using any fixed dictionary. Furthermore, apart from these mainstream dictionaries for EEG
signal, few other studies also used B-Spline dictionary [55,56], linear and cubic-Spline dictionaries [57],
Spline dictionary [58], Meyer wavelet function dictionary [59], or Daubechies wavelets function
dictionary [60] to obtain the sparse representation of the input signal.
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3.2. Sensing Matrix

An efficient design of suitable ® is one of the important aspects of the CS framework because
® plays an important role for the compression of x at the sensor end and its reconstruction from y at
the receiver end with given ® and ¥. A variety of sensing matrices such as random sensing matrices,
deterministic sensing matrices, and structural sensing matrices are proposed in the literature. Figure 2
shows a broad classification of available sensing matrices. However, most of the sensing matrices
are designed with the assumption that the signal x is explicitly sparse, which is not the case for the
EEG signal.

— Random Sensing Matrices

v" Reconstruction Error : Low
G . v Computational Complexity : High
aussian Sparse v' Space Requirement : High

Basis Bernoulli Binary

Basis
CS —

Sensing Matrices

— Deterministic Sensing Matrices

/\ v Reconstruction Error : Marginal

v Computational Complexity : Low
Based on Based v’ Space Requirement : Low
Coherence on RIP

Figure 2. Classification of sensing matrices

A primary criterion for CS success is the incoherence between the sampling basis ¥ and the
sensing basis ®, i.e., ® must be maximally incoherent with the sparsifying dictionary ¥, and, therefore,
the researchers have focused on designing the sensing matrix ® to be a random matrix so that it
becomes nearly orthogonal. To this end, various random distribution functions, such as Gaussian or
Bernoulli distributions are used to design a random sensing matrix ®.

In the context of the EEG signal, the Gaussian random matrix is commonly used as a CS signal
sensing matrix in the literature. Many studies [31,36,38] used the Gaussian random matrix ® in their
work. In the study proposed by J. Zhu et al. [60] a new algorithm towards CS reconstruction of
multichannel EEG signals by exploiting cosparsity and the low-rank property also used Gaussian
random matrix as a sensing matrix. Recently, S. Qiu et al. [61] proposed a CS framework for BCls based
on teleoperation control of robotic exoskeleton using steady-state visual evoked potentials (SSVEP).
They used Gaussian random matrix in their integrated study of CS, various brain—-machine reference
commands, and adaptive fuzzy controllers together. The study proposed by H. Liu et al. [62] discussed
various random matrices including Gaussian random matrix for resting-state EEG signal classification
of schizophrenia. Although Gaussian random matrix is commonly used for measurement sensing,
it is not suitable for wireless neural engineering applications because a Gaussian random generator
would lead to a large number of matrix-vector multiplications (energy-intensive), and therefore, it
cannot be efficiently implemented on a signal acquisition hardware [63]. In order to make the sensing
process faster and less computationally complex, few studies [29,35] used a full Bernouilli matrix, as
it is easier to generate its random entries with fewer multiplication operations. However, it is still a
challenge to use Bernouilli matrix due to its space power consumption in hardware. An alternative to
this problem could be the sparse binary sensing matrices, which only contain a few nonzero (one’s)
entries in each column of the matrix. An interesting study proposed by J. Sheng et al. [64] compared
the performance of the random Bernouilli matrix and sparse binary sensing matrix and concluded that
sparse binary sensing matrix are often a better choice over random Bernouilli matrix for implementing
CS for the wireless body sensor network (WBSN). A comparative performance evaluation study
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proposed by R. Tello et al. [65] on an independent SSVEP-BCI based on CS also used a random sensing
matrix in their experiment. This study focuses on the detection of visual attention in SSVEP-BCls
for people with severe motor disabilities. In order to reduce the matrix multiplication operation
further, A. Gilbert et al. [66] also used a sparse binary sensing matrix. Although the reconstruction
performance of sparse binary sensing matrices is not good enough in comparison to full random
matrices, it has been used in many other studies such as [36,39,51,63,67,68]. N. Mammone et al. [36]
adopted the sparse binary matrix as a measurement matrix, inverse DCT matrix as a dictionary matrix
to compress and, subsequently, reconstruct the high-definition (HD)-EEG signals obtained from AD,
MCI and healthy subjects. The work proposed by M. Fira et al. [54] also used a sparse binary sensing
matrix in their experiments. They also compared the reconstruction error for four different sensing
matrices, which are: Gaussian random matrix, Bernouilli random matrix, a random sparse binary
sensing matrix, and a fixed sparse binary sensing matrix. In conclusion, they recommended using a
sparse binary sensing matrix for future wireless BCI applications. Furthermore, M. Hanafy et al. [69]
proposed a study for ZigBee-based EEG telemonitoring and used a binary sensing matrix in their
design. Similarly, A. Majumdar et al. [70] also suggested the use of binary sensing matrix to reduce the
sensing power consumption in their energy efficient CS-based EEG sensing design.

