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Abstract: Fundus diseases can cause irreversible vision loss in both eyes if not diagnosed and treated
immediately. Due to the complexity of fundus diseases, the probability of fundus images containing
two or more diseases is extremely high, while existing deep learning-based fundus image classification
algorithms have low diagnostic accuracy in multi-labeled fundus images. In this paper, a multi-label
classification of fundus disease with binocular fundus images is presented, using a neural network
algorithm model based on attention mechanisms and feature fusion. The algorithm highlights
detailed features in binocular fundus images, and then feeds them into a ResNet50 network with
attention mechanisms to extract fundus image lesion features. The model obtains global features of
binocular images through feature fusion and uses Softmax to classify multi-label fundus images. The
ODIR binocular fundus image dataset was used to evaluate the network classification performance
and conduct ablation experiments. The model’s backend is the Tensorflow framework. Through
experiments on the test images, this method achieved accuracy, precision, recall, and F1 values of
94.23%, 99.09%, 99.23%, and 99.16%, respectively.

Keywords: attention mechanisms; deep learning; feature fusion; image classification; fundus images

1. Introduction

Fundus images are used by ophthalmologists and computer-aided diagnostics to
detect fundus disease such as diabetic retinopathy, glaucoma, age-related macular de-
generation, cataracts, hypertension, and myopia. Ophthalmologists have progressively
adopted computer-aided diagnosis as its accuracy has increased in recent years. The system
assists doctors in making partial diagnoses and saves both doctors and patients time and
effort [1–3].

Early detection of fundus disease is critical for patients to avoid blindness. Abnor-
malities in the fundus can indicate different types of disease when a single fundus image
is analyzed in three color channels. Patients usually develop ocular diseases differently
in each eye due to the complexity and mutual independence of ocular diseases. Figure 1
shows right and left fundus images, taken from the ODIR dataset [4], of a patient with
diabetic retinopathy and myopia in the right eye but not the left. The majority of fundus
image research focuses on segmenting fundus structures or detecting anomalies in certain
fundus diseases [5,6]. As a result, the ability to classify the whole range of disease on
fundus images is critical for the development of future diagnosis systems.

Various algorithms in the fields of enhancement [7], segmentation [8–10], and classifi-
cation [11,12] of fundus images have been developed based on merging image processing
and deep learning principles. Deep learning algorithms can be sufficiently trained and are
less prone to overfitting for datasets with more images, and test results accuracy can exceed
95%. The fundamental issue in classifying multi-label fundus images is the insufficient
data, which prevents the model from being effectively trained. The second is that fundus
images with more obvious lesions, such as glaucoma and other disorders that develop later
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before more obvious lesions appear, are easier to identify, and classification accuracy is
significantly lower.
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Figure 1. Images of the ODIR dataset. (a) No disease. (b) Diabetic retinopathy and myopia.

This research offers an algorithm based on a ResNet attention mechanisms method to
fuse the features of binocular fundus images for classification problems. The system takes
binocular fundus images as input and adds an attention mechanism to classify disease in a
global, multi-label approach. By applying enhancement processing to the original image,
the problem of low classification accuracy of fundus images with obscure abnormalities is
solved. Using data augmentation and batch processing methods to train the data can solve
the problem of uneven sample distribution.

1.1. Classification of Fundus Images

Most fundus image classification challenges nowadays are focused on identifying a
single disease with or without conditions such as diabetic retinopathy [13], myopia [14],
glaucoma [15], age-related macular degeneration [16], and other eye disorders. Gour
et al. [17] used a single fundus image and developed a convolutional neural network using
a transfer learning model to achieve high classification accuracy for multi-labeled images.
SGD was used to optimize the network and improved the training set accuracy from
85.25% to 96.49%. However, the classification accuracy is low for fundus images containing
glaucoma; one of the reasons is that the dissimilarity of early lesions in these diseases
is not significant and not easily detected during classification. Second, the dataset has
significantly less data than other disease images, making the model sensitive to overfitting
when classifying these diseases. Joon Yul Choi et al. [18] discovered that the number
of classes has a significant impact on classification performance. The VGG-19 network
was used in this study to classify three types of fundus images, and the accuracy fell to
41.9% when the number of classes was increased to five. As a result, the critical problems
that should be solved as soon as possible are how to handle the test dataset so that it is
equally distributed and how to train a high-performance neural network to increase the
classification accuracy of fundus images for each disease class.

