
fbioe-09-664592 April 28, 2021 Time: 17:19 # 1

REVIEW
published: 04 May 2021

doi: 10.3389/fbioe.2021.664592

Edited by:
Farnaz Ghorbani,

Fudan University, China

Reviewed by:
Amir Seyedsalehi,

University of Connecticut,
United States

Ebrahim Tavakoli,
Materials and Energy Research

Center, Iran
Farnoosh Saeedinejad,

University of Connecticut,
United States

*Correspondence:
Quanyi Guo

doctorguo_301@163.com
Zhiwei Chen

czw9915@sina.com

†These authors share first authorship

Specialty section:
This article was submitted to

Biomaterials,
a section of the journal

Frontiers in Bioengineering and
Biotechnology

Received: 05 February 2021
Accepted: 14 April 2021
Published: 04 May 2021

Citation:
Wei F, Liu S, Chen M, Tian G,

Zha K, Yang Z, Jiang S, Li M, Sui X,
Chen Z and Guo Q (2021) Host

Response to Biomaterials
for Cartilage Tissue Engineering: Key

to Remodeling.
Front. Bioeng. Biotechnol. 9:664592.

doi: 10.3389/fbioe.2021.664592

Host Response to Biomaterials for
Cartilage Tissue Engineering: Key to
Remodeling
Fu Wei1,2†, Shuyun Liu1, Mingxue Chen3, Guangzhao Tian1,4, Kangkang Zha1,4,
Zhen Yang1,4, Shuangpeng Jiang5, Muzhe Li2, Xiang Sui1, Zhiwei Chen2* and
Quanyi Guo1*

1 Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries,
PLA, Institute of Orthopedics, Chinese PLA General Hospital, Beijing, China, 2 Department of Orthopedics, The First Affiliated
Hospital of University of South China, Hengyang, China, 3 Department of Orthopedic Surgery, Beijing Jishuitan Hospital,
Fourth Clinical College of Peking University, Beijing, China, 4 School of Medicine, Nankai University, Tianjin, China, 5 The First
Hospital of China Medical University, Shenyang, China

Biomaterials play a core role in cartilage repair and regeneration. The success or
failure of an implanted biomaterial is largely dependent on host response following
implantation. Host response has been considered to be influenced by numerous
factors, such as immune components of materials, cytokines and inflammatory agents
induced by implants. Both synthetic and native materials involve immune components,
which are also termed as immunogenicity. Generally, the innate and adaptive immune
system will be activated and various cytokines and inflammatory agents will be
consequently released after biomaterials implantation, and further triggers host response
to biomaterials. This will guide the constructive remolding process of damaged
tissue. Therefore, biomaterial immunogenicity should be given more attention. Further
understanding the specific biological mechanisms of host response to biomaterials and
the effects of the host-biomaterial interaction may be beneficial to promote cartilage
repair and regeneration. In this review, we summarized the characteristics of the host
response to implants and the immunomodulatory properties of varied biomaterial. We
hope this review will provide scientists with inspiration in cartilage regeneration by
controlling immune components of biomaterials and modulating the immune system.

Keywords: biomaterials, immunomodulation, macrophage, tissue engineering, cartilage

