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Abstract: In the global context, the epidemic of breast cancer (BC) is evident for the early 21st century.
Evidence shows that national mammography screening programs have sufficiently reduced BC
related mortality. Therefore, the great utility of the mammography-based screening is not an issue.
However, both false positive and false negative BC diagnosis, excessive biopsies, and irradiation
linked to mammography application, as well as sub-optimal mammography-based screening, such as

Int. J. Mol. Sci. 2019, 20, 2878; doi:10.3390/ijms20122878 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-4312-5076
https://orcid.org/0000-0002-0420-9405
https://orcid.org/0000-0001-5196-3366
http://www.mdpi.com/1422-0067/20/12/2878?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20122878
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 2878 2 of 31

in the case of high-dense breast tissue in young females, altogether increase awareness among the
experts regarding the limitations of mammography-based screening. Severe concerns regarding the
mammography as the “golden standard” approach demanding complementary tools to cover the
evident deficits led the authors to present innovative strategies, which would sufficiently improve
the quality of the BC management and services to the patient. Contextually, this article provides
insights into mammography deficits and current clinical data demonstrating the great potential of
non-invasive diagnostic tools utilizing circulating miRNA profiles as an adjunct to conventional
mammography for the population screening and personalization of BC management.

Keywords: breast cancer; screening; liquid biopsy; omics; multi-level diagnostics; individualized
patient profile; miRNA; mammography; predictive and preventive approach; personalized medicine

1. Introduction

Cancer is one of the leading healthcare burdens worldwide. In 2018 18.1 million (95% UI:
17.5–18.7 million) new cases of cancer (17 million excluding non-melanoma skin cancer) and 9.6 million
(95% UI: 9.3–9.8 million) cancer related deaths (9.5 million excluding non-melanoma skin cancer)
have been estimated worldwide. Figure 1 summarizes most frequent cancer types [1]. To this end,
a big portion of cancer-related deaths can be avoided at the level of primary prevention: innovative
screening programs and targeted preventive measures are essential tools to identify and mitigate
modifiable risks individually and in a timely manner [2–4].Int. J. Mol. Sci. 2019, 20, x 3 of 29 
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Further, at the level of secondary prevention, cancer-diagnosed patients could demonstrate longer
survival rates and have much better quality of life if the disease-management process would adapt
treatment algorithms that are tailored exactly to the individualized patient profiles [5,6]. For the
population screening, early and predictive diagnosis, as well as prognosis and disease monitoring,
a multi-level diagnostics (multi-omics, sub-cellular and medical imaging) method utilizing the great
information potential of liquid biopsy is considered to be the most appropriate tool [7] and is thoroughly
analyzed in the current paper using the example of breast cancer (BC) management.
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2. Breast Cancer in the Context of Global Cancer Mortality

The 28 Member States of the European Union (EU-28) with a population of 504.6 million had
5.0 million deaths in 2012 with more than one fourth attributable to cancer [8,9]. Detailed analyses
revealed 29.2% of deaths among men and 22.5% of deaths among women were caused by cancer alone
in 2012. Next to the disorders of the circulatory system (cerebrovascular and heart diseases), cancer is
the second most common cause of deaths in the EU, being one of the major public health burdens in
the European Union (EU). According to the International Agency for Research on Cancer (IARC, 2012),
out of 1.26 million cancer-related deaths in the EU-28, breast cancer (BC) alone is responsible for
91,500 deaths annually [10]. In the global context, the epidemic of BC is associated with a number of
external and internal risk factors attributed to the early 21st century [11].

BC is the most frequent tumor in female populations worldwide, with an incidence rate of
43.1 per 100,000 world age-standardized rate (ASR-W), a mortality rate of 12.9 per 100,000 ASR-W,
and a 5-year prevalence of 239.9. In low-, middle- and high-income countries the incidence rates
are persistently increasing [12]. To this end, the contribution to the BC incidence by the European
Region is higher than the global average [13]. Specifically for the EU-28, the incidence and mortality
rates are as high as 80.3 and 14.4 per 100,000 ASR-W, respectively [14]. Most of EU-28, including
the biggest sufferers such as the UK [15], France [16], Italy [17], Germany [18], and Belgium [19],
have established national programs for BC screening by mammography as the golden standard for
reducing mortality from BC. Evidence shows that national mammography screening programs have
sufficiently reduced BC related mortality [20,21]. Therefore, the adequacy and usefulness of the
mammography-based screening for women aged by 50 to 74 years is generally well-accepted [22].
Therefore, the great utility of the mammography-based screening is not an issue. However, it is
important to decide for which population the mammography-based screening should be considered to
be optimal i.e., the “golden standard” approach (see Table 1). Both false positive and false negative
BC diagnosis [23], excessive biopsies and irradiation linked to mammography application, as well
as sub-optimal mammography-based screening, e.g., in case of high-dense breast tissue in young
females [24], altogether increases awareness among the experts regarding the mammography-based
screening limitations. Severe concerns regarding the mammography as the “golden standard” approach
demanding complementary tools to cover the evident deficits [25] led us to present innovative strategies,
which would sufficiently improve the quality of the BC management and services to the patient.

Table 1. Categories of women and mammography screening applicability.

Categories of Women Applicability of Mammography

Postmenopausal with fatty breasts The breast density gradually decreases after menopause,
applicable every two years

Young with very dense breast parenchyma Low diagnostic sensitivity

Pregnancy
Mammography is not contraindicated in the first and second
trimesters (sufficient shading of the uterus is necessary); USG

and MRI are predominant diagnostic methods

Family history of BC An annual mammography, supplemental imaging (MRI, USG) in
dense breast tissue

Genetic predisposition to BC An annual mammogram starting at age 25

Diagnosis of atypical hyperplasia or
lobular carcinoma in situ An annual mammogram beginning at the time of diagnosis

Average BC risk with no symptoms An annual mammogram combined with USG in dense breast
tissue

BC, breast cancer; MRI, magnetic resonance imagining; USG, ultrasonography.
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Contextually, this article is aiming to provide insights into mammography deficits and current
clinical data demonstrating the great potential of non-invasive diagnostic tool utilizing circulating
miRNA profiles as an adjunct to conventional mammography for the population screening and
personalization of BC management [6]. To this end, innovative screening strategies should consider
primary [11] and secondary [26] levels of predictive and preventive medical approach, including both
non-modifiable and modifiable risk factors [27] based on comprehensive individual patient profiles
that means application of multi-omics [28,29], big data processing [30] and artificial intelligence such as
machine learning approach [5]. Table 1 summarizes the categories of women with the mammography
screening applicability.

3. Breast Cancer Screening by Mammography: An Evolution

Radiography is the oldest and most common form of medical imaging. A mammography is an
x-ray medical method examining the breast using lower doses of radiation. Because these x-rays do
not pass through breast tissue easily, the mammogram machine has two plates that compress the breast
to spread the tissue apart, resulting in a more accurate image with less radiation [31]. Over the past
decades, technology changed over from the analog to digital picturing.

The analog mammography used film as both a receptor and a display for the image to produce
static, fixed images. The advantage of analog mammography linked with computed radiographic
systems included much less costs than digital mammography, however the main disadvantage, that the
image is far inferior to digital mammography and also the storage in protective sleeve required large
amounts of space, was the reason for leaving it worldwide. Thus, the digital technology fluently
re-placed the analog mammograms.

