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Low-order scaling GW implementations for molecules are usually restricted to
approximations with diagonal self-energy. Here, we present an all-electron
implementation of quasiparticle self-consistent GW for molecular systems. We use an
efficient algorithm for the evaluation of the self-energy in imaginary time, fromwhich a static
non-local exchange-correlation potential is calculated via analytical continuation. By using
a direct inversion of iterative subspacemethod, fast and stable convergence is achieved for
almost all molecules in the GW100 database. Exceptions are systems which are
associated with a breakdown of the single quasiparticle picture in the valence region.
The implementation is proven to be starting point independent and good agreement of QP
energies with other codes is observed.We demonstrate the computational efficiency of the
new implementation by calculating the quasiparticle spectrum of a DNA oligomer with
1,220 electrons using a basis of 6,300 atomic orbitals in less than 4 days on a single
compute node with 16 cores. We use then our implementation to study the dependence of
quasiparticle energies of DNA oligomers consisting of adenine-thymine pairs on the
oligomer size. The first ionization potential in vacuum decreases by nearly 1 electron
volt and the electron affinity increases by 0.4 eV going from the smallest to the largest
considered oligomer. This shows that the DNA environment stabilizes the hole/electron
resulting from photoexcitation/photoattachment. Upon inclusion of the aqueous
environment via a polarizable continuum model, the differences between the ionization
potentials reduce to 130 meV, demonstrating that the solvent effectively compensates for
the stabilizing effect of the DNA environment. The electron affinities of the different
oligomers are almost identical in the aqueous environment.

Keywords: GW approximation, convergence acceleration, analytical continuation, quasiparticle, quasiparticle self-
consistent GW, DNA photodamage, theoretical spectroscopy

1 INTRODUCTION

The GW approximation (GWA) to Hedin’s equations (Hedin, 1965) is a popular approach to
calculate charged excitations in molecular systems. Recent applications include the calculation of
band gaps and elucidation of charge-transfer in organic donor-acceptor compounds (Blase and
Attaccalite, 2011; Blase et al., 2011; Caruso et al., 2014), applications to dye-sensitized solar cells
(Marom et al., 2011; Faber et al., 2012; Umari et al., 2013; Marom et al., 2014; Mowbray and Migani,
2015), electronic level alignment in photocatalytic interfaces (Migani et al., 2013, 2014), core-
ionization spectra of medium sized molecules (Van Setten et al., 2018; Golze et al., 2018, 2020) or
photo-electron spectra of transition metal oxides (Berardo et al., 2017; Hung et al., 2017; Shi et al.,
2018; Rezaei and Ögüt, 2021). Combined with the Bethe-Salpeter equation (BSE) formalism (Salpeter
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and Bethe, 1951; Strinati, 1988) the GWA has been used to
calculate optical spectra of Cyanins (Boulanger et al., 2014), the
Bacteriochlorin molecule (Duchemin et al., 2012) or
Bacteriochlorophylls and Chlorophylls (Hashemi and Leppert,
2021). At the same time, the GWA has been implemented into an
increasing number of molecular electronic structure codes (Ke,
2011; Caruso et al., 2012; Caruso et al., 2013; Ren et al., 2012; Van
Setten et al., 2013; Kaplan et al., 2015, 2016; Bruneval et al., 2016;
Wilhelm et al., 2016; Tirimbò et al., 2020b). Traditionally, these
implementations use localized basis functions and the resolution-
of the identity or density fitting approximation (Baerends et al.,
1973; Whitten, 1973; Dunlap et al., 1979) within the global
Coulomb metric (RI-V) (Vahtras et al., 1993), leading to a
scaling of N4 with system size. Systems of around 100 atoms
are within reach on standard hardware (Knight et al., 2016), while
highly parallel implementations enable applications to systems
with more than 300 atoms on modern supercomputers (Wilhelm
et al., 2016; Wilhelm et al., 2018; Wilhelm et al., 2021).

Over the last years, many algorithms with reduced asymptotic
scaling with system size have been proposed. These are usually
based on the space-time approach by Godby and coworkers (H.
N. Rojas et al., 1995; Rieger et al., 1999). The original space-time
method is based on the observation that it is much simpler to
solve the Dyson equations in the GWA in reciprocal space and
imaginary frequency while the kernels of these Dyson equations
are most easily evaluated in real space and imaginary time,
reducing the asymptotic scaling of the GWA to N3. Building
on earlier work by Almlöf (Almlöf et al., 1982), Kresse, Kaltak and
coworkers could significantly reduce the prefactor of these
calculations by using non-uniform spaced grids in imaginary
time and imaginary frequency and an efficient way to switch
between both domains (Kaltak et al., 2014a; Kaltak et al., 2014b;
Kaltak and Kresse, 2020). Over the last years, there has been a
surge of new GW implementations based on the space-time
method for periodic (Kutepov et al., 2012; Chu et al., 2016;
Liu et al., 2016; Kutepov et al., 2017; Grumet et al., 2018;
Kutepov, 2020; Singh and Wang, 2020; Foerster and
Gueddida, 2021) and finite (Wilhelm et al., 2018; Koval et al.,
2019; Förster and Visscher, 2020; Duchemin and Blase, 2021;
Wilhelm et al., 2021) systems. Other recent examples of low-
order scaling implementations include the spectral function
based approach by Foerster et al. (2011), the time-shredded
propagator formalism by Ismail-Beigi and coworkers (Kim
et al., 2020), stochastic GW developed by Neuhauser et al.
(2014), Vlček et al. (2017), Vlček et al. (2018), Weng and
Vlcek (2021), and also a fragment molecular orbital based
implementation (Fujita et al., 2019).

For molecular systems, diagonal approximations to the self-
energy are commonly made. They rely on the assumption that the
wave function of generalized Kohn-Sham (KS) density functional
theory (DFT) is similar to the GW wave function. One then
evaluates corrections to the DFT single orbital energies by
calculating the diagonal elements of the self-energy matrix Σ.
The most economical way to calculate these corrections is the
one-shot G0W0 approach which heavily depends on the mean-
field starting point. Extensive benchmarks (Marom et al., 2012;
Bruneval and Marques, 2013; Caruso et al., 2016; Knight et al.,

2016) have provided substantial evidence that hybrid functionals
with a rather large amount of exact exchange or long-range
corrected hybrids are usually a suitable starting point. In
addition, non-empirical procedures to select an optimal
starting point for a given system have been proposed
(Gallandi and Körzdörfer, 2015; Dauth et al., 2016; Bois and
Körzdörfer, 2017). Finally, in eigenvalue-only self-consistent GW
(evGW) the QP energies are updated until they are stationary,
removing the starting point dependence to a large extent.