INTRODUCTION

Articular cartilage lacks blood vessels, nerves and lymphatic vessels, has a smooth surface and
is translucent. It is a form of hyaline cartilage, which is a highly organized connective tissue
(Sophia-Fox et al., 2009). Articular cartilage bears mechanical loads and provides cushioning and
lubrication, and its protective function is weakened after injury. Due to the lack of self-healing
capacity of cartilage, joint injury and progressive degeneration, osteoarthritis (OA) eventually
develops, and it becomes difficult to avoid joint arthroplasty (Widuchowski et al., 2007). Therefore,
the early repair of damaged articular cartilage is necessary.
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Non-operative treatment often involves oral glucosamine
sulfate to nourish cartilage and intra-articular injections of
Hyaluronic acid (HA) to lubricate the joint. Traditional surgical
treatment includes abrasion, subchondral drilling, microfracture,
osteochondral autograft transfer system (OATS) (also known as
mosaicplasty), and autologous chondrocyte implantation (ACI)
(Pestka et al., 2012; Albright and Daoud, 2017; Solheim et al.,
2018). However, these methods have achieved limited success.
HA offers little protection against early cartilage damage (Nathani
et al., 2019). Microfracture is used to treat small articular
cartilage lesions that form fibrocartilage and are therefore
mechanically weak and prone to degeneration (Benthien and
Behrens, 2013). Mosaicplasty is usually suitable for the damage
involving subchondral bone, but donor area complications and
dead spaces between cylindrical grafts may increase the chance
of repair failure (Kock et al., 2008). ACI is a cell-engineering
base surgical procedure, but the quality of restoration is severely
compromised by the loss of therapeutic chondrocytes (McCarthy
et al., 2016). There is an urgent clinical need for new strategies to
induce cartilage regeneration. Tissue engineering has emerged in
recent years as a promising approach to repair injured cartilage
(Makris et al., 2015), aiming to exploit the inherent regenerative
potential of human tissues and organs in the degraded state and
restore or reconstruct the normal function of the body.

As an indispensable element of the tissue engineering triad,
biomaterials not only provide mechanical support for cells,
but also act as carriers for bioactive molecules (e.g., growth
factors). The biomaterials used to fabricate scaffolds can be
roughly divided into two main categories: synthetic polymers,
including polycaprolactone (PCL), poly(lactic acid) (PLA),
poly(glycolic acid) (PGA), poly(lactic-co-glycolic acid) (PLGA),
and poly(L-lactic acid) (PLLA), among others. Alternatively,
naturally derived biomaterials are for instance decellularized
extracellular matrix (dECM) from diverse tissues and natural
molecules such as collagen, gelatin, silk fibroin, HA, alginate,
and chitosan, et al. These materials can be used to fabricate
different geometric shapes by 3D printing, electrospinning,
injection molding techniques and among others (Chen et al.,
2018; Lukanina et al., 2018; Xia et al., 2018; Lu et al., 2019).
The scaffolds fabricated using these two kinds of biomaterials
have advantages and disadvantages (Londono and Badylak,
2015). Compared with synthetic polymers, naturally derived
biomaterials have a composition closer to that of cartilage, good
biocompatibility and low cytotoxicity, and they are beneficial
for cell adhesion, proliferation and differentiation (Huang et al.,
2019; Xiao et al., 2019). However, these materials are limited
in terms of processability and manipulatable degradation time
(Pati et al., 2014). In contrast, synthetic polymers have good
mechanical strength, controllable degradation and high plasticity
(Li et al., 2019b; Stefani et al., 2020). But they also have
shortcomings, such as poor biocompatibility, acidic degradation
products, low biological activity, hydrophobicity and limited
interfacial integration with tissue (Stocco et al., 2014; Park et al.,
2018; Lin et al., 2019).

The great potential of tissue engineering for cartilage repair
has given rise to new hope. As mentioned above, a wide
variety of biomaterials have been researched and developed