1.2. Image Augmentation

A major challenge is averaging positive and negative sample distributions and en-
hancing image quality to increase classification accuracy. The number of input modules in
a classification model impacts how well the network performs. The problem of unequal
image distribution is common with multi-label data. The data upsampling method, in
which the images are rotated, flipped, cropped, and other operations to augment the dataset
with insufficient samples. The transfer learning method, in which the weight parameters
are obtained by training on large ImageNet image datasets, and it is easier to obtain optimal
results when using the pre-trained weights. Luquan et al. [19] improved the accuracy from
62.82% to 75.16% using transfer learning, but the model is prone to overfitting for image
classes with small datasets. Third, by changing the underlying network, the model can per-
form better, even with small samples, Wang et al. [20] used Vgg16 to classify multi-labeleed
fundus images with an accuracy of 86%, and changing to EfficientNetB3 improved the
accuracy to 90%.
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1.3. Attention Mechanisms

Image augmentation solves the problem of unequal sample distribution, but compli-
cated lesions in the fundus, such as microaneurysms and hemorrhages, remain hard to
identify. The shallow neural network learns the image’s texture features; as the network
deepens, it learns the image’s semantic information. The rich semantic information can
improve the network’s classification performance. Including the attention module allows
the image to properly learn the spatial position information of lesions. This module imitates
humans in finding significant regions in complicated situations and has applications in
a variety of vision tasks [21], including image classification, target identification, image
segmentation, and facial recognition. As indicated in the correlations in Figure 2, it may be
split into six types based on the data domain: channel, spatial, temporal, and branching
attention mechanisms, as well as channel and spatial attention and spatial and temporal
attention mechanisms. Hu et al. [22] proposed the SENet channel attention network, which
includes a squeeze-and-excitation (SE) module at its foundation. The SE module can gather
data information, capture inter-channel relationships, and enhance the representation.
However, it has the disadvantage of being unable to capture complex global information
and having a high model complexity. Sanghyun Woo et al. [23] proposed the convolutional
block attention module (CBAM) to improve global information exploitation. It connects
the channel attention and spatial attention mechanisms, allowing the network to focus
on features and their spatial locations. CBAM can also be added to any existing network
architecture due to the network’s lightweight design.

Micromachines 2022, 13, x 3 of 13 
 

 

multi-labeleed fundus images with an accuracy of 86%, and changing to EfficientNetB3 

improved the accuracy to 90%. 

1.3. Attention Mechanisms 

Image augmentation solves the problem of unequal sample distribution, but compli-

cated lesions in the fundus, such as microaneurysms and hemorrhages, remain hard to 

identify. The shallow neural network learns the image’s texture features; as the network 

deepens, it learns the image’s semantic information. The rich semantic information can 

improve the network’s classification performance. Including the attention module allows 

the image to properly learn the spatial position information of lesions. This module imi-

tates humans in finding significant regions in complicated situations and has applications 

in a variety of vision tasks [21], including image classification, target identification, image 

segmentation, and facial recognition. As indicated in the correlations in Figure 2, it may 

be split into six types based on the data domain: channel, spatial, temporal, and branching 

attention mechanisms, as well as channel and spatial attention and spatial and temporal 

attention mechanisms. Hu et al. [22] proposed the SENet channel attention network, 

which includes a squeeze-and-excitation (SE) module at its foundation. The SE module 

can gather data information, capture inter-channel relationships, and enhance the repre-

sentation. However, it has the disadvantage of being unable to capture complex global 

information and having a high model complexity. Sanghyun Woo et al. [23] proposed the 

convolutional block attention module (CBAM) to improve global information exploita-

tion. It connects the channel attention and spatial attention mechanisms, allowing the net-

work to focus on features and their spatial locations. CBAM can also be added to any 

existing network architecture due to the network’s lightweight design. 

. 

Figure 2. Classification of attentional mechanisms (ф indicates no relevant classification). 

1.4. Model Optimization 

When a high-performance model is employed as the basic classification network, the 

total performance metric improves [24]. This is because the network’s prediction capacity 

is strongly related to its recognition of the features of the fundus image. To process the 

input fundus images, a high-performance neural network must be used. Multi-model fu-

sion enables the creation of two models for extracting feature vectors, which will then be 

joined by vectors during fusion to increase classification accuracy. Wang et al. [20] ana-

lyzed model fusion-based classification of binocular fundus images using EfficientNet to 

extract features and then input the features into a classifier for classification, a two-stage 

classification technique with 90% accuracy. In general, the deeper the network, the better 

the classification. However, the deeper the network, the greater the risk of overfitting. 