Digital mammography uses detectors that change x-rays into electrical signals (pixels), which are
transferred into a digital receptor and converts x-rays energy into numbers. It produces an image
displayed on a monitor or printed on high-resolution printer. In comparison with analogue film,
digital mammography provides images with more contrast, allows image manipulation, and archive
films which reduces the risk of misplacement or damage. Moreover, the digital detector provides a crisp
image with no limitations on breast size and detects cancer cells earlier than analog mammography.
This makes this method superior to film mammography [32,33]. Digital breast tomosynthesis
mammography (DBT) is relatively new technology being developed to improve detection and
characterization of breast lesions, especially in women with non-fatty breasts. The x-ray dose for
a tomosynthesis image is similar to that of a regular mammogram. DBT creates a 3-dimensional (3D)
picture of the breast using several low dose x-rays obtained at different angles. The breast is positioned
and compressed in the same way as in a regular mammography, but unlike for regular mammography,
the x-ray tube moves in a circular arc around the breast in DBT [34,35]. DBT provides an advantage
in detection of breast masses compared to 2-dimensional (2D) mammography, since it allows the
separation of the tissue layers and the noticeable reduction of occlusions caused by overlapping
anatomical structures. While DBT slice images provide advantages for detecting mass lesions, it is
more difficult to get an overview and evaluate the distribution of microcalcifications compared to
2D mammography images. Therefore, the parallel using of 2D mammography and DBT slice images
seems to be necessary in clinical diagnostic practice. Due to the cumulative patient dose, using both
2D mammography and DBT at one session is not an acceptable screening method. However, the DBT
method offers a possibility of reprocessing the tomosynthesis data to create a 2D mammography-like
image (synthetic mammography, SMMG) from DBT image data at the dose level of a single DBT
screening. The use of SMMG with DBT provides significant benefit of increased diagnostic accuracy
compared with regular mammography [36]. Here, the initial evidence suggests that SMMG may
reduce recall rates and increase cancer detection rates when added to digital MMG screening [37].
Figure 2 describes the advantages and disadvantages of analog versus digital mammography.
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Regular screening for BC with mammography (along with other examinations such as breast
self-examinations) is widely recommended with the aim to reduce mortality of BC. Although controversy
remains over the best screening programs and to whom it should be offered (e.g., for the primary cancer
free population, screening of secondary cancer after previous BC surgery, screening of population
with different genetic background or different age-groups of screened population), these methods are
regularly used in clinical practice, following local or national guidelines. Reflecting this, there are
multiple approaches for BC screening. E.g., according to the Canadian Task Force on Preventive
Health Care, the use of mammography for women at average risk of BC aged 40–74 years includes
following recommendations: for women aged 40–49 years, it is recommended to not routinely screen
with mammography; for women aged 50–69 years and also 70–74 years, it is recommended to routinely
screen with mammography every two to three years [38].

Although the results of mammographic screening in women aged 50–70 years are sometimes
disputed [39], there is a consensus among clinicians that BC screening of women in this age group is
effective. On the other hand, there is no consensus about the value of BC mammographic screening
among women who are aged 40–49 years having denser breasts compared to postmenopausal
women [40]. Regarding women under 40 years of age, in which BC is rare and typically presents
symptomatically, the best imaging modality is controversial. Routine screening of women in this age
group in the absence of significant BC risk factors is not recommended. Some authors showed the
superior sensitivity of ultrasound screening for BC in women under the age of 40 years; however,
they noted that mammography and/or MRI remain essential adjuncts, particularly in the identification
of multifocal disease [41]. The large body of analysis comparing ultrasound and mammography
to evaluate women aged 30–39 with symptoms of possible BC has demonstrated that ultrasound
screening is a superior diagnostic tool [42], which may impact on the consideration of current clinical
practice guidelines that nowadays recommend mammography as the first evaluation in these women.

A special group for screening is women under 50 years who underwent breast conservation
therapy, as those women may benefit from breast screening as an adjunct method to MMG. In this
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regard, the addition of MRI to annual MMG screening improves the detection of early-stage but
biologically aggressive BC [43].

The last group, where much of the variability in BC screening programs exists, represents the
high-risk population. The annual mammography in women with one or two first degree relatives with
invasive BC starts 5 to 10 years younger than the youngest case in the family, but no earlier than age
25 and no later than age 40. Women with a breast biopsy showing atypical hyperplasia or lobular
carcinoma in situ and following surgical management to rule out invasive carcinoma have annual
mammography. Women with a history of chest wall radiation (i.e., mantle radiation for treatment of
Hodgkin’s lymphoma) at age 30 or younger have an annual mammography and breast screening MRI
starting 5 to 10 years after radiation given, but starting no earlier than age 25 and no later than age 40.
For women with BRCA1 or BRCA2 genes mutations, current guidelines recommend annual screening
by clinical breast examination and mammography starting at age 30 [44]. However, these approaches
may vary from country to country.

4. Breast Cancer Screening by Mammography and Profiling of Genetic Risk

Routine BC screening is recommended for women from the age of 50 years; however, high-risk
individuals (with a strong family history of the disease) may be included for screening at earlier
age. About twenty percent of all BCs occur in women under 50 years old, and the vast majority
of these women do not have any family history of the disease. Most of these tumors have poorer
prognosis, therefore early diagnosis by mammography screening, irrespective of known family history,
can be clinically beneficial due to reduced BC mortality [45]. Covering the genetic risk assessment
into mammography screening programs (by modification of screening frequency or using alternative
modalities such as MRI and USG) has been supposed as the way which maximize benefits and minimize
harms [46]. Therefore risk-stratified mammography screening based on genetic risk seems to be more
effective compared to prevailing age-stratified approaches [47].

4.1. Low- and Intermediate-Risk Women

Intermediate-risk women include cases with a breast biopsy that shows changes such as atypical
ductal or lobular hyperplasia, or lobular carcinoma in situ. A calculated risk of BC in these women is
ranged from 20% to 29% based upon family history, personal health history, or certain genetic markers.
Average-risk women (low-risk women) with none of the above risk factors have a 10–13% lifetime
risk of BC [48]. Mammography screening in low-or intermediate-risk women aged less than 50 years
is intensively discussed. Arguments for the lower age of mammographic screening include the
individual and societal gains linked with increased survival rates, greater work life participation,
and lower treatment costs due to early detection. On the other hand, arguments against the lower
age of mammography screening include the possible harms and higher costs of full population
screening. In this regard, screening in this specific age group of women is accompanied by more cases
of false-positive results and unnecessary biopsies because of lower screening specificity. A recent
review by Nelson et al. [49] assessed the studies of screening in intermediate-risk women, including
mammography screening. Results demonstrated that false-positive results are common and are higher
for annual screening, younger women, and women with dense breasts. It seems that the absolute
benefits (e.g., number of deaths prevented) are smaller than for older women, because of general lower
BC incidence and lower sensitivity of mammography in women aged 40–49 years [33,50].

Several older clinical studies did not demonstrate a significant reductions in BC mortality resulting
from screening low-risk women aged 40–50 years [51,52]. A more recent study of Moss et al. [53]
enrolled women aged 39–41 years from 23 UK NHS Breast Screening Programme units. Participants
were randomly assigned to intervention groups with annual screening by mammography up to
an age of 48 years, or to a control group receiving usual medical care (invitation for screening at age
50 years and every 3 years thereafter) respectively. Results showed a significant reduction in BC
mortality in the intervention group compared with the control group in the first 10 years after diagnosis
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but not thereafter from tumors diagnosed during the intervention phase. The overall BC incidence
during 17-year follow-up was similar between the groups. A meta-analysis of eight trials revealed
that mammography screening reduces BC mortality by 15% for intermediate-risk women aged 39 to
49 years [54].