Numerous research has demonstrated the effectiveness of the aforementioned random sensing
matrices. However, the random sensing matrices have high reconstruction complexity, and
computationally demanding, which need significant space requirement for storage. In order to
go beyond these limitations, there is a growing interest for developing deterministic sensing matrices.
T. Nguyen et al. [71] investigated and presented a good review of various deterministic sensing
matrices. Furthermore, few research, as H. Monajemi et al. [72], also claimed that randomness
of the matrix ®, such as Gaussian random matrix, is not required for the phase transition phenomenon
with the assumption that the positions of the non-zeros are chosen purely at random. The system
complexity of the random dense matrices-based approach is typically O(N?), whereas implicit
operations often can be carried out with the system complexity of O(NIlog(N)) using such deterministic
sensing matrices [72]. These deterministic sensing matrices do not require explicit data saving space
and memory accesses and, therefore, these can be used for designing future highly miniaturized
wearable BCIs.

As discussed, the deterministic sensing matrix can make the hardware realization convenient
and easy for the considered applications, hence, deterministic sensing has been widely investigated
in the literature and already been used in many other applications [73,74]. The deterministic sensing
matrix has been exploited for BCI application. For example, W. Zhao et al. [75] used deterministic
quasi-cyclic array code (QCAC) matrix-based compressed sensing encoder architecture for wireless
neural recording applications. Further, W. Zhao et al. [76] also proposed the construction of the QCAC
matrix and sparse random binary matrix (SRBM) and performed simulation experiments to reconstruct
EEG signal from compressed measurement. The authors also compared the reconstruction performance
of QCAC, SRBM, and random binary matrix and showed that these matrices are energy-efficient and
had considerable reduction in computational resources.

3.3. Reconstruction Algorithms

It is interesting to note that the signal acquisition, compression and transmission of CS
measurements are relatively easy and it is the exact reconstruction of the signal that is complex.
On the contrary; it is reverse for the classical sampling based on the Nyquist theorem. A class of CS
reconstruction algorithms has been developed and applied to recover the original signal from the
compressed measurement of y. The reconstruction algorithms available in the literature can be broadly
divided into six categories, as shown in Figure 3. At the receiver end, the CS reconstruction algorithms
basically seek to find an exact solution of an underdetermined system of (1) from infinitely many
solutions. These algorithms are usually iterative and pursue a key goal to reduce the error between the
original and the recovered signal.
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Figure 3. Classification of reconstruction algorithms.