QP energies calculated following these strategies are almost
always more accurate than fully self-consistent GW (scGW)
calculations for molecules. As discussed by Kotani, van
Schilfgaarde and Valeev, QP approximations, i.e.
approximations in which satellites are neglected, emphasize
the importance of the Ward identity (Ward, 1950) in the
long-range and low-frequency limit. The Ward identity
demands ’Z-factor cancellation’ (Kotani et al., 2007) between
the three-point Vertex and the renormalized electron propagator.
Z is the QP renormalization factor. In QP approximations,
neither the vertex is included nor is the propagator
renormalized, and the effect of both approximations cancel in
the above-mentioned limit. This limit can be expected to be of
particular importance for weakly correlated molecules to which
the GWA is frequently applied.

As opposed to diagonal approximations, scGW is strictly
starting point independent and also allows to calculate 1-
particle reduced density matrices (1RDM) including electron
correlation effects from first principles. Most importantly, it
does not contain any adjustable parameters. Another method
which also offers these advantages is the QP self-consistent GW
(qsGW) method by Kotani, van Schilfgaarde and Faleev. (Van
Schilfgaarde et al., 2006; Kotani et al., 2007). qsGW can be seen as
a non-empirical procedure to find an optimal starting point for a
G0W0 calculation. This is accomplished by mapping the GW self-
energy self-consistently to a non-local, Hermitian, and static
exchange-correlation potential. This potential has been shown
to be optimal in a variational sense (Ismail-Beigi, 2017).
Diagonalization of the resulting mean-field Hamiltonian yields
eigenvectors and eigenvalues from which a new non-interacting
Green’s function is obtained. This self consistent field (SCF)
procedure is reminiscent of generalized KS theory, with the
notable difference that the exchange-correlation potential is
not a functional of the 1RDM but rather of the non-
interacting single-particle Green’s function. qsGW is starting
point independent and fulfills the Ward identity in the low
frequency and long range limit.

In canonical implementations (Ke, 2011; Bruneval, 2012;
Koval et al., 2014; Kaplan et al., 2015; Kaplan et al., 2016), the
need to calculate the off-diagonal elements of the self-energy
matrix and the fact that it is typically more difficult to converge
make qsGW typically an order of magnitude more expensive than
evGW (Gui et al., 2018) which in turn is typically 5–10 times more
expensive than G0W0 due to the requirement of self-consistency.
Moreover, low-order scaling implementations for molecules are
typically restricted to diagonal approximations only (Wilhelm
et al., 2018; Förster and Visscher, 2020; Duchemin and Blase,
2021; Wilhelm et al., 2021) To fill this gap, we extend the recently
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developed low-order scaling diagonal GW implementation in
ADF (Baerends et al., 2020; Förster and Visscher, 2020, Förster
and Visscher, 2021) to qsGW. We evaluate the qsGW self-energy
as a direct product in imaginary time, in the same way as in the
diagonal approximation. Even though the qsGW self-energy is
static, for larger systems evaluation of the self-energy at an array
of imaginary time points is more efficient than its evaluation at a
single real frequency point. The procedure is similar to the
linearized qsGW method by Kutepov and coworkers (Kutepov
et al., 2017) which is also based on the imaginary time formalism
and in which the self-energy is averaged over all frequencies.
However, in our implementation, we only average over
frequencies for the off-diagonal elements but retain the
optimum exchange-correlation potential on the diagonal. We
achieve stable and rapid convergence of the SCF procedure by a
suitable implementation of the direct inversion in the iterative
subspace (DIIS) Pulay (1980) approach. Most importantly, the
proposed algorithm is easy to implement and only requires to
combine the qsGW approach with the space-time
implementation for the self-energy and an efficient method to
evaluate the exact exchange-contribution to the Fock matrix.

This work is organized as follows: In section 2 we first
recapitulate the qsGW procedure and describe some aspects of
our implementation. We focus on the implementation of the DIIS
and on the analytical continuation (AC) of the self-energy. In
section 3, we confirm the correctness of our implementation by
comparison to ionization potentials (IP) (Kaplan et al., 2016)
from TURBOMOLE (Balasubramani et al., 2020) and investigate
the convergence of the SCF equations. We also illustrate the
computational performance of our implementation with a proof-
of principle application to large DNA oligomers. In section 4 we
summarize and conclude this work.

2 METHODS

In this section, we review the qsGWmethod and comment on our
implementation, focusing on the AC of the self-energy as well as
our approach to accelerate convergence of the SCF procedure.
Greek lowercase letters μ, ] . . . label atomic orbitals (AO) and run
from 1 to nAO. Latin lowercase letters p, q, r, . . . label general MOs
and run from 1 to nMO. i, j, k (a, b, c) label occupied (virtual) MOs
and run from 1 to Nocc (Nvirt). Latin symbols without labels
denote tensors in some basis which will always be clear from the
context.

2.1 QP Self-Consistent GW
The GWA is an approximation to the self-energy appearing in
Dyson’s equation (Dyson, 1949),∑

r

Σpr(ωp)Urq(ωp) � ωp − ϵp[ ]Upq(ωp). (1)

We mostly work in a basis of molecular orbitals (MO),

ϕ(n)
p (r) � ∑

μ

χμ(r)b(n)μp , (2)

where the χμ are AOs. Dysons’s equation is non-linear and will be
solved via a fixed point iteration. The superscript (n) means that
we are in the nth iteration of a SCF procedure. The self-energy Σ is
non-Hermitian and energy dependent. Thus, U is complex and
energy dependent as well. We will neglect spin in the following.