4.2. High-Risk Women

Validated risk assessment models demonstrated that high-risk women are considered to be
those with lifetime risk of BC that is greater than 20% and very high-risk women with a 30% or
greater risk for the disease [55]. High-risk individuals include women with a known BRCA1 or
BRCA2 mutation and their first-degree relatives, women with a personal history of invasive BC
or ductal carcinoma in situ and lobular carcinoma in situ or atypical hyperplasia, Li-Fraumeni,
Cowden/PTEN or Bannayan-Riley-Ruvalcaba syndrome (and first-degree relatives), mutation in
specific genes (ATM, CDH1, CHEK2, NBN, NF1, PALB2, PTEN, STK11 or TP53), and a history of chest
irradiation between the age of 10 and 30 [56]. A germline gene mutation in BRCA1 or BRCA2 results
in a significantly elevated lifetime risk of developing breast and ovarian cancer estimated at up to
7 and 25 times, respectively, compared to average risk population. It is supposed that more than
90% of hereditary cases of BC (and also ovarian cancer) are a result of a mutation in BRCA1/2 [57].
The estimated prevalence of BRCA1 and BRCA2 mutations is dependent on the population and can
vary between 1 in 300 and 1 in 800, respectively [58].

Meta-analysis of the three studies that compared MRI plus mammography versus mammography
alone in screening of young women at high BC risk revealed the sensitivity of MRI plus mammography
to be 94% (95%CI 86–98%) and the incremental sensitivity of MRI to be 58% (95% CI 47–70%) [59].
Regarding the high-risk healthy women over the age of 50, there are no clear-cut guidelines for how to
continue screening them. Most clinicians continue to screen these women with annual MRI, moreover,
in some older women, mammary gland tissue becomes less dense, making it easier to recognize lesions
using mammography [60].

Management of high-risk women for the development of BC is debatable, mainly in women
carrying a BRCA1/BRCA2 or p53 genes mutation because they can develop cancer at an earlier
age [61]. This is because mammography alone has limitations in screening younger women with
a specifically denser mammary gland tissue or with special tumor phenotypes [60]. Therefore, magnetic
resonance imaging can be used along with mammography in these women to increase sensitivity of
the screening program. Regarding the high-risk individuals with BRCA1 or BRCA2 mutations, current
guidelines suggest to begin annual MRI imaging at age 25 and to add mammography at age 30 [44].
Recent meta-analysis of Phi et al. [62] showed that additional screening sensitivity from mammography
above that from MRI is limited in BRCA1 mutation carriers. On the other hand, mammography
contributes to screening sensitivity in BRCA2 mutation carriers, especially those over 40 years. Authors
summarized that a differential screening schedule by BRCA status is worth considering [62]. The results
of a prospective multicenter trial enrolling 296 carriers of the BRCA1/2 mutation showed that carriers
of the BRCA mutation younger than 40 years may not benefit from full-field digital mammography
surveillance in addition to dynamic contrast agent-enhanced MR imaging [63].

Based on above-mentioned clinical data, we can conclude than women at high-risk of BC require
a close breast surveillance. On the other hand, there is no evidence that more frequent mammography
screening or screening with other modalities actually reduces the risk of BC mortality in women with
an intermediate or low BC risk (including women with extremely dense breast at mammography) [64].
In addition, mammographic screening has several weaknesses: (a) the risk of false positives; (b) the risk
of false negatives; (c) X-ray radiation exposition may trigger BC in high-risk women; (d) mammography
performance is operator dependent [65–67].

Moreover, clinical practice demonstrates common diagnostic problems in the distinguishing the
pure atypical ductal hyperplasia from advanced lesions, such as DCIS and/or invasive ductal carcinoma
following a mammography, and even combined with follow-up core needle biopsy. In this regard,
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accumulating evidence from oncological research confirming the role of miRNAs in BC progression
should be helpful. Therefore, it seems logical to use the potential of miRNA molecules as biomarkers
in early BC detection as a follow up of mammography and core needle biopsy [68].

For women who are at high risk for BC and are unable to undergo an MRI evaluation (or are
pregnant), ultrasonography of the breast is considered as a useful diagnostic tool. Moreover, ultrasound
has been suggested as an adjunct screening method that can detect BC that is missed when using
mammography. In this regard, Health Quality Ontario [69] investigated the benefits of ultrasound
as an adjunct to mammography compared with mammography alone in women at average and
high BC risk. After including five prospective studies, authors concluded that there is low-quality
evidence that screening with mammography and adjunct ultrasound detects additional cases of disease,
with improved sensitivity compared to mammography alone. Moreover, the results did not show
that the use of ultrasound as an adjunct to mammography might reduce BC-related mortality in
high-risk women. Due to certain limitations of mammography, particularly in women with dense
breasts, ultrasound in combination with contrast-enhanced magnetic resonance imaging, are suggested
to supplement mammography for the early detection of BC [70].

4.3. Genetic Profiling as a Tool for the Risk Assessment

Another method focused on the more specific and early detection of BC itself and its risk
assessment involves genetic signature profiling. It includes either only genetic variants, or gynecological
characteristics or it combines all these factors together. The first mentioned genetic model is mainly
the BRCAPRO with several modifications [71] and BOADICEA [72]. Both are able to predict the
risk of the disease by mutations analyses in highly penetrant genes, such as BRCA1 and BRCA2.
These variants have high individual benefit, but due to rare incidence, they are not suitable for
general screening. Therefore, other genetic models include several single nucleotide polymorphisms
(SNPs) in low penetrant genes, as they are more frequent in the general population and thus are
preferable in the primary screening programs. Some models analyze 7 [73], 12 [74], 51 [72], 77 [75],
88 [76] or 153 SNPs [77]. However, the predictive ability of these genetic models, explained by an area
under the ROC curve (AUC) is individually low, ranging from 0.53 to 0.68 [75,77]. When combined
multiplicatively with other risk models (i.e., BRCAT / Gail model), a substantial improvement in
specificity and sensitivity was observed [72,73,76,78]. Addition of a genetic risk model (12 SNPs) to
the BRCAT had a greater effect among African Americans than in whites as it reclassifies the high-risk
status of several women undergoing screening mammography [74].

Comparative analyses focusing on the evaluation of the best model’s discriminative ability explained
by the area under the ROC curve, including genetic, Gail/demographic, and mammography models,
revealed the domination of single mammography model above other models. Better identification of
women with elevated risk for BC could be attained by the combination of these models as it increases
the AUC values by a statistically significant amount [79–81]. It seems that BC risk-stratification based
on the combination of mammography screening, genomics and classical risk factors could augment
comprehensive risk prediction, provide many benefits in further treatment or monitoring and facilitate
tailored preventive intervention.

4.4. Proteomic Profiling as a Tool for Screening Guidelines

The clinical complications due to increased breast density lead to confusion for physicians in
the management of women with dense breasts and their follow-up. In this regard, the discussion
between patients and health-care providers regarding the need for supplemental screening is necessary.
A biochemical clinical approach not affected by density of mammary gland or risk profile of the women
would provide an important tool in the management of women with dense breasts or other risks
and doubtful imaging results. With the discovery of key biomarkers and protein signatures for BC,
proteomic technologies are fully available to provide an ideal diagnostic adjunct to imaging. Research
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studies have demonstrated that breast tumors are linked with complex changes in the levels of both
serum protein biomarkers (SPB) and tumor associated autoantibodies (TAAb) [82].

Recently, Videssa® Breast as a combinatorial proteomic biomarker assay has been comprised
of SPB and TAAb integrated with patient-specific clinical data to produce a diagnostic score that
reliably detects BC as an adjunctive tool to imaging. Certain blood-based biomarkers are associated
with higher mammographic density [83], therefore it is unknown whether the biomarkers included
in Videssa® Breast might be impacted as well. Reese et al. [84] aimed to assess the performance of
Videssa® Breast in women with dense and non-dense breasts and determine whether this test could
help as an additional tool to clinicians in managing women with dense breasts and questionable
imaging results. Results of this study demonstrated that Videssa® Breast has high sensitivity and
specificity in detecting BC, irrespective of density status. Moreover, a negative Videssa® Breast test
gives an assurance to women with dense breasts that they likely do not have BC.