to achieve better repair and regeneration outcomes. But up
to now, when implanted into vivo, most of the biomaterials
have not worked as expected, some even lead to acute or
chronic inflammation (Cipriano et al., 2017; Vollkommer
et al., 2019). An important link seems to have been ignored
by us. Numerous researches on cartilage tissue engineering
are focused on the effect of biomaterial’s physical properties
and physicochemical properties on repair outcome. However,
limited studies have focused on how biomaterials affect host
response, such as inflammation and immune modulation. Studies
have suggested that implanted biomaterial induced adverse
immune response is associated with a prolonged reaction time,
delayed interface connection and integration, and reconstruction
failure (Sirlin et al., 2001; Fraitzl et al., 2008). It has also
been shown that the host immune response has a positive
effect on the reparative effect of tissue engineering scaffolds
to some extent (Sadtler et al., 2019). Direct use of acellular
extracellular matrix (ECM) or native ECM components can elicit
a favorable immune response prior to tissue remodeling outcome.
This immunomodulation usually depends on the composition
and structure of the scaffold. Tissue-derived ECM scaffolds
induce a pro-regeneration immune environment through Th2
immune response, which drive macrophage polarization toward
M2 phenotype via IL-4 (Cipriano et al., 2017). Besides, the
regulatory role of pore size and porosity of scaffold in host
response has also been confirmed (Orenstein et al., 2010;
Junge et al., 2012). In scaffold strategy based on loading
immunomodulatory function cells, mesenchymal stem cells
(MSCs), as commonly used seed cells, can regulate local
immune response by secreting anti-inflammatory and pro-
inflammatory cytokines to promote repair (English, 2013;
Nagubothu et al., 2020). Indeed, the interaction between
implanted biomaterial and host immune system is crucial in
determining the constructive and functional outcome. Host
response is considered to be influenced by the immune
components (also known as immunogenicity) of biomaterial,
cytokines, or inflammatory agents induced by implants and
injured tissue. As such the immunogenicity of implanted
biomaterials should not be ignored. Additionally, cartilage is
believed to be a tissue with “immune privilege,” located in a
relatively closed environment (Smith et al., 2015). Nevertheless,
cartilage tissue injury is accompanied by the disruption of
balanced environment, release of inflammatory cytokines and
chemokines, and immune/inflammatory cells migration will
further promote the response of the host immune system to the
implanted biomaterial.

The host response to biomaterials plays a central role
in tissue repair and regeneration, have both positive and
negative implication for the healing process. An effective
biomaterial-based immune modulation strategy is becoming
an attractive approach in the field of regenerative medicine
(Hachim et al., 2019; Shahbaz et al., 2020; Wu et al., 2020).
This review summarizes the characteristics of the interaction
between host immune system and implanted biomaterial, and
the immunomodulatory properties of common biomaterials in
the hope of providing inspiration for next generation of tissue
engineering regeneration strategy.
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HOST RESPONSE FOLLOWING
BIOMATERIAL IMPLANTATION

Biomaterials implanted into damaged tissues come into contact
with cells, surrounding tissues and blood and thus cannot
avoid activating the immune system by triggering a foreign
body reaction. In fact, the relationship between biomaterial-
mediated tissue healing and immune response is very complex,
with many cell types, plasma proteins, and extracellular fluid
components being involved. The reaction of the biomaterial
with the surrounding environment is actually an important
factor in determining its biocompatibility. The host response
(including immune, inflammatory and foreign body reactions,
etc.) can be local or systemic, which is mainly influenced by
immune components of the implant, type of biomaterial or
injured tissue, and biomaterial surface chemistry and degradation
characteristics, and so on. This will ultimately affect the lifespan
of the implant and the outcome of the repair.

The Vroman Effect of Implanted
Biomaterials
Biomaterial-mediated host reactions are primarily caused by
host cell recognition of the biomaterial surface, which is based
on the adsorption of adhesion proteins to the surface of the
biomaterial. Adhesion proteins, such as fibrinogen, vitronectin,
fibronectin, albumin, γ globulin, complement, and others, form
a protein layer on the surface of the biomaterial to modulate
host inflammatory cell interactions and adhesion (Pape et al.,
2017; Tanaka et al., 2017; Horbett, 2018). The process of cell
adsorption to and spreading on the biomaterial surface is
mediated by adhesion proteins. The effect of a biomaterial on
the cell or host reaction is actually achieved by influencing
the adhesion behavior of proteins to the surface. The type,
concentration and spatial conformation of the adhesion protein
will directly activate the response of the host immune cell to the
biomaterial (Wilson et al., 2005), i.e., resulting in an innate or
adaptive immune response. In turn, the type, concentration and
spatial conformation of these adsorbed proteins depend on the
surface characteristics of the biomaterial, which determine the
adsorption, survival and function of cells (especially monocytes
and macrophages) in the protein layer (Anderson et al., 2008).
Protein adhesion is a dynamic process, a high concentration of
adhesion proteins first arrive and adsorb onto the surface of
the implant, and these proteins will eventually be replaced by
proteins with a high affinity for the surface of the biomaterial.
The phenomenon of protein adsorption and desorption is
known as the Vroman effect (Figure 1; Hirsh et al., 2013; Kim,
2017). After implantation, biomaterial is immediately covered
by proteins in the blood and tissue fluid, which direct the
subsequent cascade biological reactions. Studies have shown that
the orientation and conformation of fibrinogen on the surface
of biomaterials can modulate neutrophils adhesion (Milleret
et al., 2015). There is a direct relationship between a stronger
adhesion capacity on the surface of biomaterials and more
desirable cell adhesion and growth (Shamloo and Sarmadi, 2016).
It is well known that at similar surface roughness, hydrophilic