ResNet extends network optimization by incorporating a residual module, which in-

creases classification performance [25,26]. Furthermore, in deep learning, dataset size is 

important in determining classification performance. Pre-training weights loaded on huge 

Channel Attention Spatial Attention

Temporal Attention

Branch Attention

Channel & 

Spatial

Attention

Spatial & Temporal

Attentionф 

ф 

Figure 2. Classification of attentional mechanisms (ф indicates no relevant classification).

1.4. Model Optimization

When a high-performance model is employed as the basic classification network, the
total performance metric improves [24]. This is because the network’s prediction capacity
is strongly related to its recognition of the features of the fundus image. To process the
input fundus images, a high-performance neural network must be used. Multi-model
fusion enables the creation of two models for extracting feature vectors, which will then
be joined by vectors during fusion to increase classification accuracy. Wang et al. [20]
analyzed model fusion-based classification of binocular fundus images using EfficientNet
to extract features and then input the features into a classifier for classification, a two-
stage classification technique with 90% accuracy. In general, the deeper the network,
the better the classification. However, the deeper the network, the greater the risk of
overfitting. ResNet extends network optimization by incorporating a residual module,
which increases classification performance [25,26]. Furthermore, in deep learning, dataset
size is important in determining classification performance. Pre-training weights loaded
on huge ImageNet datasets are then trained on the target dataset to acquire the appropriate
training parameters via transfer learning. Gour et al. [17] utilized neural networks trained
through transfer learning to train binocular fundus images. The classification accuracy
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for cataract disease was 97% and that for glaucoma disease was 54%, with considerable
variation in classification accuracy resulting in lower confidence in the model.

To address the above problems, this paper focuses on the design of a fundus image
classification network with binocular feature fusion based on the attention mechanism. To
solve the network overfitting problem caused by insufficient data, image enhancement and
augmentation processes are performed on the original fundus images, and the training
efficiency of the model is improved using transfer learning. The features of binocular
fundus images were extracted by fusing ResNet and attention modules for the classification
task, which increased the network’s ability to handle details. In subsequent experiments,
the effectiveness of the model is verified by comparative analysis and ablation experiments.

2. Materials and Methods

In order to perform efficient classification of fundus diseases, a Binocular Fundus
Photographs Classifying Network (BFPC-Net) based on attention mechanism and feature
fusion is proposed, as shown in Figure 3. The BFPC-Net is composed of 3 parts: image
augmentation model (IAM), residual attention module (RAM), and feature fusion module
(FFM). The network has two main characteristics: (1) the addition of a residual network
and attention mechanism fusion module, which causes the network to pay more attention
to lesion feature information and improves the feature difference between lesions and
background; (2) the addition of a multi-model fusion module, which combines binocular
fundus images to determine the type of disease and improve classification accuracy.
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Figure 3. BFPC-Net model. IAM: image augmentation model; RAM: residual attention module; FFM:
feature fusion module.

The BFPC-Net takes a patient’s binocular fundus images as input and outputs six
disease classes, one normal class, and one other class. To average the number of inputs in
each class, the BFPC-Net begins with an image augmentation module. To extract shallow
features, the number of image channels is enhanced by utilizing 3 × 3 convolutional layers,
batch normalization, and ReLU activation layers. The RAM module is the residual attention
module, which enhances network depth and overcomes the gradient disappearance and
gradient explosion problems. Since binocular fundus images are used, the features extracted
by the two networks need to be fused and then passed through the ReLU activation layer,
with dropout and fully connected layers used to obtain the classification results.
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2.1. Fundus Image Dataset

The ODIR dataset is from the Peking University International Competition on Ocular
Disease Intelligent Recognition (ODIR-2019), which includes label information and retinal
fundus images.

Figure 4 shows the distribution information of each label. The dataset consists of 6392
images; 44.95% were normal fundus images, 55.05% were diseased fundus images, while
25.16% of the diseased fundus images were from patients with diabetic retinopathy.
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Figure 4. Distribution of ODIR dataset. Normal (N), diabetes (D), glaucoma (G), cataract (C),
age-related macular degeneration (A), hypertension (H), pathological myopia (M), other dis-
eases/abnormalities (O).