The εp are obtained from solving the generalized KS problem,∑
]
H(0)

μ] b
(0)
]p � ∑

]
Sμ]b

(0)
]p ϵ(0)p , HKS � T + Vext + VHxc[P], (3)

where VHxc is the sum of exchange-correlation potential Vxc and
Hartree potential VH, being functionals of the 1RDM P and the
electron density, respectively. T and Vext are kinetic energy and
external potential, respectively. S is the overlap matrix of AOs and
b defines a transformation from AO to MO basis,

Mpq � bpμMμ] b†[ ]]q. (4)

In the AO basis, P is given as

Pμ] � 2∑Nocc

i

bμi b
†[ ]i]. (5)

We also define the Hamiltonian of the Hartree approximation,

HH � HKS − Vxc. (6)

The Green’s function G0 corresponding to the non-interacting
Hamiltonian is diagonal in the MO basis with

G0[ ]pp(ω) � iω − ϵp[ ]−1. (7)

We can then expand Σ in terms of G0 as follows (Hedin, 1965;
Martin et al., 2016),

Σ(ω) � (G0∗W0)(ω) + . . . , (8)

and in the GWA the expansion is truncated after first order.W0 is
the screened Coulomb interaction, calculated in the bubble
approximation (Onida et al., 2002) from G0 (Hedin, 1965).
Without further approximations to Σ, one typically avoids
solving (Eq. 1) but instead calculates the interacting Green’s
function G by inversion of

[G(ω)]−1 � G0(ω)[ ]−1 − Σ(ω). (9)

From there one proceeds by building the self-energy (Eq. 8) but
replaces G0 by G, and W0 by W and repeats this procedure until
self-consistency is reached. In more approximate GW schemes,
one avoids solving (Eq. 9). In diagonal approximations to
Dysons’s equation, one assumes Σ to be diagonal. In that case,
U in (Eq. 1) is unity for all ω and (Eq. 1) reduces to a set of
independent non-linear equations for ω. In qsGW on the other
hand, one does not make the diagonal approximation but Σ is
mapped to a Hermitian and frequency-independent exchange-
correlation potential VqsGW

xc . For this mapping, it is convenient to
define

W0(ω) � Vc + ~W0(ω), (10)

with Vc being the bare Coulomb potential. The self-energy can
then be decomposed into a static and dynamic part
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Σ(ω) � Σx + (G0∗ ~W0)(ω) � Σx + Σc(ω). (11)

Σx is the Fock exchange potential, VqsGW
x � Σx , and following

Kotani et al. (2007), the correlation part of Vxc is obtained from Σ
by taking one of the real symmetric definitions

VqsGW
c[ ]pq � 1

2
Re Σc[ ]pq(ϵp) + Re Σc[ ]pq(ϵq)[ ], (12)

or

VqsGW
c[ ]pq � δpqRe Σc[ ]pq(ϵp) + (1 − δpq)Re Σc[ ]pq(ω � 0). (13)

There are formal reasons why (Eq. 12) should be preferred over (Eq.
13). Constructing the qsGW Hamiltonian via (Eq. 12) minimizes
the length of the gradient of the Klein functional (Klein, 1961) with
respect to G0 (Ismail-Beigi, 2017) and can be seen as an optimized
effective non-local potential. The approach bears strong resemblance
to what is usually referred to as the optimized effective potential
(OEP) method (Talman and Shadwick, 1976). Another possibility is
to linearize the self-energy around the chemical potential. This has
been implemented by Kutepov et al. (2017). Physically, it is
equivalent to taking the static limit of the self-energy, or
averaging over frequencies. We will discuss in more detail below
that such an approach has advantages with regards to numerical
stability. However, we think that one should use the optimum
potential at least for the diagonal elements. (Eq. 13) is a hybrid
between (Eq. 12) and Σ (ω � 0) which retains the optimum potential
on the diagonal. Employing (Eq. 13) can be justified if one assumes
that the effect of using the optimum potential as opposed to Σ (ω �
0) will cancel out to a large extent for the off-diagonal elements. We
provide numerical evidence later on that this is indeed true. Also an
approach using Löwdin’s orthogonalization has been proposed to
construct the QP Hamiltonian (Sakuma et al., 2009) but that
construction is not considered here.

With these simplifications, we can now solve (Eq. 1) self-
consistently. In each iteration, we solve

∑
r

HqsGW(n+1)
pr U(n+1)

rq � ω(n+1)
p U(n+1)

pq , (14)

with

HqsGW(n+1) � HH + ΔV(n+1)
H + VqsGW(n+1)

xc (15)

and

VqsGW(n+1)
xc � Vx[P(n)] + VqsGW

c [G(n)
0 ]. (16)

In each iteration, HqsGW is expressed in the basis in which G(n)0 is
diagonal. That is, at the n + 1st iteration, HqsGW is expressed in

terms of the ϕ(n)i{ } and unless self-consistency has been reached,

U(n) will not be unity and defines a rotation of the molecular
orbitals. We now set

b(n+1)μp � ∑
q
b(n)μq U

(n+1)
qp

ϵ(n+1)p � ω(n+1)
p ∀p

(17)

and evaluate G(n+1)0 via (Eq. 7) which in turn is used to evaluate
(Eq. 11) and finally (Eq. 12) or (Eq. 13). P(n+1) is then evaluated

from (Eq. 5) and the change in the Hartree-potential is
calculated as

ΔV(n+1)
H � VH[ΔP(n+1)], (18)

with

ΔP(n+1) � P(n+1) − P(n). (19)

The cycle is repeated until self-consistency is reached.

2.2 Implementation
As already stressed in the introduction, for the qsGW
implementation no modifications of the code described in
Förster and Visscher (2020) for the calculation of the self-
energy are needed. A description of the algorithm can be found
in Förster and Visscher (2020) and in Förster and Visscher (2021)
we reported important modification of our original
implementation, increasing accuracy and robustness. The only
points we discuss hered are related to the convergence and
stability of the self-consistent field (SCF) procedure.

2.2.1 Analytical Continuation
In space-time implementations of the GWA, the self-energy is
evaluated in imaginary time and then Fourier transformed to
the imaginary frequency axis. In ADF, the self-energy is
calculated in the AO basis on a non-uniform grid of
imaginary time points. After transformation to the reference
basis [the MO basis from the generalized KS calculation in the
first iteration and the basis defined by (Eq. 17) later], the self-
energy matrix is Fourier transformed to a non-uniform grid in
imaginary frequency space. For the implementation of this
transformation, we refer to Kaltak et al. (2014b) and to the
appendix of Förster and Visscher (2021). Since the non-
uniform grids depend on the QP energies used to build G0

we also need to recalculate these grids at the beginning of each
qsGW iteration to ensure independence of the results from the
initial guess.