In the context of EEG signal for BCI application, mostly nonlinear algorithms are used, which
require prior knowledge of sparsifying ¥ and A. Basically, the recovery of s in (3) from M compressed
measurements, seeks for solution § by finding minimum few non-zero entries for an under-determined
system N >> M. Mathematically, the recovery of s using lp-minimization is formulated as:

§ = arg min [[s]|; subject to : y = As, ®)
B

where [[8]|;, is the number of non-zero entries in s. A limitation of (5) is that it is NP-hard and
ill-conditioned because of the non-convex nature of [j-minimization. However, (5) can be reformulated
into a convex problem and a unique solution can be found by using I;-minimization given by (6)

§ = arg min [[S]|;, subject to : y = As, 6)
B

where [[s]|;, = ¥ |sil-

The advantages of /1-minimization is its flexibility to incorporate prior information into signal
reconstruction model and its uniform recoverability. A convex optimization problem that finds a
solution having a minimum /1-norm is often called basis pursuit (BP), which is a commonly used
approach for signal reconstruction. For instance, F. Morabito et al. [37] used /;-norm and proposed an
interesting study on finding the compressibility property of EEG signal collected from AD patients, MCI
subjects and healthy elderly. Similarly, M. Fira et al. [54] used /;-norm for EEG signal reconstruction
for the analysis of the specific dictionaries of EEG signals. Furthermore, M. Fira et al. [77] also used
li-norm in their study and proposed CS based framework for the P300 detection spelling paradigm.

The /;-minimization techniques are powerful methods for CS signal recovery when dealing with
noise-free measurements. However, in the case of noisy measurements, it may show a poor recovery
performance and this issue can be handled using I, norms. Similar to I; norm, [ norm optimization
can be formulated as

§ = arg min [[s[|;, subject to : y = As, (7)
E)

- 1/2
where ||5]|;, = X [s;?| "
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In BCI research, few studies adopted I, norm approach to reconstruct the EEG signal. For example,
the study proposed by T. Moy et al. [30] for acquisition and biomarker-extraction system used I, norm
for EEG signal reconstruction. Another work proposed by K. Abualsaud et al. [32] also used I, norm
for EEG-based epileptic seizure detection. In most BCI applications, /1 and I based approach showed
promising results. However, these norms suffer from significant limitations, as they do not take
temporal dynamics of the EEG signal into account, they fail to recover the time courses of EEG data.
In order to address this limitation, few researchers such as A. Gramfort et al. [78] used combinatorial
optimization or mixed norm of both I; and I, also called /;; norm optimization for Magneto-EEG
signal. Similar to [78], [y norm can be used with other norms to efficiently solve the optimization.
For example, Y. Liu et al. [79] used a combinatorial optimization with the /|y norm and Schatteny (s¢)
norms to encourage cosparsity and low-rank structure in the reconstructed EEG signals. Further, the
alternating direction method of multipliers (ADMM) is used to solve the simultaneous cosparsity and
low-rank (SCLR) optimization. The study proposed by J. Zhu et al. [60] also proposed an algorithm
towards CS reconstruction of multichannel EEG signals via /; norm and s, norm regularization. They
make use of [; norm and s, norm to enforce cosparsity and low-rank property in the reconstructed
EEG signal. Further, they applied ADMM to the resulting nonconvex optimization and compared the
performance of /; norm and s, with other competitive reconstruction algorithms and claimed superior
performance.

Furthermore, M. Tayyib et al. [80] proposed an accelerated sparsity-based reconstruction of
compressively sensed multichannel EEG signals using ADMM. First, they obtained the s, norm
along with the decorrelation transformation of EEG data, and then double temporal sparsity-based
reconstruction algorithm has been applied for the signal reconstruction. Few other recent studies [81]
have also shown that combining cosparsity and low-rank property usually results in efficient CS
reconstruction of multichannel EEG signals. However, these studies rarely incorporated the effect
of noise in their studies. It is worth commenting that the noisy measurements may degrade the
performance of CS reconstruction algorithms. The study discussed by X. Zouab et al. [82] proposed a
robust CS reconstruction algorithm called regularized cosparsity and low-rank property (RCS-CLR) to
accurately recover multichannel EEG signals from noisy measurements in the presence of impulsive
noise. Furthermore, most of the cosparsity based methods ignore the adjacent relationship between the
real physical electrodes and use convex regularizations to exploit cosparsity and channel correlation.
This may also degrade the performance of the reconstruction method. In order to enforce inherent
correlation across different channels and cosparsity of multichannel EEG signals, X. Zou et al. [81]
proposed a graph Fourier transform and nonconvex optimization (GFTN)-based method, which can
exploit the accurate adjacent relationship between the real physical channels. Similar to [80], this work
also used ADMM for signal reconstruction.