surfaces preferentially adsorb proteins and promote cell adhesion
and growth compared to hydrophobic surfaces (Chaudhary
et al., 2012). By immobilizing proteins on the biomaterial
surface, developing a biointerface that can enhance cell “homing”
ability is one of the critical factors in biomaterial development
(Chrzanowski et al., 2012). The biomaterial surface properties,
protein adsorption and cellular responses are considered to be
interrelated and ultimately determine the biocompatibility of the
biomaterial (Allen et al., 2006). The relationship between these
different but related phenomena remains to be elucidated.

The Main Actors in Host-Biomaterial
Interaction
There is a class of integrin receptors on the cell surface that
can specifically recognize certain peptides of adhesion proteins,
thereby affecting cell adhesion, migration, activity, and other
functions (Yang et al., 2013). The type and level of cell adhesion
proteins change in a time-dependent manner (Xu and Siedlecki,
2007). The early stage of host response following tissue injury
is characterized by a predominance of neutrophils, which are
the first inflammatory cell type to arrive at the site of injury.
Neutrophils are capable of phagocytosis and degradation of
foreign substances, dead cells, and providing signaling molecules
to recruit macrophages to injury site. Mast cells modulate the
inflammatory response by releasing particles, such as histamine,
IL-4, and IL-13 that can recruit macrophages and facilitate
their fusion into foreign body giant cells (DeFife et al., 1997;
Ang et al., 1998; McNally and Anderson, 2002). Macrophages
begin to infiltrate approximately 12 h post-injury, but their
response lasts longer than that of neutrophils, and subsequently
become the dominant cell type within the site of injury. The
role of macrophages in tissue repair and regeneration is very
complex, could perform beneficial or detrimental functions. That
is, deciding toward to a constructive and functional outcome or
scar tissue formation. The T lymphocyte cell population plays
an important regulatory role in tissue repair by the secretion
of cytokines and chemokines, many of which are considered
to influence macrophage polarization. Moreover, dendritic cells,
natural killer (NK) cells, B lymphocytes, plasmocytes, and among
others also participate in the immune response to varying degrees
(Figure 1). The occurrence and outcome of a series of events
will vary according to the surface chemistry, stiffness, and
degradation properties of biomaterials, as well as other factors
that have not been elucidated (Brodbeck et al., 2001).

With the advances in tissue engineering and regeneration
medicine, it has now become clear that the immune system plays
a critical role in tissue repair process (Julier et al., 2017). Repair
strategy of immune system regulated through biomaterials is aim
at activating desired components of inflammatory, proliferation,
and remolding phase to promote a constructive and functional
remolding outcome. Allowing specific biological response is
beneficial to both the integration and performance, the current
challenge is the development of biomaterials or delivery systems
capable of modulating the immune system as a way of stimulating
tissue repair and regeneration (Badylak et al., 2008). Therefore, a
deeper understanding of immunological profile of biomaterials
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FIGURE 1 | Immune response to an implantable biomaterial. Various proteins adhere to the surface of the biomaterial. Neutrophils are first recruited, followed by
monocyte-derived macrophages, which become the dominant cell type around the biomaterial. Macrophage differentiation is temporary, and the polarization state
may change depending on the tissue milieu. The timely transition of the macrophage phenotype from proinflammatory M1 to anti-inflammatory and
immunomodulatory M2 is critical for constructive tissue remodeling, and other immune cells (T helper cells, NK cells, mast cells, etc.) are also involved in this process.

and the interaction of immune system and biomaterials
interaction is essential for the better repair outcomes.