In addition to above mentioned study, Lourenco et al. [85] conducted two prospective clinical
trials with the aim to assess a blood-based Videssa Breast test for accurately detection of BC and reduce
false positives imaging results. Moreover, they used the Videsa test to detect BC for use in conjunction
with imaging to aid healthcare providers in making informed decisions on treating young women
(under 50 years old) with difficult-to-assess imaging findings. Authors showed that Videssa Breast
can effectively detect BC when used in combination with imaging, improves the management of BC
in individuals under 50 years old with challenging or absent imaging findings, and can apparently
decrease undesirable clinical procedures. The aforementioned results pointed to the benefit of the
integration of SPB and TAAb data in BC diagnosis. Moreover, these data sustain the further progress
of combinatorial proteomic approaches for detecting BC.

5. Liquid Biopsy as Marker for Breast Cancer Control and Management

Traditional BC diagnostic tools include clinical and physical examinations, imaging mammography,
ultrasound, and/or magnetic resonance imaging, followed by histopathology. Ultrasound as
a non-invasive and safe tool is very helpful, but since it is unable to screen the general population for
cancer, it cannot replace mammograms, especially in women above 40. Nevertheless, once a suspect
lesion in the breast is diagnosed, the bioptic verification is necessary.

Histopathology as an invasive approach to examining cancerous tissues once the disease is
installed has for decades been a golden standard for assessment of the tumor biology and if available
can also facilitate assessment of ipsilateral lymph node status and serve as a decision-making tool in
disease management. Currently, the histological and partial genetic profile of solid tumors is achieved
from biopsy or surgical excisional specimens, but these invasive techniques cannot always be performed
routinely. It is well-known that tumors consist of subpopulations of cells and needle biopsy takes only
a small amount of tumor tissue that does not reflect its full heterogeneity, making the capturing of
aggressive clones problematic. Moreover, neither tumor cells show heterogeneity, nor their metastases,
which carries different genomic aberrations. As core biopsy of tumor tissue reveals only the portion of
this heterogeneity, especially in patients with metastases and in overall assessment it does not seems to
be fully representative [86,87], except of full excisional biopsy.

Knowledge, that cancer tissue is associated with mutations in genes, specific genetic alterations and
protein expressions, together with those needle biopsies in BC diagnostics have some disadvantages
leading to false decisions, sets the identification of other tumor biology markers as useful tools for
diagnostic, prognostic and therapeutic purposes. In line with this, other information indicates that
surgically resected primary tumor alone does not provide sufficient information about the future
diseases biology and seeding of metastases, which can be dissociated at different sites and can harbor
unique genomic characteristics that are not detectable in the corresponding primary tumor of the same
patient. Thus, the international oncology community is in active pursuit of non-invasive methods for
the diagnosis and monitoring of BC patients, which could be introduced in clinical practice. Nowadays
efforts are focusing on monitoring specific bodily fluid biomarkers for early and minimally invasive
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detection [88]. The background for this is the natural behavior of the malign disease, leading to its
spread. As disease advances, tumor cells are released from primary tumors (e.g., circulating tumor
cells – CTC) and/or metastases or tumor cells release their own nucleic acids (DNA, RNA, miRNA,
etc.) into the circulation (circulating free DNA – cfDNA). Analysis of these particles with tumor origin
has led to a new diagnostic procedure known as the Liquid Biopsy [89,90].

Early detection of BC disease, treatment of BC, and metastasis monitoring are of eminent
importance to ensure favorable prognosis in an individual. Although conventional diagnostic methods,
i.e., breast X-ray mammography is precise (“gold standard”) clinical method, they may bring about
radioactive/invasive harms in patients. In this regard, liquid biopsy as a noninvasive approach is
convenient for repeated sampling in clinical oncology practice. Emerging interests in “liquid biopsies”
have encouraged researchers to recognize and develop clinically-valid noninvasive genomic and
epigenomic signatures that can be exploited as biomarkers capable of detecting premalignant and
early-stage tumors, or as biomarkers for prognostic and metastatic evaluation, including cancer relapse
monitoring [91]. Importantly, these genomic and epigenomic signatures that are frequently deregulated
in cancers, have great potential to serve as promising entities for multifarious purposes within clinical
oncology [92].

The term “liquid biopsy” refers to the use of circulating (cell-free) tumor DNA (ctDNA), circulating
tumor cells (CTCs), and other non-invasive biomarkers such as long non-coding RNAs (lncRNA),
messenger and microRNAs (mRNAs and miRNAs), proteins (soluble or membrane-associated proteins
and glycoproteins) and exosomes for the early diagnosis, prognosis, monitoring of clinical progression
and response to treatment [93] as was demonstrated in various cancer types including HPV-Associated
oropharyngeal cancer [94], and BC [95–97]. Thus, liquid biopsy can be used as an additional diagnostic
tool to core or excisional biopsy of primary tumor or its metastasis, or indirect diagnostic tool in case of
technically non-performable, non-achievable localization of tumor/metastasis. The high importance
for wide clinical application of liquid biopsy supports the results from the studies analyzing temporal
and spatial heterogeneity of the tumor tissue. Several studies have described the important role
of CTCs in the clinical management of BC disease, notably the ones in association with primary
metastases [98,99]. On the other hand, Mansouri et al. [100] evaluated whether CTCs may serve as
a clinical prognostic marker for survival in primary BC. Their meta-analysis pointed to CTCs as valid
prognostic marker in primary BC prior to any systemic therapy mainly when it is studied through
CellSearch® using, concluding that the more the CTCs are linked with increased death and relapse rates
in patients. In another study, the prognostic value of CTCs with an epithelial-mesenchymal transition
(EMT) phenotype (expression of TWIST1, SNAIL1, SLUG, ZEB1 transcription factors was analyzed) in
primary BC patients were assessed [101]. CTC EMT was determined in 77 from 427 (18.0%) patients.
Considering all subgroups of patients, individuals without detectable CTC EMT in peripheral blood
manifested longer disease-free survival compared to patients with detectable CTC EMT. Likewise,
plasma DNA mutations in ER + MBC seems very promising markers in the early prediction of
therapeutic response. In this regard, Kumar et al. [102] used digital PCR-based target enrichment,
which was followed by next-generation sequencing to analyze plasma DNA mutations in ESR1,
PIK3CA, and TP53 in a prospective cohort of 58 patients with ER + MBC. This assay found ESR1,
PIK3CA, and TP53 plasma ctDNA mutations in 55%, 32%, and 32% of individuals and revealed ctDNA
mutant allele fractions that were frequently discordant among the analyzed genes.

Despite the initial optimism and expectancy due to identification of CTCs and ctDNA from liquid
biopsies in cancer patients, most recent data indicate that although these markers provide a high grade
of cancer specificity, both groups of clinical indicators are rare in body fluids. Thus, these markers may
be insufficient as clinically valid diagnostic markers. In general, ctDNA represents only less than 1% of
the total cfDNA detected in body fluids. In this regard, the ratio of CTCs to white blood cells consists
approximately 1:1 million [103]. Thus, a study that assessed the ability of ctDNA to recognize specific
mutations in patients with primary tumors demonstrated positive result in only 73% of colorectal,
57% of gastroesophageal, and 48% of pancreatic carcinomas [104]. These data may be considered
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rather disappointing contemplating the fact that each of these mutations were known apriori before
screening [105]. Importantly, other molecules derived from tumor mass, such as non-coding RNAs
(including miRNA) that are far more plentiful than ctDNA or CTCs in body fluids, are relatively stable
in biofluids. These RNA molecules are often deregulated, even in the initial stages of carcinogenesis.
These features favor RNA markers (when compared to CTCs and cfDNA) for further methodical
development as noninvasive liquid biopsy diagnostic and prognostic biomarkers for cancer disease,
including BC. In addition, liquid biopsy miRNA biomarkers are applicable only for cancer patients
but for also healthy individuals with benign diseases. Thus, cancer screening, staging, and response
to treatment may be more effectively assessed by evaluating specific miRNA expression levels in
body fluids [106]. The role of liquid biopsy analyzing miRNA signatures as adjunct to conventional
screening of BC is summarized in Figure 3.