After this transformation, Σ is known on a discrete set of
points W � iωβ{ }

β�1,Nω
on the imaginary frequency axis.

However, to evaluate Eq. 13, we need to know the self-energy

on the real frequency axis at the positions of the QP energies ϵ(n)p .
To this end, we seek to find a function f which is analytic in the
largest possible domain A ⊂ C and coincides with Σ in W. For a
meromorphic function (as the self-energy) which is known on the
whole imaginary axis, it is always possible to find such a function
so that A � C, but since we only know the self-energy on a small
subset of points, only an approximate solution can be found. The
problem here is, that the AC is exceptionally ill-conditioned, i.e.
numerical noise in the input data might significantly affect the
output (Shinaoka et al., 2017).

Among the many developed algorithms [see for instance Levy
et al. (2017) for an overview], the construction of a continued
fraction (Vidberg and Serene, 1977; Beach et al., 2000) via a Padé
approximant is most common in implementations of the GWA.
While in many codes Thiele’s reciprocal difference method is
implemented, (Liu et al., 2016; Grumet et al., 2018; Foerster
and Gueddida, 2021), ADF, implements the variant by Vidberg
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and Serene (Vidberg and Serene, 1977), which for example has also
been implemented by Kutepov (Kutepov, 2020). In the latter variant,
the coefficients of the continued fraction are calculated while the
former method returns the value of the continued fraction (Beach
et al., 2000). While it has been claimed that the former variant is
numerically more stable (Liu et al., 2016), we did not experience any
numerical issues with our implementation for diagonal self-energies.
This procedure typically yields good results for states close to the
HOMO-LUMO gap while it becomes unreliable for core states
(Golze et al., 2018, 2020). Exceptions are cases for which the self-
energy has a pole close to the position of the QP energy (Govoni and
Galli, 2018). Partial self-consistency inG pushes the poles away from
the QP peak (Golze et al., 2019), and consequently, these issues
should not be present in qsGW as well. This is different from
situations in which the independent QP picture breaks down and the
spectral weight of a single excited electrons is distributed between
multiple peaks. The former is a purely numerical issue while the
latter is caused by strong correlation and can not be overcome by
partial self-consistency. It has also been shown in Wilhelm et al.,
2021 that AC yields accurate results for semi-core and inner valence
states in case the real part of the self-energy does not have poles in the
vicinity of the QP solutions.

If one is only interested in accurate valence states, AC via Padé
approximants is not problematic for G0W0 where (Eq. 1) reduces
to a set of N independent non-linear equations where N is the
number of MOs. In evGW, the situation is only slightly different.
The N equations are still independent, but information from all
QP energies enters the polarizability so that there is an implicit
dependence of the QP energies on each other. In practice, this is
also not an issue since the numerical errors are typically orders of
magnitude smaller than the absolute values of the QP energies.

The situation is different for qsGW. The Off-diagonal elements
of Σc are often equal to or very close to zero (Kaplan et al., 2015)
and generally small compared to the diagonal elements. For these
off-diagonal elements, numerical errors from AC can be orders of
magnitudes larger than the values of the off-diagonal elements.
Since there are many of them, this might significantly alter the
solutions of Eq. 14. Due to the non-linear nature of the QP
equations, this can complicate convergence of the SCF procedure
or even lead to erroneous results. The development of more
reliable methods for AC is a very active field of research (Bergeron
and Tremblay, 2016; Levy et al., 2017; Otsuki et al., 2017; Gull
et al., 2018; Fournier et al., 2020; Fei et al., 2021) and it would
certainly be interesting to investigate whether other techniques
are more suitable for qsGW. For now, we restrict ourselves to the
techniques of Padé-approximants. To ensure numerical stability,
two aspects need to be considered:

First, it seems reasonable to assume that AC close to the Fermi
energy is also more reliable for the off-diagonal elements of Σ. To
this end, using (Eq. 13) to construct the exchange-correlation
potential seems to be more suitable for our implementation than
(Eq. 12). As we will see later on, both constructions of the
exchange-correlation potential lead to similar results, but using
(Eq. 13), the SCF procedure is significantly easier to converge. In
fact, applying the same reasoning one could justify to use Σ (ω �
0) (Kutepov et al., 2017) instead. However, as we will show below,
using (Eq. 13) is sufficiently numerically stable.

Second, after evaluating Eq. 13 or (Eq. 12), numerical noise
needs to be removed rigorously from VqsGW

c . At self-consistency,
the off-diagonal elements of VqsGW

c need to be zero: In the n + 1
the iteration, VqsGW

c is expressed in the basis which diagonalizes
the operator defined in (Eq. 15) in the nth iteration. At self-
consistency b(n+1) � b(n), which will not be the case when the off-
diagonal elements of VqsGW

c will be different from zero. In our
present implementation, we set all values with magnitude smaller
than 1e−6 to zero. This cut-off is of the order of the numerical
noise introduced by the AC. As we will show later on, despite this
drastic cut-off the HOMO and LUMO energies can be converged
to a degree that the QP energies are converged within a few meV.

2.2.2 Convergence Acceleration
As outlined so far, in each iteration of the self-consistency cycle
the previous qsGW Hamiltonian is replaced by the new one,
similar to the Roothaan algorithm for the Hartree-Fock (HF)
equations. For Hartree-Fock, it is well known, that such a
procedure can be numerically unstable (Cances and Le Bris,
2000) and convergence difficulties are encountered already for
the simplest molecules (Koutecký and Bonačić, 1971; Bonačić-
Koutecký and Koutecký, 1975). Also in many GW
implementations, convergence has been shown to be much
slower than with a simple linear mixing scheme (Caruso et al.,
2013; Kaplan et al., 2016). While the latter seems to work
reasonably well for evGW (Gui et al., 2018), it seems that
there is room for improvement for qsGW (Gui et al., 2018).
An iterative fixed point procedure of the general form

G(m)
0{ }

0≤m≤n+1 → ~H
qsGWn+1

→ ϵ(n+1) , b(n+1) (20)

is clearly a better option. A practical way to implement this is to
replace (Eq. 14) by