The Bayesian-based method is another commonly used approach for signal reconstruction from
compressed measurements. The block sparse Bayesian learning (BSBL) was initially introduced by
Z. Zhang et al. [51] as an alternative CS reconstruction algorithm and achieved promising results
for telemonitoring of nonsparse signals such as EEG. The work proposed by K. Zeng et al. [29]
and N. Mammone et al. [36] also adopted the BSBL algorithm as EEG reconstruction method.
The work proposed by S. Fauvel et al. [63] exploits both temporal and spatial correlations to efficiently
compress EEG signals in WBSNs and used BSBL based approach for EEG reconstruction. In this
study, the authors compared the energy consumption (for cycle count, run time, computation and
computation plus transmission) and reconstruction accuracy of the various framework on a wide
range of EEG applications. The BSBL algorithm showed satisfactory reconstruction performance for
various applications. Particularly, for reconstruction of multichannel EEG signals, it is time-consuming.
To address this issue, Z. Zhang et al. [83] proposed a spatiotemporal sparse Bayesian learning algorithm
to reconstruct multichannel signals simultaneously for BCIs and EEG-based driver’s drowsiness
detection by exploiting temporal correlation within each channel and inter-channel correlation
among different channel signals. Furthermore, H. Mahrous et al. [68] proposed a novel method
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for compressing multi-channel EEG signals by exploiting both linear and non-linear dependencies
in the EEG data. This study enables the conventional BSBL-BO to produce a better reconstruction of
the EEG signal because of significantly better “block” sparsity structure than the state-of-art BSBL-BO.
B. Liua et al. [84] proposed a fast BSBL (BSBL-FM) reconstruction algorithm CS framework. They
also implemented BSBL in FPGA and compared the performance of CS-based and wavelet-based
compression algorithms in terms of power and energy consumption.

As discussed before, BP uses /1 norm minimization to solve the optimization problem. Greedy
algorithms pursue a similar goal as convex algorithms to minimize the error between the original
signal and the recovered signal. In the BCI literature, many variations of BP are proposed. For example,
H. Lee et al. [41] presented an automatic sleep-stage classification system and used the orthogonal
matching pursuit (OMP) algorithm for EEG signal reconstruction. Similarly, B. Kaliannan et al. [38]
proposed a hardware realization of the multichannel EEG signal based on simultaneous orthogonal
matching pursuit (SOMP) and theory of joint sparse recovery for EEG reconstruction. The study
discussed in [85] also utilized basic SOMP along with other algorithms for distributed CS of jointly
sparse signals. Furthermore, in order to deal with non-sparsity on the EEG signal, H. Djelouat et al. [86]
used subspace pursuit algorithm with the concept of a concatenated basis where a sparsifying basis
consists of randomly selected atoms from both DCT and DWT. The work proposed by R. Kus et al. [47]
provides more mathematical details on OMP properties and its advantages, and proposed multivariate
matching pursuit for EEG signal reconstruction. Furthermore, basis pursuit denoising (BPDN) is
an another computationally efficient approach used in the BCI literature to reconstruct the EEG
signal. For instance, the study proposed in M. Hosseini et al. [39] have used BPDN with a joint sparse
decoding algorithm for reconstruction of multichannel intracranial neural data and X. Li et al. [67] used
BPDN to understand the effect of epoch length on CS reconstruction. In the literature, various other
reconstruction algorithms are also proposed for specific applications, such as A. Khoshnevis et al. [87],
which used a novel reconstruction method for event-related potential signals using Kronecker approach
to improve the quality of reconstruction and accelerate the compression phase. In the study proposed
by R. Shriwastav et al. [40], the convolutional neural network (CNN) is used to reconstruct the motor
imagery EEG signal.