Int. J. Mol. Sci. 2019, 20, x 11 of 29 

apriori before screening [105]. Importantly, other molecules derived from tumor mass, such as non-
coding RNAs (including miRNA) that are far more plentiful than ctDNA or CTCs in body fluids, are 
relatively stable in biofluids. These RNA molecules are often deregulated, even in the initial stages of 
carcinogenesis. These features favor RNA markers (when compared to CTCs and cfDNA) for further 
methodical development as noninvasive liquid biopsy diagnostic and prognostic biomarkers for 
cancer disease, including BC. In addition, liquid biopsy miRNA biomarkers are applicable only for 
cancer patients but for also healthy individuals with benign diseases. Thus, cancer screening, staging, 
and response to treatment may be more effectively assessed by evaluating specific miRNA expression 
levels in body fluids [106]. The role of liquid biopsy analyzing miRNA signatures as adjunct to 
conventional screening of BC is summarized in Figure 3. 

 
Figure 3. Liquid biopsy miRNA adjunct to conventional screening of BC within personalized 
diagnosis and improved management of the disease. 

5.1. Extracellular miRNA Molecules as an Important Tool of Liquid Biopsy in BC Screening 

Circulatory tumor cells (CTCs) come either from primary or metastatic cancer tissue (Figure 4). 
In addition to previously studied ctDNA and CTCs there are also other circulating nucleic acids. The 
presence of circulating cell-free miRNA (cfmiRNA) molecules in plasma is the latest knowledge in 
the liquid biopsy era studied in BC patients.  

MicroRNAs (miRNAs) are short, non-coding RNAs of typically 22 nucleotides in length, which 
regulate gene expression at the post-transcriptional level and thus are responsible for proteome 
shaping [107,108], regulating post-transcriptional gene expression by binding to the 3‘ untranslated 
regions of mRNA [109]. The sequence that is crucial for this binding is known as the ‘seed sequence‘, 
situated mostly at positions 2–7 of the miRNA 5´-end [110]. MiRNAs are encoded by genomic DNA 
and are located mostly in intergenic regions (about 52%), intronic regions of genes (40%) and within 
exons (8%) [111,112]. They represent the human genome information, previously considered to be 
junk DNA, nowadays believed to be the hidden treasure regarding their potential relevance in 
diagnosis, prognosis, treatment and follow-up of cancer [113], including BC [6]. The miRNAs were 
initially discovered in 1993 [114]. A few years later, human studies were launched when its role in 
cancer was described [115,116]. Since then, an enormous number of studies of miRNA role in various 
disease´s ethiopathogenesis was conducted, describing their roles in or connection to them, including 
women’s cancers. Nowadays, the miRBase, a searchable database of published miRNAs contains 
more than 1800 human miRNAs sequences [117,118].  

Figure 3. Liquid biopsy miRNA adjunct to conventional screening of BC within personalized diagnosis
and improved management of the disease.

Extracellular miRNA Molecules as an Important Tool of Liquid Biopsy in BC Screening

Circulatory tumor cells (CTCs) come either from primary or metastatic cancer tissue (Figure 4).
In addition to previously studied ctDNA and CTCs there are also other circulating nucleic acids.
The presence of circulating cell-free miRNA (cfmiRNA) molecules in plasma is the latest knowledge in
the liquid biopsy era studied in BC patients.

MicroRNAs (miRNAs) are short, non-coding RNAs of typically 22 nucleotides in length,
which regulate gene expression at the post-transcriptional level and thus are responsible for proteome
shaping [107,108], regulating post-transcriptional gene expression by binding to the 3′ untranslated
regions of mRNA [109]. The sequence that is crucial for this binding is known as the ‘seed sequence’,
situated mostly at positions 2–7 of the miRNA 5′-end [110]. MiRNAs are encoded by genomic DNA
and are located mostly in intergenic regions (about 52%), intronic regions of genes (40%) and within
exons (8%) [111,112]. They represent the human genome information, previously considered to be junk
DNA, nowadays believed to be the hidden treasure regarding their potential relevance in diagnosis,
prognosis, treatment and follow-up of cancer [113], including BC [6]. The miRNAs were initially
discovered in 1993 [114]. A few years later, human studies were launched when its role in cancer was
described [115,116]. Since then, an enormous number of studies of miRNA role in various disease’s
ethiopathogenesis was conducted, describing their roles in or connection to them, including women’s
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cancers. Nowadays, the miRBase, a searchable database of published miRNAs contains more than
1800 human miRNAs sequences [117,118].

The first reports describing the existence of a miRNA signature characterizing human BC
were published in 2005, suggesting the involvement of miRNAs in the pathogenesis of this human
neoplasm [119,120]. The following years of research showed that miRNAs play a vital role in tumor
initiation, progression, drug resistance and disease metastasis. Moreover, the tissue and cancer
specificity of several miRNAs enabled us to generate miRNA fingerprints for several cancer types in
women, reflecting their reproductive organs [110,121–123], and this specific miRNA expression profile
can better classify tumors as compared with the mRNAs. MiRNAs thus have not only important
diagnostic purposes, but also high prognostic value, while opening new possibilities in the cancer
management, treatment stratification, and in the designing of personalized therapy [108,110,124],
most of all in BC [6].Int. J. Mol. Sci. 2019, 20, x 12 of 29 
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6. Circulating miRNA

Apart from the tumor microenvironment, miRNAs can be found and isolated from various
body fluids including serum, plasma, saliva, urine, breast milk, seminal fluid, cerebrospinal fluids
and others [125–127]. The miRNA molecules found in the circulation are derived from tumor tissue
cells, cells with short half-life as platelets, broken cells after tissue injury, apoptotic or necrotic
cells and chronic inflammation [128,129]. These miRNAs, called circulating miRNAs or extracellular
miRNAs (ECmiRNAs), are typically contained within exosomes and vesicles or protein bound
complexes, which are shed from tumor cells into the circulation. Packaging complexes protect RNA
from degradation, making them remarkably stable [130] and resistant to RNases, fluctuations in
pH, long storage periods and to multiple freeze/thaw cycles [125,131]. The stability is most probably
caused by the transport mechanisms as miRNAs are conjugated in complexes, providing them the
protection. ECmiRNAs can be released and transported a) in the membrane-derived vesicles - either in
microparticles (microvesicles) or in smaller exosomes b) in HDL or LDL lipoprotein complexes c) in
AGO protein complex or d) wrapped in large apoptotic bodies [132–134]. Such exported extracellular
miRNAs can be taken up by variety of recipient even distant cells, where they can alter target gene
expression. ECmiRNAs thus represent cell-cell communication, which contributes in carcinogenesis to
tumor progression, metastasis and therapy resistance [107,108,125,135,136]. The export of miRNAs
most likely has selective patterns and is not only passive. Cells secrete specific miRNAs due to cellular
signals or environmental cues and load them into specific vesicles. Moreover, some miRNAs seem to
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be expressed only to be exported, as they were not detected in the parent cell, only in the extracellular
vesicles [132,137].