Table 1 shows the distribution of original images and preprocessed images for each
type of label after balancing the data samples.

Table 1. Sample distribution after image preprocessing.

Original Images Preprocessed Images Training Set Test Set

N 2873 2873 2298 575
D 1608 1539 1231 308
G 284 1638 1310 328
C 293 1674 1339 335
A 266 1560 1248 312
H 128 756 605 151
M 232 1206 965 241
O 708 1346 1077 269

The experimental evaluation strategy is divided into two parts: first, the model’s
overall accuracy (accuracy, A), precision (precision, P), recall (recall, R), and F1 values are
assessed for all classes. Second, the same evaluation of the above metrics is performed
for each class. The comparative study of the integrated metrics offers a foundation for
evaluating the model’s overall performance.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)
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F1score =
2TP

2TP + FP + FN
(4)

where TP denotes a positive label and a positive predicted value, FP denotes a negative
label and a positive predicted value, TN denotes a negative label and a negative predicted
value, and FN denotes a positive label and a negative predicted value.

2.2. Image Augmentation Module

The larger the image, the more texture and detail it contains, and the better the features
that can be captured. However, the classification performance peaks when the image size
exceeds a particular threshold, and the computational cost increases as the image increases.
This algorithm is intended for the image augmentation module (IAM), which includes three
components: image normalization, image-weighted enhancement, and data augmentation.
Details of the image preprocessing are shown in Figure 5.
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The image-weighted enhancement can be formulated as Equation (5).

Iweight = Iorg ∗ α + Iblur ∗ β + γ (5)

where α = 4, β = −4, γ = 128, Iorg is the original image, and Iblur represents the blurred
image after convolution of the original image with the Gaussian kernel. The Gaussian
blurring step is shown in Equation (6).

Iblur = Iorg ∗ kernalh×w (6)

The size of the Gaussian kernel is h = w = 63, and the standard deviation of the
values in the h direction and w direction is 10.

The primary steps in the data augmentation process are follow-on rotation, left/right
inversion, and up/down flip. Figure 6 depicts the results. The use of data augmentation
can help to alleviate the difficulties of overfitting and low classification accuracy caused by
unbalanced data distribution.
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Figure 6. Image augmentation results.

2.3. Residual Attention Module

The model combines the residual architecture with the attention mechanism to extract
deep semantic information from binocular fundus images, and the architecture is shown
in Figure 7. The image augmentation feature map F ∈ R(C×H×W) is given as input. In
order to focus on the feature mapping relationship between the channels of the image, the
channel attention map is U ∈ R(C×1×1). The spatial attention map U′ ∈ R(C×H×W) is added
to obtain the spatial relationship of the local region. A residual architecture is designed
to improve network depth by merging the inputs F and U′, which are then activated by
ReLU to produce the output M ∈ R(1×H×W). Woo [20] et al. used a sigmoid activation
function, but we adopted the ReLU function as the activation function in our research,
which improved the model’s generalization ability.
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Figure 7. Residual attention module.

In the channel attention module, three convolutional layers are set up to capture the
nonlinear relationships of features between channels. F ∈ R(C×H×W) as input, sequentially
infers a 1D channel attention map, yielding the channel features F′ ∈ R(C×H×W).

The channel attention is designed to capitalize on the inter-channel relationship of
features. Average-pooling has been commonly used to aggregate spatial information.
Sanghyun Woo [23] use the average-pooling and max-pooling gathers information about
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distinctive object features to infer finer channel-wise attention. We argue that average-
pooling efficiently learns the extent of the target object, but max-pooling misses some
information. Two distinct spatial context descriptors are produced by average-pooling
processes. These two descriptors are utilized in the dense layer to reduce feature dimen-
sionality, and the result is fed into the nonlinear activation layer to get the output at
U ∈ R(C×H×W). As shown in Equation (7):

U = σ
(

FC
(

AvgPool
(

F′
))

+ FC
(

AvgPool
(

F′
)))
× F′ (7)

where AvgPool(•) denotes global average pooling, FC(•) denotes full connection, and
σ(•) denotes ReLU activation.