In addition to the aforementioned studies, few research has been focused on comparing the
reconstruction performance of various approaches proposed. For example, X. Zouab et al. [82]
compared the performance of RCS-CLR with state-of-the-art methods such as ADMM-based SCLR
(SCLR-A) [78], BSBL [51], and SOMP [38] and showed a superior reconstruction performance in
the presence of noise. In the study by Z. Zhang et al. [88] reported a comparison result of
twelve typical sparse signal recovery algorithms such as compressive sampling matching pursuit
(CoSaMP), hard thresholding pursuit (HTP), subspace pursuit, among others for EEG signals. Similarly,
A. Abdulghani et al. [31] compared the performance of 18 different combinations of BP, MP, and OMP
with six dictionary matrices (Gabor, Mexican hat, spline- linear and cubic, and B-spline- linear and
cubic) for long term scalp EEG signals. The experiments performed by M. Rani et al. [89] compared the
performance of the CS reconstruction algorithms such as BP, BPDN, OMP, and CoSaMP for determining
a better reconstruction of EEG signal, and concluded that if reconstruction speed is a prime concern,
then OMP is a better choice, whereas, for higher reconstruction quality, CoSaMP is a preferred option.
Furthermore, R. Tello et al. also compared the classification performance of EEG signal reconstructed
using three algorithms namely BSBL-BO, lg- regularized least-squares (lg—RLS) and lf,d—RLS. The results
in this study reflect that /,-RLS based reconstruction approach shows better performance compared to
the BSBL-BO. The effectiveness of the improved [,-RLS reconstruction approach is also demonstrated
by D. Gurve et al. [90] for other applications such as fetal electrocardiogram (ECG) extraction from
abdominal ECG signal.

A summary of the detailed empirical comparison of selected state-of-the-art CS-based BCI
methods in terms of reconstruction algorithms, sensing matrix, and sparse basis used is shown
in Tables 1 and 2.
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Table 1. A summary of CS applied EEG studies (application focused).

11 of 21

. .. Reconstruction Sensing Sparse
Studies Applications Algorithms Matrices Basis
A. Abdulghani et al. Seizure BP, MP, Gaussian random Gabor
[31], 2012 detection OMP matrix dictionary
K. Abualsaud et al. Seizure I, norm Random DCT
[32],2013 detection minimization matrix dictionary
F. Morabito et al. Alzheimer’s l{ norm Gaussian random Gabor
[37],2013 disease analysis minimization matrix dictionary
M. Shoaib et al. Seizure Reconstruction Random )
[34], 2014 detection free matrix
B. Liua et al. Seizure Sparse binary Wavelet
[84], 2014 detection BSBL-FM matrix dictionary
Z. Zhang et al. SSVEP & Sparse binary DCT
[83],2014 Drowsiness detection STSBL-EM matrix dictionary
K. Zeng et al. Seizure BSBL Bernoulli random Gabor
[29], 2016 detection matrix dictionary
M. Fira et al. P300 I norm Random Wavelet
[54], 2016 spelling minimization matrix dictionary
M. Fira et al. 300 [1 norm Random Data driven
[77], 2016 spelling minimization matrix dictionary
M. Shoaran et al. Seizure Reconstruction  Bernoulli binary .
[35], 2016 detection free matrix
T. Moy et al. Seizure l{ norm Random Gabor
[30], 2017 detection minimization matrix dictionary
R. Aghazadeh et al. Seizure Reconstruction ) )
[33],2018 detection free
H. Lee et al. Sleep-Stage OMP Random binary )
[41], 2019 Classification matrix
N. Mammone et al. Alzheimer’s BSBL Sparse binary DCT
[36], 2019 disease analysis matrix transform
R. Shrivastwa et al. Motor Bernoulli
[40], 2020 imagery CNN-Based random matrix )

Glossary of terms: Alternating Direction Method of Multipliers (ADMM); Basic Pursuit (BP); Basis Pursuit
Denoising (BPDN); Block Sparse Bayesian Learning (BSBL); Block Sparse Bayesian Learning-Bounded
Optimization (BSBL-BO); Block Sparse Bayesian Learning-Fast Marginalized (BSBL-FM); Compressive
Sampling Matching Pursuit (CoSaMP); Graph Fourier Transform and Nonconvex (GFTN); Hard Thresholding
Pursuit (HTP); Iteratively Reweighted Least Square (IRLS); Orthogonal Matching Pursuit (OMP); Regularized
Cosparsity and Low-Rank (RCS-CLR); Regularized Least-Squares (RLS); Simultaneous Orthogonal Matching

Pursuit (SOMP).