Due to the above mentioned characteristics of the ECmiRNAs and non-invasive method of
acquisition, and despite it only being several years since its discovery, extracellular miRNAs represent
excellent detectable biomarkers and seem to be very promising useful biomarkers in non-invasive
monitoring and management of BC [135,138,139].

Considering this, to evaluate extracellular miRNAs as a biomarker in BC, the sensitive detection
method is essential. This is possible with several methods, e.g., high-throughput sequencing,
quantitative real-time PCR (qPCR), digital PCR (dPCR) or microarrays on chip. All these techniques
are now fully available, differing only in some requirements. For example, in qPCR experiments
it is necessary to find a stable extracellular miRNA reference in plasma or serum of BC patients.
To achieve this, a few miRNAs as miR-10b, -16, -30a, -103, -148b, -191, -192 or RNU6 are usually used
as endogenous reference markers [140,141].

7. miRNAs as Potential Blood-Based Biomarkers for Early Breast Cancer Detection

It was proved that miRNA has a crucial role in development of breast tumors and that miRNA
expression is highly deregulated either in tumor tissue, metastatic tissue, or in plasma from BC
patients. It causes a loss of control for many biological processes such as proliferation, differentiation,
apoptosis, epithelial-mesenchymal transposition with cell migration, and miRNA can play a specific
role as a regulator of metastasis in many levels of metastatic cascade as well. On the other side,
except oncogenic activities, miRNA also exhibits oncosupressor characteristics by targeting miRNA
coding oncoproteins [142]. Reflecting this knowledge, circulating miRNAs can serve as one of the
most promising biomarkers in oncology for early diagnosis, prognosis and therapeutic response
prediction [143]. Thus, the biological employ of miRNAs in BC management as liquid biopsy marker
recently obtained major interest due its advantages compared to other markers, both in translational
and clinical research.

Malignant tumors can stay clinically asymptomatic for quite a long time, until they reach the
size to be clinically detected or spread to the distant organs forming metastases. There has been
a worldwide effort to identify BC in its early stages for decades. This involved self-examination for
a palpable mass and mammography screening (MMG), enriched by ultrasound. The advance in primary
screening, mainly thanks to modification of approaches (MMG + genetic risk subdivided populations),
enabled us to detect BC quite quickly, however, it is still necessary to undergo core-cut biopsy or fine
needle aspiration to set the diagnosis and biological profile of the cancer [144]. Nevertheless, as was
shown recently, mammography could not be an early screening tool exclusively, and there exist other
possibilities, overcoming its limited specificity and sensitivity, e.g., liquid biopsy technology [68]. Thus,
an ideal approach should be a combination of MMG and some sensitive based “liquid biopsy” biomarker.

The definition of biomarker states that it is “a biological molecule found in blood, other body fluids,
or tissues that is a sign of a normal or abnormal process or of a condition or disease” [145]. Such a marker
should be readily accessible, sensitive enough to detect all types of tumors, and specific enough to not
give false positive results [109]. Based on their usage, we can classify the BC biomarker as including
risk screening, prognostic, predictive and diagnostic and disease monitoring biomarkers. Thanks to
developments in molecular biology, new circulating biomarkers (ctDNAs, mRNAs, cell surface
receptors, transcription factors, and secreted proteins) have been discovered and they have been
proved to be extremely valuable tools for establishing reliable and early BC diagnosis in a minimally
invasive way [146], and this potential of peripheral blood based liquid biopsy can be also fully used
in the follow-up testing after anti-cancer treatment [147].The question “why this race is favoring
miRNAs” is answered by their biology. The miRNAs have many properties and characteristics,
such as low complexity of their molecules, tissue-specificity, stability and easy quantification and
amplification, making them excellent potential biomarkers for many pathological and physiological
processes. Therefore, miRNAs are becoming a point of interest in cancer detection, since they have
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been proven to be selectively secreted from malignant cells in the mammary gland, and are expressed
differently in the blood of healthy individuals, and patients affected with BC [133]. Their onset and
progress in BC detection, profiling and management thus consequently shows great promise for new
options in screening, diagnosis and therapeutic interventions [148].

8. Tumor vs Serum miRNA Profile as a Background for miRNAs Based Screening

Cookson and al. [149] tried to answer the question of whether the circulating miRNA profiles
resemble those miRNAs inside the tumor. The study analyzed plasma and tissue from patients
before and after tumor resection. There were 210 miRNAs overall. Those miRNAs that have been
overexpressed in plasma could be matched with those in tumors. This fact suggests that the presence
of circulating miRNA can represent the solid tumor [149]. This finding has become the basis for
subsequent studies focusing on BC tissue and circulating miRNAs in clinically oriented research.
Many characteristics used for their detection have been identified using RNA-seq to generate profiles
of miRNA expression in paired samples tumor-serum from patients with carcinoma. This resulted in
a set of differently expressed miRNA between the tumor and the corresponding serum, suggesting
that only a small amount of miRNA is released from primary tumor into circulation [150].

The first effort for clinical utilization of miRNAs was therefore oriented on BC screening,
subsequently modified according to molecular subgroups, and later, adding the predictive potential
to determine tumor biological features and aggressiveness. Initially, a wide panel of miRNAs was
profiled, followed by spectra of selected miRNAs in validating studies. First of all, it was necessary to
find the difference in miRNAs profiles between BC tissue and normal breast healthy tissue, e.g., miR-21,
miR-125b, miR-145, mir-155 [119], followed by the finding of positive linkage between miRNAs present
in the primary BC and patients plasma. Here, matching miRNAs have been subsequently validated
for screening purposes, describing their expression profile or signaling function [150]. Contuinuing
this approach, Heneghan et al. [148] analyzed miRNA from tumor tissues and blood samples by
qRT-PCR. They quantified the level of 7 candidate miRNA of 148 patients with BC and 44 health
controls. Overexpressed levels of miR-195 and let-7a reflected the presence of tumors and when these
2 miRNAs were evaluated two weeks after surgery, their expression was very low [148]. Others have
conducted similar studies analyzing circulating miRNAs in patients with BC compared to healthy
controls. They concluded that a plasmatic level of miRNAs could be a valid distinguishing biomarker
for BC, finding a significantly higher level of several miRNAs for this purpose in their studies [151].

Nowadays, circulating miRNAs associated with neoplasia have the potential to detect cancer
even in its earliest stages. It was proved that miRNAs can be used as screening tool for BC (e.g., panel
of miR-127-3p, miR-148b, miR-376a, miR-376c, miR-409-3p, miR-652 and miR-801), having high
distinguish ability between healthy women, and those with benign, as well as malign breast tumors,
especially with better discriminatory power in younger women [148,152]. Moreover, circulating
miRNAs are also to differentiate between various tumors, e.g., in compliance with their histological
features such as hormone receptors or the state of lymph nodes in BC patients (expression of miR-10b,
miR-373, miR299-5p, miR-411, miR-215 and miR-452 in nodal positive patients) [153], showing high
specificity and sensitivity indicating metastatic disease [154]. Furthermore, a panel including miR-200a,
miR-200b, miR-200c, miR-210, miR-215 and miR-486-5p can predict the onset of metastasis for up to
2 years prior to clinical diagnosis in BC patients [155].