∑
r

~H
qsGW(n+1)
pr U(n+1)

rq � ω(n+1)
p U(n+1)

pq , (21)

with

~H
qsGW(n+1) � ∑n+1

m�n−n0
αmH

qsGW(m)
, (22)

where

∑n
m�n−n0

αm � 1, (23)

needs to be fulfilled and n0 is the maximum number of previous
iterations taken into account. We determine the expansion
coefficients αm using Pulay’s DIIS method (Pulay, 1980). In
the DIIS method, we seek to minimise the residual error

r(n+1) � ∑n
m�n−n0

αmr
(m), (24)

subject to the constraint Eq. 23. One might additionally require
the αm to be positive (what is usually called EDIIS) (Kudin et al.,
2002) but we did not find any improvement over the simple DIIS.
Different implementations of DIIS differ in the definition of the

Frontiers in Chemistry | www.frontiersin.org September 2021 | Volume 9 | Article 7365915

Förster and Visscher Low-Order Scaling qsGW for Molecules

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


residual error. Since G0 uniquely determines HqsGW, we would
ideally define

r(n+1) � G(n+1)
0 − G(n)

0 , (25)

however, storage (or recalculation) of this quantity for n0
iterations is inefficient. Therefore, one can use

r(n+1) � P(n+1) − P(n), (26)

which is related to the time-ordered Green’s function by taking
the limit τ → 0− (τ is the difference between both time
arguments). In this work, we have used a different definition
for the residual which is, however, identical to (Eq. 26).1

Technically, in the nth iteration we solve (Eq. 14) and
evaluate the corresponding b(n) from which we calculate P(n)

and Q(n). We check for convergence by evaluating the
Frobenius norm of the residual (Eq. 26),

NF � 1
N2

MO

���������∑
μ]

r(n+1)μ][ ]2√
, (27)

and terminate the SCF as soon as NF < εSCF for two subsequent
iterations. As we will show later on, εSCF � 1e−7 leads to QP
energies which are converged within a few meV for all systems in
the GW100 database (Van Setten et al., 2015). Subsequently, we

store r(n+1) and HqsGW(n+1) and determine the expansion
coefficients αm using the DIIS method, setting n0 � 10. Finally,
we solve (Eq. 21) and use the resulting U to evaluate (Eq. 17).

2.3 Computational Details
All calculations have been performed with a locally modified
development version of ADF2020 using the implementation as
described Förster and Visscher (2020) and using the updated
imaginary frequency grids as described in Förster and Visscher
(2021).

2.3.1 GW100
We use the same structures as in for our previous benchmarks
(Förster and Visscher, 2020; Förster and Visscher, 2021). We use
the non-augmented TZ3P and QZ6P basis sets described in
Förster and Visscher (2021). Complete basis set (CBS) limit

extrapolated results are obtained as described in Förster and
Visscher (2021). In all calculations, we set the
numericalQuality key to Good. Exceptions are a few
systems for which we observed inconsistencies with the Good
fit set: For Pentasilane, Na2, Na4, and Na6, we used the
Excellent fit set, and for the nucleobases we used the
VeryGood fitset. We used 32 imaginary time and 32
imaginary frequency points each [We refer to the explanations
in the appendix of Förster and Visscher (2021)]. For all TZ3P
calculations, we set Dependency Bas � 1e−3 and for QZ6P we
set Dependency Bas � 5e−3 in the AMS input as described in
Förster and Visscher (2020). All calculations using augmented
basis sets (aug-TZ3P and aug-QZ6P) have been performed in the
same way, but using the Excellent auxiliary fit set and
numericalQuality VeryGood. No relativistic effects
have been taken into account.

2.3.2 DNA Fragments
The structures of the DNA fragments have been taken from
Doser et al. (2009). We performed qsGW calculations using the
TZ2P (Van Lenthe and Baerends, 2003), TZ3P and QZ6P basis
sets, starting from a PBE0 (Adamo and Barone, 1999;
Ernzerhof and Scuseria, 1999) initial guess. We set the
numerical quality to VeryGood, but used the Good fitset,
with the exception of the QZ6P calculations were we also used
the VeryGood fitset. We also set MBPT.
ThresholdQuality � Normal. In Förster and Visscher
(2020) we have shown that these thresholds are sufficient to
converge quasi-particle energies within a few 10 meV. 16 grid
points in imaginary time and imaginary frequency have been
used. Solvent effects have been accounted for exclusively on
the KS level using the conductor like screening model
(COSMO) (Klamt and Schüürmann, 1993; Klamt, 1995;
Klamt and Jonas, 1996) as implemented in ADF (Pye and
Ziegler, 1999) using the BLYP (Becke, 1988; Lee et al., 1988;

FIGURE 1 | Convergence of the qsGW SCF for Methane for different
initial guesses and constructions of the correlation potential. log 10r, r defined
in Eq. 26, is plotted against the number of iterations.

1We experimented with different residuals: In the implementation used in this
work, we have used

r(n+1) � P(n+1) + Q(n+1)[ ] − P(n) + Q(n)[ ].
Here, Q is defined like P, but with the summation spanning the virtual orbital

space,

Qμ] � ∑Nvirt

a

bμa b†[ ]a].
This was based on the intuitive assumption that convergence could be improved by

including information about the virtual orbitals in the residual. However, note that

S−1 � 1
2P + Q, so that we obtain P + Q � 1

2P + S−1. Apart from the factor of 1/2

(Eq. 26) is therefore completely equivalent to this expression. We thank one of the

reviewers for pointing this out
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Miehlich et al., 1989) functional with D3 dispersion correction
(Grimme et al., 2010) with Becke-Johnson damping (Grimme
et al., 2011) and the TZ2P basis set. Numericalquality
Good has been used. The solvent correction ΔEs is then
obtained as ΔEs � E(+)s − E(0)s , i.e. as the difference between
the solvent contributions to the bonding energies of the
oxidized species and the neutral species both at the
equilibrium geometry of the neutral species.