The spatial attention module focuses on the location information of the fundus lesion.
Zagoruyko et al. [27] demonstrated that the superimposed pooling operation effectively
highlighted the feature region. The input to the spatial attention module is U and the
output is U′. In short, the spatial attention is computed from Equation (8):

U′ = Conv(MaxPool(AvgPool(U)))×MaxPool(AvgPool(U)) (8)

where Conv(•) denotes convolution and MaxPool(•) denotes global maximum pooling.
The input of the module that merges the residual architecture with the attention

mechanisms is the combination of the preprocessed image and the attention module output,
as described in Equation (9):

M = U′ + F (9)

2.4. Feature Fusion Module

Binocular fundus images typically contain one or more diseases, and detecting simply
monocular fundus images cannot provide a comprehensive analysis of a patient’s condition.
The deep learning training process is a way of finding the global optimal solution, and
hyperparameters, such as learning rate, tend to cause the model to fall into a local optimal
solution at a particular point, leading the model to stop optimizing. Multi-model fusion
strategies can contribute to the reduction of this problem. The model output features are
merged to get better outcomes by constructing a multi-model feature fusion module FFM
based on binocular features.

As calculate in Equation (10), a sliding average method is used to combine multi-model
characteristics:

p =
1
T ∑ T

(i=1)wiyi (10)

where T denotes the number of models and is set to 2, wi denotes the weights of individual
models and is set to 0.5, 0.5 respectively, and yi denotes the predicted values.

2.5. Loss Function

To reduce data jitter and increase model performance on the test set, the predicted
values are processed using the sliding average method in the label smoothing method
when training the model. As shown in Equation (11):

y′k = (1− v)× yk +
v
K

(11)

where y′k denotes the kth label value after smoothing, yk denotes the true value of the kth
label, v denotes the error rate and takes the value of 0.1, K denotes the number of classes,
and the total number of class labels is 8.

The loss function after the label smoothing process can be calculated as:

Loss(y′k, ŷk) = −∑ K
(k=1)y

′
klg(ŷk) (12)

where ŷk denotes the probability of the predicted classes.
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3. Results and Discussion
3.1. System Specifications

The model was trained and tested using the Keras deep learning framework, on a
Windows 10 Pro system with an NVIDIA CUDA 10.2 for GPU acceleration. The BFPC-Net
was built using Tensorflow as the back-end Keras framework, using the Adam optimizer
for loss reduction, with a learning rate of 0.001, and an epoch of 100. The configuration of
the hyperparameters are shown in Table 2.

Table 2. Comparison of different algorithms (%).

Configuration Values

Image size 256 × 256
Loss function Binary crossentropy

Optimizer Adam
Train/Test 4/1

Epoch 100
Batch size 32

Learning rate 0.001

3.2. Experimental Results and Discussion
3.2.1. Analysis of Experimental Results for the ODIR Dataset

Figures 8 and 9 show the model fit while training the model to evaluate the classifica-
tion performance of BFPC-Net. As shown in the figures, the model fits fast to the optimum
and there is no overfitting of the training and validation sets on the model. Table 3 shows
that when comparing the performance metrics of [20,28,29] research in classifying fundus
images, MCGS-Net has lower accuracy and recall and does not classify disease images
effectively. ResNet enhances the depth of the network for more detailed fundus images
for analysis, and the classification performance is better than the above two models. Effi-
cientNet is a lightweight network with fewer model parameters that improves the relevant
metrics, but the metrics are still low. With fewer samples, the BFPC-Net proposed in this
research can quickly fit the model and achieve high accuracy.
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Table 3. Comparison of different algorithms (%).

Algorithm Accuracy Precision Recall F1 Value

MCGS-Net [28] - 65.88 61.60 89.66
EfficientNet [20] 92 71 66 89

ResNet [29] 95.47 95.41 94.22 94.75
BFPC-Net 94.23 99.09 99.23 99.16
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In the case of class imbalance, the high or low performance metric for each class better
reflects the overall performance of the model. Figure 10 shows the BFPC-Net classification
performance on eight of the classes in the ODIR dataset. The method achieves improved
classification results in the dataset and can produce better classification results for classes
with less images.
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3.2.2. Analysis of Ablation Experiments Results

Using images with image sizes of 256 × 256 and 128 × 128 for training, the classifica-
tion results are shown in Figure 11. The results show that, when other conditions are the
same, the image is larger and the classification results are better.

