

Corrigendum: Heparan Sulfate: A Potential Candidate for the Development of Biomimetic Immunomodulatory Membranes

Bruna Corradetti^{1,2}, Francesca Taraballi^{3,4*}, Ilaria Giretti², Guillermo Bauza^{3,5}, Rossella S. Pistillo², Federica Banche Niclot^{3,6}, Laura Pandolfi³, Danilo Demarchi⁶ and Ennio Tasciotti^{3,4,5}

¹ Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States, ²Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy, ³Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, United States, ⁴Department of Orthopaedic & Sports Medicine, The Houston Methodist Hospital, Houston, TX, United States, ⁵Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Wales, United Kingdom, ⁶Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy

Keywords: mesenchymal stem cells, microenvironment, immune response, regeneration, tissue engineering, biomolecules, heparan sulfate, collagen

A corrigendum on

OPEN ACCESS

Edited and Reviewed by:

Frontiers in Bioengineering and Biotechnology Editorial Office, Frontiers Media SA, Switzerland

***Correspondence:** Francesca Taraballi ftaraballi2@houstonmethodist.org

Specialty section:

This article was submitted to Stem Cell Research, a section of the journal Frontiers in Bioengineering and Biotechnology

Received: 04 December 2017 Accepted: 19 December 2017 Published: 29 January 2018

Citation:

Corradetti B, Taraballi F, Giretti I, Bauza G, Pistillo RS, Banche Niclot F, Pandolfi L, Demarchi D and Tasciotti E (2018) Corrigendum: Heparan Sulfate: A Potential Candidate for the Development of Biomimetic Immunomodulatory Membranes. Front. Bioeng. Biotechnol. 5:86. doi: 10.3389/fbioe.2017.00086

Heparan Sulfate: A Potential Candidate for the Development of Biomimetic Immunomodulatory Membranes

by Corradetti, B., Taraballi, F., Giretti, I., Bauza, G., Pistillo, R. S., Banche Niclot, F., et al. (2017). Front. Bioeng. Biotechnol. 5:54. doi: 10.3389/fbioe.2017.00054

ADDITIONAL AFFILIATION(S)

In the published article, there was an error regarding the affiliation [6] for Federica Banche Niclot. As well as having affiliation [3], they should also have [6]. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way.

ADDITION OF AN AUTHOR

[Danilo Demarchi] was not included as an author in the published article. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way.

MISSING CITATION

In the original article, **Corradetti et al.** (2012) was not cited in the article. The citation has now been inserted in **[Introduction]** and should read:

Therapeutically active MSC have been demonstrated to take part in the inflammatory cascade and contribute to tissue homeostasis by releasing trophic factors that act as anti-inflammatory immune modulators (Corradetti et al., 2012, 2014, 2016; Lange-Consiglio et al., 2016; Perrini et al., 2016). Their beneficial potential can be altered or improved through the exposure to bioactive molecules and the development of a naturally inspired bioactive material able to support and retain such capability in the context of injury or damage is still much needed (Willerth and Sakiyama-Elbert, 2008). The authors apologize for these errors and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

AUTHOR CONTRIBUTIONS

BC and FT conceived the idea for this project. BC and FT designed and conducted the experiments. BC and FT wrote the manuscript. FT prepared meshes and performed their chemical characterization, cells characterization and staining assisted by

REFERENCE

Corradetti, B., Freile, P., Pells, S., Bagnaninchi, P., Park, J., Fahmy, T.M., et al. (2012). Paracrine signaling events in embryonic stem cell renewal mediated by affinity targeted nanoparticles. *Biomaterials* 33, 6634–6643. doi:10.1016/j. biomaterials.2012.06.011

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

GB, FBN and LP. BC conducted the cellular and molecular work assisted by IG, GB and RSP. DD and ET provided mentoring and contributed the funding support.

ACKNOWLEDGMENTS

The authors gratefully acknowledge funding supports from the following sources: the Hearst Foundation (Project ID, 18130017) and the Cullen Trust for Health Care Foundation (Project ID, 18130014).

Copyright © 2018 Corradetti, Taraballi, Giretti, Bauza, Pistillo, Banche Niclot, Pandolfi, Demarchi and Tasciotti. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.