The extremely valuable predicting role of circulating miRNAs showed that some of them,
e.g., overexpression of miR-302b and miR-425, can be associated with early BC stage [151],
or miR-182 [156], miR-155 [157], and miR-21 [158]. In particular, miR-155 and multifunctional miR-21
have recently been of high scientific interest. Meta-analyses based on relevant articles collected from
several scientific databases showed that high levels of their expression correlate with detection of
early stages of the disease in screening approach, and also with creating distant metastases [159–161].
For interest, meta-analysis involving 3 studies with 184 patients showed a screening biomarker
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diagnostic value with sensitivity of 79% (95%CI: 72–84%) and a specificity of 85% (95%CI: 75–92%) for
mi-R155 [162]. In addition, plasmatic miR-21 and miR-155 correlate with tumor receptor status.

Another important feature of miRNAs presented in extracellular liquids is fact that they can play
a role in cross-talk of cancer cells with cells of surrounding tissue, potentiating their use as biomarkers
in BC [163,164]. From the known circulating miRNAs and miRNAs expressed in tissues, the evidence
of abnormal activation in BC patients extends to the circulating miR-16, miR-18a, miR-21, miR-145,
let-151a, miR-155 and the tissue-specific miR-7, miR-21, miR-145, miR-155/154, miR-182, miR-203,
miR-213 suggesting their values as non-invasive marker, and in addition as a potential approach to
overcome chemo-resistance [165].

Others correlate with treatment response and may have significant utility as predictive markers
or may serve as non-invasive predictors for tumor relapse and overall survival, e.g., in triple-negative
BC patients (miR-18b, miR-103, miR-107 and miR-652). Furthermore, this 4-miRNAs signature is
capable of distinguishing tumors from patients with early relapse to those without recurrence [166].
This therefore makes this blood-based signature a potential risk predictor for distinguishing metastatic
disease from recurrence in the early disease stage, serving as blood-based screening tool for BC relapse.
This concept is nor predictive in general, nor cancer type specific. E.g. high levels of serum miR-19a
may represent a biomarker for favorable clinical outcome in patients with metastatic HER2-positive
BC [167].

Singling out the current knowledge in these molecules, provides blood-based miRNA liquid biopsy
also the most valuable opportunity to forgo invasive methods such as tissue biopsy and associated
complications in BC diagnosis, and the screening of relapse in clinical praxis [168]. Circulating miRNAs
associated with BC screening approach are summarized in Table 2.

Table 2. Circulating miRNAs associated with BC screening approach.

miRNA Expression (BC vs. Normal) Sample Type References

miR-15a Upregulated serum [169]

miR-18a Upregulated serum [169–171]

miR-107 Upregulated serum [169]

miR-425 Upregulated serum [169]

miR-139-5p Downregulated serum [169]

miR-143 Downregulated serum [169]

miR-145 Downregulated serum [169,172]

miR-365 Downregulated serum [169]

miR-155 Upregulated serum [157,162,172–177]

miR-1 Upregulated serum [178]

miR-133a Upregulated serum [178,179]

miR-133b Upregulated serum [178]

miR-92a Upregulated serum [178]

miR-148b Upregulated plasma [152,179,180]

miR-376c Upregulated plasma [180]

miR-409-3p Upregulated plasma [152,179,180]

miR-801 Upregulated plasma [180]

miR-16 Upregulated plasma [181,182]

miR-21 Upregulated plasma/serum [133,175,176,181,183–185]

miR-451 Upregulated plasma [184]

miR-145 Downregulated plasma [184]
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Table 2. Cont.

miRNA Expression (BC vs. Normal) Sample Type References

miR-222 Upregulated serum [170,182]

miR-127 Upregulated plasma [152]

miR-376a Upregulated plasma [152]

miR-652 Upregulated plasma [152]

miR-801 Upregulated plasma [152]

miR-484 Upregulated serum [186]

miR-1246 Upregulated serum [187]

miR-1307 Upregulated serum [187]

miR-6861 Upregulated serum [187]

miR-4634 Downregulated serum [187]

miR-6875 Downregulated serum [187]

miR-181b Upregulated serum [173]

miR-24 Upregulated serum [173]

miR-505 Upregulated plasma [133]

miR-125 Upregulated plasma [133]

miR-96 Upregulated plasma [133]

miR-195 Upregulated serum [148]

miR-199a Upregulated serum [188]

Let-7a Upregulated serum [148]

miR-106a Upregulated serum [175]

miR-126 Downregulated serum [175]

miR-335 Downregulated serum [175]

Let-7c Downregulated serum [189]

miR-182 Upregulated serum [156]

miR-25 Upregulated serum [182]

miR-324 Upregulated serum [182]

9. The Role of Circulating miRNAs in Profiling of BC at the Time of Sampling for Screening

As positivity of hormone receptors and estrogen signaling pathway play an important role in
cancer development, progression and therapeutic response, neither tissue specific nor circulatory
miRNAs reflect the endocrine tumor status. It was proved that miRNA serum profile is dependent
on tumor endocrine status and may be differentially expressed (e.g., miR-21, miR-155) in the serum
of women with hormone sensitive compared to women with hormone insensitive BC. Its serum
concentration was found to be lower in PR tumor positivity [190]. Contrary to that, concentration of
miR-182 levels was significantly increased in patients with PR + BC. Considering this fact, miR-155
and miR-182 were suggested as valued plasma biomarker for Luminal type BC diagnosis [156].
A validating study providing deeper insight into the underlying molecular portrait of Luminal
A-like BC subtype selected from initial 76 deregulated miRNAs for further analysis 10 miRNAs
(miR-19b, miR-29a, miR-93, miR-181a, miR-182, miR-223, miR-301a, miR-423-5p, miR-486-5 and
miR-652). The biomarker potential was confirmed by RQ-PCR for four miRNAs (miR-29a, miR-181a,
miR-223, and miR-652) and by binary logistic regression for three miRNAs (miR-29a, miR-181,
and miR-652). A combination of these three miRNAs could reliably differentiate between cancers and
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controls. The expression profiles of these three miRNAs in plasma in combination with mammography,
could have potential to facilitate accurate subtype-specific BC detection [191]. As with the luminal
type, plasmatic miRNAs (e.g., miR-130a, miR-146a, miR-373) also differed between HER2-positive
and -negative tumors [192–194], and the miRNAs distinguishing potential for plasma-based screening
was also showed for TNBC. Mishra et al. [195] proclaimed miR-195-5p and miR-495 as prospective
circulating surrogate molecular markers for early detection of either Luminal or TNBC [195]. In addition,
the other circulating miRNAs (miR-16, miR-21 and miR-199a-5p) have proved this concept, finding
them to be underexpressed when compared with non-TNBC. Moreover, plasma miR-199a-5p expression
in TNBC significantly differed in pre and postoperative levels, and the expression levels were associated
with disease stage. These results suggest that the miR-199a-5p is a TNBC-specific marker with diagnostic
value and strong insight into targeted therapy during the treatment of TNBC [196]. All above mentioned
just confirmed the strong leading role of miRNAs in non-invasive approach for BC screening and
management. Moreover, Zhu et al. [190] highlighted that the stability of miRNAs as such screening
biomarkers, by examining differential expression in the samples of patients, is safe even for samples
have been conserved for 10 years [190], and if Zang et al. [197] showed the sensitivity and specificity
for BC diagnosis for miRNA-30a at 74.0 and 65.6%, respectively, overweighting the sensitivities of
conventional circulating tumor markers CEA and CA153 being 12.0 and 14.0%, respectively [197].
miRNAs based screening and prediction of BC is very valuable for clinical management and also in
patients with a genetically increased risk for disease development. To identify a prognostic marker
among asymptomatic women without a BC diagnosis, however with high risk predictive factors for
developing the tumor, was an aim of a study by Taslim et al. [198], who performed genome analysis
of 41-miRNA model expression in breast tissue in women without tumor with high and low BC
risk (based upon Gail risk model), they have revealed miRNAs correlating with high risk for BC
developing. Moreover, it was reported that altered or disrupted serum concentration of selected
miRNAs, led to development of BC among these women within next 18 months [198]. All these results
serve as proof-of-principle that miRNAs in women without BC may be useful for predicting BC risk
and/or as an adjunct biomarker for BC early detection in screening programs among those who already
developed cancer. The miRNAs identified herein may be involved in breast carcinogenic pathways
because they were first identified in the breast tissues of healthy women. Circulating serum miRNAs
predicting BC profile (ER, PR, TNBC, Her2+ status, stage, nodal affection) are shown in Table 3.