3 RESULTS

3.1 Benchmarks
3.1.1 Comparison of Exchange-Correlation Potentials
in qsGW
We already noticed in section 2 that the correlated part of the
exchange-correlation potential of qsGW can be defined in
different ways. Here we compare the two most common ways
to construct this quantity (Kotani et al., 2007; Shishkin et al.,
2007; Shishkin and Kresse, 2007; Kaplan et al., 2016) (Eq. 12 and
Eq. 13) for a subset of molecules from the GW100 database. The
data is shown in the supporting information and shows that the
exchange-correlation potential obtained from (Eq. 12) is
significantly harder to converge than the one from (Eq. 13).
An example of the convergence behaviour of both variants is
shown in Figure 1. Figure 1 plots log 10r with r defined in Eq. 26
against the number of iterations with two different initial guesses
for Methane. We see, that using (Eq. 13), the SCF rapidly
converges towards a fixed point, while log 10r always remains
much larger than −6 for (Eq. 12). On the other hand, for the 10
converged calculations differences in the final QP energies are
small; for both, IPs and EAs, both variants differ by only 20 meV
on average, i. e the error introduced by averaging over the off-
diagonal elements of the self-energy are small. For this reason, we
decided to use the correlation potential as defined in (Eq. 13) in
all subsequent calculations.

3.1.2 Self Consistent Field Convergence
Next, we comment on the convergence of the qsGW SCF
procedure. To this end, we compare IPs and electron
affinities (EA) for the molecules in the GW100 database for 3
different starting points, PBE (Perdew et al., 1996a; Perdew
et al., 1996b), PBE0, and HF. At self-consistency, the QP
energies should be independent from the initial guess and
their differences will thus provide information about the
obtained convergence of the QP energies for a given εSCF. In
all calculations we set εSCF � 1e−7 and restrict all calculations to a
maximum of 30 iterations.

Independent of the starting point, we could not reach
convergence for Mgo, BeO, BN, Cu2, and CuCN with our
DIIS implementation. Employing a linear mixing procedure as
implemented in Wilhelm et al. (2021) with α � 0.35 we could
reach convergence for these systems, albeit with a large number of
iterations. These systems are problematic for GW approaches
since the single the spectral weight of the single excited electron is
distributed between multiple peaks (Govoni and Galli, 2018).
qsGW relies on the validity of the single QP picture. In situations,

in which the quasi-particle equations might have multiple
solutions (Govoni and Galli, 2018; Golze et al., 2019)
corresponding to the same non-interacting state, different
solutions may be found in different iterations of the qsGW
SCF procedure. qsGW should select the solution with largest
QP weight (Ismail-Beigi, 2017) but in situations where there are
at least two solutions with (almost) equal QP weight, the
“physical” solution might change in each iteration. In such
cases, the DIIS algorithm tries to minimize the residual SCF
error by interpolating between different solutions and no fixed
point of the map (Eq. 20) is found. On the other hand, linear
mixing results in a smooth but slow convergence pattern, if only α
is chosen small enough to make sure that in all iterations the same
solution is found. We do not know, how to best solve this issue
but we do not consider it to be a major concern as such
convergence problems are only encountered for systems in
which the single QP picture is not valid. This then merely
signals that qsGW is not an appropriate level of theory.

Figure 2 shows mean absolute deviations (MAD) as well as
maximum absolute deviations of the IPs and EAa obtained from
different starting points. WithMAD of 6 and 2 meV, respectively,
EAs are better converged than IPs. Also the maximum error is
about twice as small for EAs than for IPs. These differences are
related to the AC procedure which gives smaller errors for
unoccupied states with usually featureless self-energy matrix
elements. The maximum error never exceeds 50 meV and is of
the same order of magnitude than the experimental resolution of
photoionization experiments (Knight et al., 2016) of the typical
basis set errors of GW calculations after extrapolation. (Knight
et al., 2016; Maggio et al., 2017; Govoni and Galli, 2018; Bruneval
et al., 2020; Förster and Visscher, 2021). The distribution of
iterations required for convergence is displayed in Figure 3. This
includes the 5 problematic cases discussed above. The
calculations on average converge in around 10 iteration, with
little dependence on the initial guess.

3.1.3 Comparison of Ionization Potentials for the
GW100 Database
We now compare the IPs from our algorithm to the ones obtained
with the TURBOMOLE code for GW100. The TURBOMOLE
results have been obtained with the GTO-type def2-TZVPP basis
sets. For some systems, TURBOMOLE results are not available
and we exclude these from our discussion. We use the TZ3P basis
sets which we have shown to give comparable results to def2-
TZVP for GW100 (Förster and Visscher, 2021). However,
quantitative accuracy can not be expected.

The deviations to TURBOMOLE are shown in Figure 4. The
average deviation between both codes is close to zero, and with
one exception, for all IPs deviations are considerably smaller
than 300 meV, with the deviations for the majority of systems
being smaller than 100 meV. Thus, our results are qualitatively
similar and deviations can be attributed to different basis set
errors and different constructions of the qsGW exchange-
correlation potential. The IP of Cyclooctatetrane is the only
exception. Here, TURBOMOLE gives an IP of 9.30 eV, while the
ADF IP is with 8.38 eV nearly 1 eV smaller. For different starting
points, we obtained the same result within an accuracy of only a
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few meV, indicating that our IP is well converged. The
TURBOMOLE qsGW IPs on average overestimate the
CCSD(T) reference values for GW100 by Klopper and
coworkers (Krause and Klopper, 2017) in the same basis set
by only a little more than 100 meV, while the deviation for
Cycloocatetrane is nearly 1 eV. The CCSD (T) IP for this system,
is 8.35 eV, which is in very good agreement with our value.
These numbers indicate that our IP is reasonable, despite the
large deviation to TURBOMOLE.

Ideally, we would also like to compare our EAs against
literature data, however, with only one exception (were
optimized structures do not seem to be available) (Ke, 2011),
we are not aware of any published EAs for molecular systems.

3.1.4 Basis Set Limit Extrapolated Ionization Potentials
and Electron Affinities for the GW100 Database
In the supporting information, we report CBS limit extrapolated
EAs and IPs for the GW100 database. The qsGW QP energies
seem to converge faster to the CBS limit than their G0 W0

counterparts. Going from TZ3P to QZ6P, the basis set

FIGURE 2 |Mean absolute deviations (A) and maximum absolute deviations (B) of qsGW IPs (upper triangle) and EAs (lower triangle) obtained with different initial
guesses for the GW100 database. All values are in meV.

FIGURE 3 | Number of iterations needed to attain convergence of the SCF for different initial guesses.