IMMUNOLOGICAL CHARACTERIZATION
OF BIOMATERIALS

Synthetic Polymers
In the body, articular cartilage is subjected to multiaxial
loads, including those resulting from compression, tension,
shear and fluid flow (Pattappa et al., 2019). Articular cartilage
exhibits excellent biomechanics due to its unique hyaline-
like cartilage composition and the ultrastructure of the ECM,
especially the tight network of type II collagen (Col II)
fibrils and abundant negatively charged proteoglycan chains.
The controlled mechanical properties of synthetic polymers
can meet the biomechanical requirements of the process of
cartilage regeneration (Silva et al., 2020). Synthetic polymers
have good plasticity, and their microstructure, morphology, and
degradation rate can be predesigned and regulated according
to the biology of specific tissue (Wang et al., 2020b). PCL
(Venugopal et al., 2019), PLA (Baena et al., 2019), PGA (Lin et al.,
2017), and PLGA (Kim et al., 2019) are the most representative
and widely used synthetic polymers, and have been approved
by the FDA for clinical human use. Scaffolds made from

synthetic polymers temporarily provide mechanical support after
implantation, as well as a microenvironment for cell growth,
proliferation and differentiation, thereby regulating and inducing
tissue differentiation and regeneration (Li S. et al., 2020; Salonius
et al., 2020). The structure of the scaffold is very important for
cartilage regeneration, and tissue engineering applications often
require the use of porous three-dimensional (3D) scaffolds to
facilitate cell migration and cell-cell interactions (Schipani et al.,
2020). Secondly, during the process of regeneration, scaffold
should also have sufficient strength to resist the physiological
load, and the stress should be properly distributed to the
surrounding tissue (Lohfeld et al., 2015). The good printing
properties of synthetic polymers allow their combination with
3D printing techniques to effectively address this issue. The
controllability, reproducibility and good mechanical properties
of synthetic polymers show promising applications in cartilage
tissue engineering. However, the lower bioactivity they exhibit
is not favorable for incorporating with host tissues, as they may
lead to increased local pH through acidic degradation products,
immune response or toxicity, and inflammation associated with
high molecular weight polymers.

Acidic Degradation Products of Synthetic Polymers
Synthetic polymers have one common feature: degradability.
Degradation occurs progressively (by chemical hydrolysis or
enzymatic degradation) over time after implantation. Acidic
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degradation products reduce the pH of the surrounding
environment, leading to inflammatory cell infiltration and aseptic
inflammation (Lendlein and Langer, 2002). Clinical reports have
shown that up to approximately 8% of patients treated with PGA
had non-infectious inflammation (Peppas and Langer, 1994). The
longer the biodegradation cycle of synthetic polymers, the greater
the probability of inducing an adverse host response, this event is
related to the acidic degradation products and immunogenicity
of the polymer. Acidic products (e.g., lactic acid, glycolic acid)
will trigger an autocatalytic reaction when reducing the pH,
which can accelerate the formation of the products (Göpferich,
1996; Burkersroda et al., 2002; Eglin and Alini, 2008). When the
accumulation of acidic products exceeds the metabolic capacity
of the body, the gradually decreasing acidity of the environment
in turn accelerates the degradation of the biomaterial. These
acidic products are one of the factors involved in the host-
biomaterial reaction (Rezwan et al., 2006). In addition, the
surface chemistry, structure, type, purity, and crystallinity of the
biomaterials also influence the occurrence, extent and outcome of
the host-biomaterial interaction (Milleret et al., 2015; Jiang et al.,
2016; Stratton et al., 2016).