Micromachines 2022, 13, x 11 of 13 
 

 

3.2.2. Analysis of Ablation Experiments Results 

Using images with image sizes of 256 × 256 and 128 × 128 for training, the classifica-

tion results are shown in Figure 11. The results show that, when other conditions are the 

same, the image is larger and the classification results are better. 

Even with 128 × 128 images as input, the trained accuracy, precision, and recall all 

reach 0.8942, 0.9665, and 0.9660, respectively, which shows that the classification effect of 

the model for low pixel images is equally excellent. 

 

Figure 11. Different image size evaluation metrics for BFPC-Net. 

The BFPC-Net was separated into the basic network (Baseline) and Baseline + FFM 

models for independent experiments to validate the contribution of the IAM module and 

the FFM module to the model overall, and the results are shown in Table 4. The results 

show that adding the FFM module improves accuracy by 13.14% and the other three per-

formance measures by 15.7%, 20.87%, and 18.37%, respectively. 

Table 4. Analysis of ablation experiments for image size 256 × 256 (%). 

Models Accuracy Precision Recall  F1 Value 

Baseline 80.82 83.39 78.36 80.79 

Baseline + FFM 94.23 99.09 99.23 99.16 

3.2.3. Model Performance Analysis 

As shown in Table 5, when comparing the model to the research [30] method in terms 

of accuracy and parameters, the BFPC-Net improves the accuracy by 5.52% and the F1 

value by 10.45%, with fewer parameters than the VGG16 model used in the research [30]. 

Table 5. Model performance analysis. 

Algorithm 
Accuracy Rate 

(%) 
F1 Value (%) 

Number of Refer-

ences (MB) 

VGG16 [30] 88.71 88.71 16.29 

BFPC-Net 94.23 99.16 12.79 

4. Conclusions 

Using the ODIR dataset, a deep convolutional neural network architecture for binoc-

ular fundus image classification is proposed and evaluated. By simply inputting patients' 

binocular fundus images, the method can yield fundus disease classifications with high 

confidence. The experimental results show that BFPC-Net overcomes the problems of a 

small fundus image dataset and low disease classification accuracy by combining image 

enhancement, residual attention, and feature fusion modules. BFPC-Net can provide a 

comprehensive treatment plan for patients by combining their binocular fundus images. 

0

0.2

0.4

0.6

0.8

1

loss accuracy precision recall

256×256 128×128
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Even with 128 × 128 images as input, the trained accuracy, precision, and recall all
reach 0.8942, 0.9665, and 0.9660, respectively, which shows that the classification effect of
the model for low pixel images is equally excellent.
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The BFPC-Net was separated into the basic network (Baseline) and Baseline + FFM
models for independent experiments to validate the contribution of the IAM module and
the FFM module to the model overall, and the results are shown in Table 4. The results show
that adding the FFM module improves accuracy by 13.14% and the other three performance
measures by 15.7%, 20.87%, and 18.37%, respectively.

Table 4. Analysis of ablation experiments for image size 256 × 256 (%).

Models Accuracy Precision Recall F1 Value

Baseline 80.82 83.39 78.36 80.79
Baseline + FFM 94.23 99.09 99.23 99.16

3.2.3. Model Performance Analysis

As shown in Table 5, when comparing the model to the research [30] method in terms
of accuracy and parameters, the BFPC-Net improves the accuracy by 5.52% and the F1
value by 10.45%, with fewer parameters than the VGG16 model used in the research [30].

Table 5. Model performance analysis.

Algorithm Accuracy Rate (%) F1 Value (%) Number of
References (MB)

VGG16 [30] 88.71 88.71 16.29
BFPC-Net 94.23 99.16 12.79

4. Conclusions

Using the ODIR dataset, a deep convolutional neural network architecture for binocu-
lar fundus image classification is proposed and evaluated. By simply inputting patients’
binocular fundus images, the method can yield fundus disease classifications with high
confidence. The experimental results show that BFPC-Net overcomes the problems of a
small fundus image dataset and low disease classification accuracy by combining image
enhancement, residual attention, and feature fusion modules. BFPC-Net can provide a
comprehensive treatment plan for patients by combining their binocular fundus images.

In the future, more types of fundus diseases images can be used to classify, especially
rare diseases in clinic. The difficulty of this type of problem is that the training effect of
small sample data classification is poor. However, the classification of such diseases is more
suitable for clinical applications.
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