Sensors 2020, 20, 3703

Table 2. A summary of CS applied EEG studies (signal reconstruction focused).

. Reconstruction Sensing Sparse
Studies Algorithm Matrix Basis
M. Hosseini et al. BPDN Sparse binary Gabor
[39], 2013 matrix dictionary
Z.Zhang et al. Sparse binary DCT
[51],2013 BSBL-BO matrix dictionary
R. Kus et al. Multivariate Random Gabor
[47],2013 matching pursuit matrix dictionary
S. Fauvel et al. Sparse binary Gabor
[63], 2014 BSBL-BO matrix dictionary
Y. Liu et al. lp norm 2" order ;
[79], 2015 and Sy norm difference matrix
B. Kaliannan et al. Gaussian random Joint
[38], 2016 DCS-SOMP matrix sparsity
H. Mahrous et al. Sparse binary DCT
[68], 2016 BSBL-BO matrix dictionary
J. Zhu et al. Iy norm Gaussian random Wavelet
[60], 2016 and S; norm matrix dictionary
H. Djelouat et al. Subspace Bernoulli Wavelet
[86], 2017 pursuit random matrix transform
X. Lietal Sparse binary Gabor
[67],2018 BPDN matrix dictionary
S.Khoshnevis etal.  Kronecker-based Deterministic binary )
[87], 2019 technique matrix
M. Rani et al. BP, BPDN, pseudorandom Fourier
[89], 2019 OMP,CoSaMP sequence transform
M. Tayyib et al. sparse Fourier
[80], 2020 ADMM circulant matrix transform
X. Zou et al. 2" order Graph
[81], 2020 ADMM difference matrix Fourier transform

4. Reconstruction Free CS

12 of 21

As discussed in earlier sections, a number of CS algorithms are being actively pursued in the

field of neural engineering, however, to satisfy the constraints of many practical BCI applications it is
essential to minimize the computational complexity of the CS reconstruction algorithm. In contrast,
the high computational complexity of available CS reconstruction algorithms is an obstacle for many
real-time applications. For instance, for basis pursuit and CoOSAMP, the computational complexity is
O(N?) and O(M, N), respectively. Few studies [91-93] discussed on the computational complexity of
various other CS reconstruction algorithms in detail.

Interestingly, for some classification applications, we may not require an accurate reconstruction
signal of interest to extract the features for classification. In these cases, it may be possible to perform
feature extraction and classification directly on the compressed measurements, without reconstructing
the signal of interest. More specifically, different from the previous traditional CS, the signal of
interest can be compressed using CS at the sensing node and the features can be extracted directly
from compressed measurements at the receiver end. This reconstruction free CS approach is called
“compressive feature learning”. Figure 4 shows the reconstruction-free compressive learning CS
framework. In this section, we take an in-depth look at the currently available reconstruction free CS
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approaches in the developing field of BCIs from the perspective of the machine learning classification
and system complexity.

Compressive ((E)) () Feature
— —

Sensing Extraction
Transmission Reception

—|  Application

Data
Acquisition

Figure 4. Block diagram of reconstruction free CS-based EEG studies.