Surface Chemistry: Hydrophobicity/Hydrophilicity,
Chemical Groups, Charge Characteristics
As previously mentioned, the adsorption of proteins on
biomaterial surface is essential for the cell-biomaterial interaction
(Ekdahl et al., 2012). A factor that directly determines the type,
amount and conformation of adhesion proteins is the biomaterial
surface chemistry, such as its hydrophobicity/hydrophilicity,
chemical moieties and charge characteristics. By changing the
biomaterial surface chemistry to regulate the adsorption of
proteins, it has been shown that hydrophilic and anionic
chemistries are more likely to induce macrophage apoptosis
than hydrophobic or cationic surfaces, which may result in no
inflammatory outcome (Brodbeck et al., 2001). Macrophages
play an important and complex role in the regulation of the
immune microenvironment of implant, moreover, the adhesion
and activation of lymphocytes also depend on macrophages.
Macrophage plasticity allows their adaptation to different
stimuli (Rostam et al., 2016). M1 macrophages can drive the
inflammatory response, causing the scaffold to be wrapped
in fibrous tissue, separating it from the surrounding tissue
(Fujihara et al., 2020). In contrast, M2 macrophages have anti-
inflammatory properties and promote repair (Ma et al., 2014;
Hotchkiss et al., 2018; Deng et al., 2020).

The commonly used synthetic polymers are hydrophobic,
with a surface that has a high affinity for many kinds of
proteins. When protein molecules adsorb onto the surface
of a hydrophobic biomaterial, their conformation changes
through hydrophobic interactions, exposing the hydrophobic
domain and facilitating close binding to the surface (Lu and
Park, 1991; Hu et al., 2001; Collier and Anderson, 2002;
Heuberger et al., 2005; Evans-Nguyen et al., 2006). There is a
direct correlation between the hydrophobicity of biomaterials
and activation of the host immune system (Hu et al., 2001;
Moyano et al., 2012). The conformational change of adhesion
proteins on the biomaterial surface may be one of the reasons

for the occurrence of adverse response. For instance, the
foreign body reaction, inflammation, and the exposure of
hidden structures and sequences of adhesion proteins allows
them to act as receptors for the binding of inflammatory or
immune cells to the surface (Thevenot et al., 2008). Innate
immune cells are able to recognize invaders and induce
an immune response through pattern recognition receptors
(PRPs) (Brubaker et al., 2015), based on the combination
of PRPs and ligands [pathogen-associated molecular patterns
(PAMPs) (Janeway, 1989); damage-associated molecular patterns
(DAMPs) (Matzinger, 1994)]. Hydrophobicity is considered to
be a DAMP, in other words, the hydrophobic property of a
biomaterial is its inherent immunogenicity, which may initiates
constructive remolding or scar tissue formation (Seong and
Matzinger, 2004). It has been found that hydrophobic biomaterial
surfaces selectively interact with CD8+ T lymphocytes, while
hydrophilic/neutral surfaces tend to interact with CD4+ T
lymphocytes (Chang et al., 2009). The hydrophilicity and
hydrophobicity of a biomaterial can regulate the behavior of
immune cells (Brodbeck et al., 2002; Jones et al., 2007), and
the effects on tissue repair need to be further explored. To
minimize adverse events triggered by the immunogenic of
hydrophobic biomaterial surfaces, the hydrophilic molecules
polyethylene oxide (PEO) and polyethylene glycol (PEG) are
often used as biomaterial coatings to reduce surface protein
adhesion and increase hydrophilicity (Tiller et al., 2001;
Drury and Mooney, 2003). These coatings can also prevent
implantation-related infection and biofilm formation (Busscher
et al., 2012). It has also been reported that the hydrophilicity
of biomaterial can be improved by adjusting the content
of graphene oxide (GO), which improved in correspondence
to an increase of GO (Aidun et al., 2019; Jabari et al.,
2019).