FIGURE 4 | Distribution of deviations (in eV) of the IPs from
TURBOMOLE and with our implementation.
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incompleteness error reduces by 80 meV on average, while for
G0W0@PBE, we found an average reduction of 130 meV (Förster
and Visscher, 2021). Self-consistent approaches might converge
faster than G0W0 - Caruso et al. have already observed that scGW
converges faster to the CBS limit than G0W0 (Caruso et al., 2013).
For the EAs, the average differences are much larger which is also
due to the many systems with negative EA in the GW100
database. For these systems CBS limit extrapolation is not
reliable without adding diffuse functions. Repeating these
calculations with augmented basis sets (Förster and Visscher,
2021) yields smaller differences between the aug-TZ3P and aug-
QZ6P basis sets. (Förster and Visscher, 2021). In Table 1, these
differences are shown for the series of linear alkanes from
Methane to Butane (for more numbers we refer to the
supporting information). On both the TZ and QZ level the
augmented basis sets give a much higher EA. Also, the
differences between aug-TZ3P and aug-QZ6P are with in
between 150 and 200 meV modest, while they are huge for the
non-augmented basis sets. Also the extrapolated values are much
smaller using the augmented basis sets. The effect of
augmentation is also profound for other systems. For example,
using the non-augmented basis sets, the EA of
carbontetrachloride is negative (−0.27 eV). Using the
augmented basis sets, it becomes positive (0.17 eV) which is in
much better agreement with experiment (0.80 ± 0.34 eV)
(Staneke et al., 1995).

3.2 Application to DNA Fragments
Oxidation of DNA is related to genetic damage and to investigate
the mechanisms behind these processes quantum chemically,
electron addition and removal energies need to be computed

with high accuracy. A necessary first step for such studies is the
selection of appropriate model system which should represent
DNA under physiological conditions as accurately as possible
while still being computationally feasible. As an illustrative
example how the new qsGW implementation can be used
effectively in practice, we investigate the dependence of IP and
EA of oligomers of Adenine-Thymine (AT) base pairs on the
oligomer size.

The calculated charged excitations are shown in Table 2 for
different basis sets and fragment sizes between 1 and 4 AT pairs
(We refer to these systems as ATx, were x denotes the number of
AT base pairs). These systems are shown in Figure 5. For all
fragments, we calculated the IPs with the TZ2P and TZ3P basis
set with 1d1f, and 2d1f shells of polarization functions for second
and third row atoms (and analogously for other atoms). We see,
that going from TZ2P to TZ3P only has a small effect on the IPs
and EAs, reducing the basis set incompleteness error by only a
few 10 meV. These calculations with two rather similar basis sets
are necessary to rule out the possibility that a result is simply an
artefact of a chosen basis set. Going from TZ3P to QZ6P, the IP of
the AT1+B increases by modest 60 meV, while the EA reduces by
180 meV. Based on the TZ3P and QZ6P calculations, we can
estimate the QP energies at the CBS limit by extrapolation.
Comparing the TZ3P results to the extrapolated ones, we find
a basis set limit incompleteness error of 140 meV for the IP and of
420 meV for the EA of AT1. For AT1, we find a similar basis set
limit incompleteness error of 80 meV for the IP and of 340 meV
for the EA.

On standard hardware, calculations on the QZ level are not
feasible for AT4 and already for AT2, the QZ calculation is
cumbersome. This is not only due to the large number of diffuse
AOs which make makes it difficult to exploit distance-based cut-
offs (Förster and Visscher, 2020) but also due to the large
auxiliary basis sets which are required to make the calculations
numerically stable. However, we can estimate the CBS limit based
on the differences between the QP energies at the CBS limit and
the largest affordable basis set for the larger systems for the
smaller fragments. This is justified with the observations made in
Förster and Visscher (2020) for G0W0 were we found the basis set
incompleteness error on average to decrease with increasing
system size but only to a certain extent since basis functions
are localised. Based on this assumption, we correct the IPs and

TABLE 1 | Comparison of electron affinities for linear alkanes from Methane to
Butane using augmented, and non-augmented basis sets.

Non-augmented Augmented

Name TZ3P QZ6P Extrap Aug-TZ3P Aug-QZ6P Extrap

Methane −2.30 −−1.62 −0.78 −0.79 −0.58 −0.26
Ethane −2.27 −1.56 −0.65 −0.72 −0.57 −0.35
Propane −2.23 −1.51 −0.56 −0.72 −0.55 −0.30
Butane −2.24 −1.50 −0.52 −0.71 −0.55 −0.30

TABLE 2 | Ionization potentials (IPs) and electron affinities (EAS) of DNA fragments consisting of different numbers of adenine-thymine base pairs calculated with different
basis sets and contributions of solvent from ΔBLYP calculations. Extra denotes extrapolation to the CBS limit based on TZ3P and QZ6P calculations and numbers in
parentheses are obtained by adding the difference between ϵCBSi − ϵTZ3Pi to the result obtained at the TZ3P level. Δsol. has been calculated using COSMO. All values are
in eV.

IP EA

Calculation AT1 AT1+B AT2 AT4 AT1 AT1+B AT2 AT4

TZ2P — 7.84 7.34 6.94 — −0.84 −0.65 −0.45
TZ3P 8.47 7.90 7.35 6.97 −0.41 −0.80 −0.63 −0.40
QZ6P 8.50 7.96 — — −0.26 −0.62 — —

Extra 8.55 8.04 (7.49) (7.11) 0.07 -0.38 (−0.21) (0.02)
Δsol −1.82 -0.99 −0.52 −0.01 1.55 — 1.87 1.62
ϵ + Δsol 6.73 7.05 6.97 7.10 1.62 — 1.66 1.64
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EAs of AT2 and AT4 on the TZ3P level by the basis set limit
incompleteness error found for AT1+B. (140 and 420 meV,
respectively). There is of course a small uncertainty due to the
different basis set errors for AT1 and AT1+B. For the
extrapolation itself, we assume the error to be rather small for
the IP, since the difference between TZ3P and QZ6P are rather
small. For the EAs, the error might be larger. Still, we can safely
assume, that the basis set errors for AT2 and AT4 are below
100 meV.

The energy required to remove or add an electron from a DNA
oligomer in vacuum is strongly size dependent: The vertical IP in
vacuum decreases rapidly with increasing oligomer size, with a
difference of almost 1 eV between AT1 and AT4. For the EA, a
difference of 0.4 eV is found. The IPs of the solvated DNA
oligomers, on the other hand, are almost independent of the
number of base pairs. When an electron is removed from the
oligomer, the surrounding cloud of electrons stabilizes the
resulting hole. Increasing the oligomer size thus reduces the IP
potential since the hole becomes more and more stabilized. In the
aqueous environment, the solvent plays the same role and
consequently, the inclusion of water via the COSMO
effectively compensates for the effect of the DNA
environment. Of course, the comparison is slightly skewed
since the DNA environment and the solvent are not treated at
the same level of theory. However, there is some evidence that
COSMO and other polarizable continuum models are fairly
accurate in describing the dielectric screening properties of
water (Deglmann and Schenk, 2012).