Motivated by the fact that meaningful features can be extracted from the compressed measurement
directly, many researchers have focused on reconstruction-free compressive learning for various
applications such as surveillance and autonomous navigation [94], compressive cameras [95], and
text data classification [96]. Furthermore, Lohit et al. [97,98] and Braun et al. [99] also hypothesize
that the reconstruction step can be entirely bypassed, and shown the optimal machine learning
performance for computer vision applications, using reconstruction-free compressive learning. In the
context of neural engineering, very limited but successful attempts have been made towards the
feature extraction from the compressed domain. For instance, M. Shoaib et al. [34] proposed a
seizure-detection system that directly uses compressively sensed EEG measurements for embedded
signal analysis. In particular, they proposed an algorithm and a hardware architecture that enables
two power-management knobs to quantify the amount of data compression and to determine the
approximation error for the compressed-domain analysis. Similarly, M. Shoaran et al. [35] proposed a
multichannel compressed-domain feature extraction as a low-power technique for data compression
and seizure detection from multichannel cortical implants. This work also shows the success of
using compressed feature learning, which reduces the computational energy for analysis due to a
reduction in reconstruction costs. In order to leverage the benefits of compressed-domain feature
extraction, R. Aghazadeh et al. [14] also proposed a new algorithm for epileptic seizure detection
using a compressively sensed multichannel EEG signal. S. Qiu et al. [61] utilized the concept of
feature extraction from the compressed measurements and proposed a teleoperation control system
for robotic exoskeleton performing manipulation tasks. This work conveys the control signals to
the robotic exoskeleton using features extracted directly from compressed SSVEP measurements.
Furthermore, M. Fira et al. [100] also proposed EEG signals classification for a spelling paradigm in
the compressed domain.

In summary, the main advantage of the reconstruction free CS approach is that with the feature
extraction from compressed measurements directly, the reconstruction step at the receiver node
can be entirely bypassed and, therefore, greatly reduces the computation complexity of the system.
Additionally, the reconstruction free CS approach not only reduces the system complexity but also
reduces the processing time at the receiver end. On the other hand, the reconstruction free CS is an
analysis framework and signal synthesis is not a desired outcome.

5. Discussion and Future Directions

Neuroscience is a fascinating field and has a profound impact on people’s health. The possible
technologies that to be integrated with future neural interface technology certainly have the potential to
improve our health even more. We are probably standing on the threshold of a complete transformation
of the neuroscience industry by the use of big brain data from clinical and consumer-directed
neurotechnological devices, which may provide reduced latency and permit a real bidirectional
interaction with our brain. Furthermore, the applications of neural implants in the current neuroscience
industry are still in their infancy, but we are likely to see in the future functionalities of a neural
interface, starting from brain-to-brain connectivity, cell level the neural activation of the different
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channels, personalized treatments in patients affected by chronic neurological diseases to monitor the
production of neurotransmitters, direct stimulation of neurons and bidirectional brain-to-machine
interoperability in the forthcoming years.

The CS-based wireless neurotechnological devices can address the challenges encountered in a
low power application where sensing power is very critical such as battery-operated EEG sensing
implants. However, in CS for neurological signals, there is no “bread and butter” solution, which
means no one algorithm works well for every problem and cannot be assured for all the applications.
This is widely applicable at the receiver end of CS where we reconstruct the original signal using
various algorithms. As a result, one should use a different algorithm for different applications, which
would lead to optimum results based on the nature of the signal used in the BCI framework. However,
in a more practical way, it can be concluded that BSBL and BPDN are a more suitable choice for most
applications, where accurate reconstruction is needed, and computation time is not of primary concern.
However, for most of the real-time applications, thresholding-based reconstruction could help where
the computation time is not of primary concern. Furthermore, BPDN outperforms OMP and BSBL in
case of noisy measurements for accurate reconstruction. A similar conclusion can be drawn for the
BClIs where computational complexity is a design concern. In such case, reconstruction algorithms
such as OMP is preferable. However, the performance of any reconstruction algorithms depends on
many other parameters. For instance, X. Li et al. [67] investigated the effect of EEG signals epoch length
on the CS reconstruction algorithm and concluded that a longer epoch length leads to better signal
compression at the expense of larger signal reconstruction time. The findings in this paper shows that
at the sampling frequency of 256 Hz, a 4-s epoch length is suitable to perform the signal reconstruction.
However, the signal reconstruction performance also depends on the performing hardware platform
not just on the epoch length of an EEG signal. Furthermore, apart from the accurate reconstruction
of the EEG signal, the accurate identification of single-unit neural activities (spikes) has a key role in
developing high-accuracy BCls. To this end, various works have been done such as dynamic evolving
SSNis [101] and spiking neural networks (SNNs) [102] and demonstrated that an SSN does a strong
compression of the EEG signal when it is coded as spikes. In context of CS for BClIs, [40] also showed
that spike signals are highly compressed using the CS technique with up to a 90% compression rate.