Table 3. Circulating serum miRNAs predicting BC profile.

miRNA Expression ER+/ER− PR+/PR− HER2+/HER2− TNBC+/− Nodal Affection Stage of BC References

miR-10b up − − − + yes early [153,199,200]

miR-18a up − − − + [199,201]

miR-18b up − − − + [199,202]

miR-20a up + − yes early [200,203,204]

miR-21 up − − + − yes early/advanced [184,200]

miR-29a down + + − − early [191]

miR-34a up − − + − yes [200,205]

miR-103 down + + − − yes [154,199]

miR-107 down + + − yes [154,199]

miR-125a down − − + − early [119,199]

miR-125b down − − + − early [119,199]

miR-138 up + yes early [206]

miR-143 down − − − + early [196,202]

miR-153 up − − − + [199]

miR-155 up − − − + yes early [119,199,200]

miR-181a down + + − − early [191]

miR-193b up − − + − yes [155,205]

miR-200a up + − yes [200,205]
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Table 3. Cont.

miRNA Expression ER+/ER− PR+/PR− HER2+/HER2− TNBC+/− Nodal Affection Stage of BC References

miR-200b up + − yes [200,205]

miR-200c up + − yes [200,205]

miR-342 up + + + − early [109,199]

miR-373 up + − yes [193,200]

miR-375 up − − + − yes [154,205]

miR-429 up − − + − yes [155,199]

miR-484 up + yes early [206]

miR-486-5p up + + − − yes [155,191]

miR-642-3p up early [207]

miR-652 down + + − − yes early [152,154,191]

miR-801 up + yes early [152,160,206]

miR-1202-5p up early [207]

miR-1207-5p up early [207]

10. Pros and Cons for miRNAs in BC Screening and Management

In the context of personalized medicine, the achievement of CTC cultures and cell free nucleic
acids via the liquid biopsy provides outstanding potential to noninvasively diagnostics, prediction,
and monitoring of the changing patterns of drug susceptibility in individual patients as their cancer
cells acquire new mutations [104,200] Analysis of cfDNA in BC individuals provides an opportunity for
non-invasive sampling of tumor DNA and supports its clinical validity as a promising ‘liquid biopsy’
tumor biomarker [201]. Despite that the quantification of miRNAs and cfDNAs within BC screening
in dual use mammography does not exist in literature, the clinical diagnostic may serve as a useful
tool in BC diagnosis. Specific attention is placed on short miRNAs, therefore miRNA profiling in
individuals may be a promising biomarker and prediction tool that could be utilized in all phases
of carcinogenesis within personalized management of breast carcinoma [6,208]. However, miRNA
detection as a part of liquid biopsy biomarkers still needs to be validated. There are various limitations
of circulating microRNAs as biomarkers of BC. Up to now, a number of studies have been focusing on
selected miRNAs that could be applicated as prognostic or predictive biomarkers. Interestingly, certain
levels of potential miRNAs occur in healthy subjects as well as in patients’ blood or plasma samples.
Therefore, alterations of miRNAs expression levels between controls and patients are generally quite
low [207]. Importantly, the origin of miRNAs as a part liquid biopsy can influence the effectiveness
of this non-invasive diagnostic method. It is well-known that the majority of miRNAs in blood are
packed in extracellular vesicles such as macrovesicles or exosomes [209]. Numerous studies analyzed
different miRNA expression profiles in plasma, serum and peripheral blood exosomes in BC patients in
comparison with healthy individuals [207,210]. These findings suggest the fundamental importance of
selecting proper sampling methods for the quantification of circulating miRNAs. Furthermore, single
miRNA as a diagnostic and prognostic biomarker has limitations in attributes, including specificity and
sensitivity. Moreover, levels of individual miRNA could be overlapped between patients and healthy
controls and lead to generation of false positive or false negative results [211]. Nowadays, it is an active
field of cancer research because it is necessary to clarify its biological context in body fluids. Moreover,
even though several miRNAs have been identified as biomarkers solely or in signatures in multiple
studies, many reports differ in their opinion on the detected miRNA. The reason for this is most likely the
variability in the design of the studies, cohort characteristics, isolation and detection methodologies or
data analysis [212]. Thus, here is an urgent need for to standardize detection and quantification assays
with appropriate normalization controls. Actually, for determination of circulating BC biomarkers,
there are currently extensively used genomic and proteomic methods. However, they have limited
multiplexing capabilities and involve multi-step, high-cost, and time-consuming processes demanding
skilled people, which limits significantly their applicability for point-of-case diagnosis [146]. Therefore,
there is an urgent need to develop portable, easy handling, time-efficient, cost-effective and quantitative
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tools for reliable determination of circulating biomarkers at different molecular levels. These analytical
tools should be afterwards implemented in decentralized and resource-limited settings. Afterwards,
a panel of cancer-specific circulating miRNAs should be created with corresponding tumor grades,
responses to treatment, recurrence, and patient survival, which in combination with other biomarkers
detectable in liquid biopsies could increase the sensitivity and specificity of cancer detection. Equally,
more research studies are necessary for the establishment of feasibility of these applications between
patients’ subgroups.

11. Conclusions and Expert Recommendations

Despite the extensive use of mammography as the gold standard for breast cancer (BC) screening,
the occurrences of both – false-positive and false-negative diagnosis, as well as over diagnosis and the
high expenditures, is an issue in gynecological oncology. Consequently, BC management demands
new strategies to for compensate the existing deficits. New strategies should consider:

- unmet needs of young populations such as innovative screening programs for early and predictive
diagnosis, for example in case of planned pregnancies to avoid pregnancy associated BC [213]

- new diagnostic tests with more predictive power for both – primary BC prevention (by risk
assessment to mitigate modifiable risks) and secondary prevention to mitigate the risk of metastatic
disease [26,29,214]

- the great potential of multi-level diagnostics by phenotyping and multiomics, in order to adapt
the treatment algorithms to the individualized patient profiles [3,28,215,216].

Contextually, the overall concepts of predictive, preventive and personalized medicine are strongly
recommended to advance the overall BC management [217].

Early and predictive diagnostic approaches (specifically in premenopausal women), extended and
innovative screening programs focused on young female populations (with dense breast parenchyma),
targeted prevention in high-risk groups, and optimized treatment concepts are necessary for better
controlling of BC. A multiomics clinical approach using liquid biopsy and based on the utilization of
the circulating biomarkers has a great potential to improve and enrich the cancer screening and its
later management. Promising candidate biomarkers include proteins, RNA, DNA, also autoantibodies,
metabolites, and lipids, which can be applied in the detection (involving the pre-invasive and
early stages of the disease), diagnosis, and treatment monitoring of BC. While protein-based cancer
biomarkers have been introduced in routine pathological practice for many years, nucleic acids-based
biomarkers such as miRNAs are relatively new. Blood-based biomarkers for BC screening are still
at the early phases of development, and many clinical/preclinical issues including cost effectiveness
need to be resolved before their standard introduction into clinical practice. However, despite this,
a novel approach for BC screening based on the combination of mammography with liquid biopsy
based methods (miRNAs or other) is very promising for specific clinical settings, which may refine the
diagnosis and lead to more personalized cancer treatment.
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