The IP of AT1+B, AT2, and AT4, all agree within 130 meV. In
light of possible basis set errors and errors of the qsGW method
itself, the difference is well within the error margin of our method.
Only for AT1 we obtain a significantly lower IP, which indicates
that the DNA backbone apparently plays an important role in
stabilizing ionized DNA oligomers. For the EAs, we arrive at the
same conclusion. The differences between the considered systems
are even smaller, the aqueous EAs of AT1, AT2 and AT4 being
with 1.62, 1.66, and 1.64 eV in excellent agreement. Recently,
Pluhařová et al. (2011), Pluhařová et al. (2013), Pluhařová et al.
(2015) also concluded that the effect of the DNA environment on
the IPs of individual aqueous nucleobases seems to be modest. On

the BMK (Boese and Martin, 2004)/6–31G* level of theory, they
obtained an IP of 7.24 eV for a fragment of 2 solvated AT base
pairs including backbone from the Dickerson dodecamer, but for
the isoltaed AT base pair, they obtained and IP of 7.58 eV. The
first number is in good agreement with ours, while the second one
differs from our result for AT1 by almost 1 eV. However, the
difference of only 340 meV between both fragments is of the same
order as our difference between the IPs of AT1 and AT2 of
260 meV. Thus, our conclusions regarding the role of the explicit
inclusion of the DNA environment on the calculated IPs are very
similar.

Finally, we shortly discuss the compute times of the qsGW
calculations for the DNA fragments. A detailed timing analysis
for the evaluation of the self-energy in ADF has already been
performed in Förster and Visscher (2020). The asymptotic
scaling of qsGW will be the same as for G0W0: The only
additional cubic step is the diagonalization of the
Hamiltonian in each iteration. The LU factorization of each
of the Nω Nfit × Nfit matrices in each iteration to calculate the
screened interaction (Förster and Visscher, 2020) requires
roughly 2

3N
3
fit FLOPS, while the dominant step in the single

diagonalization of the Nbas × Nbas matrix in each iteration
requires 4

3N
3
bas FLOPS. Since we have Nbas ≈ 5 × Nfit in a

typical calculation, the compute time for diagonalization is
negligible. Of course, a qsGW calculation requires multiple
iterations and is consequently slower than a G0W0

calculation. For the DNA fragments, all calculations required
between 6 and 8 iterations to converge. This is considerably
faster than the average number of iterations found for GW100,
where we have already observed that convergence is typically
faster for organic systems. We have set the converge threshold
for all calculations in this section to log10 (εSCF) � −8, as opposed
to −7 for GW100. However, the increasing sparsity of G0 (τ →
0+) and G0 (τ → 0−) with increasing system size is also
responsible for this fast convergence.

The largest calculation here is the one for AT4 using the
TZ3P basis set. The system has 260 atoms and 1,220 electrons.
We used 6,374 MOs and 33,678 auxiliary fit functions. The
calculation took 6 iterations to converge and has been
performed on 16 cores of a single Dual AMD EPYC 7302@
3.0GHz, 2x RTX2070 machine with 256 GB of memory. On
average, a single iteration took a little more than 15 h, or 243
core hours.

4 CONCLUSION

As opposed to GW calculations with diagonal self-energy, qsGW
is a general, parameter-free, and starting point independent
method for the calculation of QP energies. While qsGW is
known to severely overestimate band gaps and IPs in three-
dimensional (3D) materials (Shishkin et al., 2007; Tal et al., 2021)
there is evidence that qsGW is more accurate for molecules
(Caruso et al., 2016; Kaplan et al., 2016). In canonical
implementations, qsGW is usually a magnitude slower than
evGW (Gui et al., 2018) and so far, low-order scaling
implementations for molecular systems have focused on

FIGURE 5 | DNA model systems used in this work.
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diagonal approximations to GW (Wilhelm et al., 2018, Wilhelm
et al., 2021; Förster and Visscher, 2020; Duchemin and Blase,
2021). To fill this gap, we have presented a low-order scaling
implementation of qsGW for molecular systems and
demonstrated its accuracy and robustness. In a proof-of-
principle application to DNA fragments we have showcased
the capabilities of the new implementation for systems of
practical interest (Pluhařová et al., 2015; Balanikas et al.,
2020). We have shown, that IPs and EAs of the considered
DNA fragments in vacuum are strongly size-dependent. Upon
taking into account the effect of the aqueous environment, the QP
energies become almost independent of the system size. This
confirms the results of previous DFT studies. (Pluhařová et al.,
2015, Pluhařová et al., 2013). For the largest of the considered
fragments with 1,220 electrons, the respective qsGW calculation
with more than 6,300 spherical AOs converged within 6 iterations
in less than 4 days on a single compute node with 16 cores.

All in all, the herein presented implementation is a necessary
stepping stone towards accurate ab initio studies of the spectroscopic
properties of large molecules in realistic environments, relevant to
organic optoelectronics or biochemistry. To be able to also study
optical properties of large systems, it needs to be combined with an
implementation of the BSE formalism. Our implementation does
not allow to take into account solvent effects directly. In the present
work, we have done that via a ΔDFT calculation and obtained
consistent results. However, it would be desirable to take into
account environmental effects more directly by combining qsGW
with COSMO (or a PCM) (Duchemin et al., 2016; Li et al., 2018)
and/or molecular mechanics calculations (Tirimbò et al., 2020a;
Tirimbò et al., 2020b).

Another issue in practice is the slow convergence of the QP
energies to the CBS limit. This is especially true for algorithms like
the present one which exploit sparsity in the AO basis. It is
encouraging that this convergence is seemingly faster than for

qsGW than G0W0. This doesn’t eliminate the need for basis set
limit extrapolation, but the extrapolation schemes become more
reliable with decreasing basis set error. Basis set errors for large
systems can also be accurately estimated based on results for
smaller, chemically similar systems, as exemplified in this work.
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