Recent progress has suggested how CS can help to optimize sensing resources, transmission, and
storage capacities, as well as to facilitate signal processing in an energy constraint BCI environment.
Despite the attention that CS has received in recent years in various fields of neural engineering, few
limitations still reside. We conclude this review by raising the following five major challenges and
opportunities to be addressed in the future of big data processing, which will be aided by further
developments in the CS field.

e Despite of recent advances in hardware technologies and the feasibility of performing on-chip
signal processing, most of BCI research reviewed in this article demonstrated the applicability of
CS framework with digital implementation, which relies on many assumptions. In the future, it
is expected to see more analog implementations of CS to minimize energy consumption under
real-life conditions with built-in hardware.

o  Although random matrices are widely used for CS-based BCls and ensure high reconstruction
accuracy, storing random matrices requires a lot of memory. This disadvantage of the random
sensing matrix can be addressed through their deterministic construction. The advantages
of the deterministic matrix are simplicity in sampling and reconstruction stages, and reduced
computational complexity. In the future, it would also be interesting to develop strategies for CS
measurements under a deterministic sensing matrix for wireless BCls.

e In the study proposed by E. Chen et al. [103], a hardware-efficient circuit model was developed
for the analysis of analog and digital implementations of the CS-based EEG compression model.
The analysis in this study reveals that a digital implementation of CS is a significantly more
energy-efficient and suitable architecture with respect to their proposed analog implementation.
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In future research, an efficient analog implementation of CS needs to be explored more for
next-generation CS-BCI applications.

o The advancements in the acquisition and processing of large data sets in the field of neural
engineering is permitting a greater understanding and clinical observations of patients with brain
disease. However, most of the current research has not yet achieved a personalized data-driven
approach for treatment. In other words, the current research lacks in terms of developing a
quantitative integrative tool to translate these understanding and clinical observations to the
individual level to build the basis for personalized treatment. This is an important area which
should be considered for future studies.

e The CS and BCI systems have created a hope for the implementation of many practical
applications, but as data volumes go up, and BCI research are moving towards the creation
of computationally demanding algorithms for more complex applications, CS would not help for
real-time applications. In such case, reconstruction free learning could help for many machine
learning-based applications. In future, such reconstruction free learning will be more highlighted
for many other BCI applications.

The CS is an energy-efficient approach for future BCls application, which has been developed
over the past few years. However, there are still numerous BCIs application areas in which the CS
theory continues to be developed including rehabilitation and restoration [104,105], communication
and control [106,107], prevention [108,109], and user state monitoring [110,111]. Although it is beyond
the scope of this particular review article, security [112,113] and entertainment [114,115] are other
very interesting topics in the BCI field, which can be benefited with CS and should be considered for
future studies.

6. Conclusions

The CS framework can help in dealing with many challenges that current BCls may encounter,
which requires the use of fast, long-term, and energy-saving computational approaches. In this article,
we have reviewed the available BCIs, which have benefited from the theory of CS in terms of sparse
signal representation, sensing matrix, and available reconstruction methods. The discussion around
multiple CS reconstruction algorithms reviewed in this article gives us a more complete landscape of
this problem as different algorithms come with different trade-offs, such as time and computational
complexity. We have also highlighted the advantages and disadvantages of the available algorithms
to explore these trade-offs. Though the main focus of this article is to study CS and related BCls
available so far, the paper nevertheless also discusses the idea of reconstruction free CS used for
various applications to reduce the complexity of the system.
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