Chemical groups are another important surface characteristic
of biomaterials, with amino (-NH2), carboxyl (-COOH),
hydroxyl (-OH), and methyl (-NH3) groups being commonly
explored. These chemical moieties have a significant effect on the
host response to biomaterials. Surfaces with hydrophilic -NH2
or -OH groups (positively and neutrally charged, respectively)
strongly stimulated inflammatory cell recruitment and the
fibrotic response in vivo (Kamath et al., 2008). While surfaces
with hydrophobic, neutral -NH3 groups induced a more severe
inflammatory response, and hydrophilic surfaces with -COOH
groups (negatively charged) resulted in reduced cell infiltration
and a milder inflammatory reaction (Barbosa et al., 2003, 2006;
Barbosaa et al., 2004; Nair et al., 2008). These different results
suggest that the -NH3 surface can eliminate the adsorption of
leukocytes and reduce the immune reaction (Sperlinga et al.,
2005). It has also been shown that -NH2 groups shift macrophage
polarization toward an anti-inflammatory M2 phenotype and
decrease the number of proinflammatory M1 macrophages, while
-COOH groups yield the opposite result (Bartneck et al., 2010).
This suggests that these findings cannot be explained by a single
experimental model and may vary in vivo and in vitro. Based
on the existing knowledge, studies have begun to use chemical
groups to modify the surface of engineered scaffolds to facilitate
repair and regeneration.
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A scaffold surface was modified with either -NH2 or -
COOH, and it was found that both modified scaffolds could
promote the adhesion and proliferation of adipose-derived stem
cells (ADSCs). The difference was that scaffolds functionalized
with -NH2 moieties promoted the osteogenic differentiation
of ADSCs, while those functionalized with -COOH moieties
promoted chondrogenic differentiation (Griffin et al., 2017).
In terms of the ability to induce cell differentiation, -OH
groups showed the strongest ability to induce osteogenic
differentiation, followed by -NH2, -COOH, and -NH3 groups.
Among them, -NH3 groups appeared to induce moderate
myogenic differentiation (Keselowsky et al., 2004; Lan et al.,
2005). Further studies revealed that -NH2-modified surfaces
activate the extracellular signal-related kinase (ERK1/2) signaling
pathway by promoting the expression of bone marrow stromal
cell (BMSC) integrins to induce osteogenic differentiation (Bai
et al., 2013). Further expanding the understanding of biomaterial
surface characteristics and how biomaterials interact with host
immune system is needed to more effectively repair damaged
tissues (Damanik et al., 2014). In fact, biomaterial-mediated
tissue repair and regeneration is influenced by a variety of factors,
such as immune components of implant, immune milieu. The
properties of biomaterials need to be more comprehensively
understood for improved application.

Natural Biomaterials
The other type of biomaterials is natural biomaterials, including
decellularized tissues, natural polymers, and cell-derived matrix.
Compared to synthetic polymers, they are derived from biological
tissues and are more suitable for cell adhesion, proliferation,
differentiation and so on. Secondly, there are no acidic
products. Natural polymers include polysaccharides (such as
HA, alginate, and chitosan) and proteins (gelatin, silk fibroin,
and fibrin), are widely used in the production of scaffolds for
cartilage regeneration. Due to their origins, These materials
are characterized by high biocompatibility, bioactivity, and the
degradation products are non-toxic; but, their low mechanical
stability, rapid degradation, and poor stability greatly limits their
applications (Wasyłeczko et al., 2020). For example, alginate
based hydrogel scaffolds can support the growth and proliferation
of enveloped chondrocytes and maintain their chondrocyte
morphology, but they have poor stability and loss of mechanical
strength in a short period of time (Bao et al., 2020). Secondly,
alginate has low cell adhesion and cell interaction ability.
Compared with other natural synthetic polymers, the main
advantage of silk fibroin is its good strength and toughness,
which is more suitable for the preparation of load bearing
tissue engineering such as cartilage regeneration (Kundu et al.,
2013). Gelatin was modified by methacrylate anhydride, and
the prepared product methacrylamide enhanced the mechanical
properties and degradation rate of gelatin, which makes it
play an important role in the application of cartilage tissue
engineering (Han et al., 2017). Unfortunately, these natural
polymers are difficult to achieve hyaline cartilage regeneration,
but rather non-valuable fibrocartilage. Natural biomaterials are
favored by a wide range of researches, especially naturally derived
ECM biomaterials. Decellularized ECM is considered to be

the best choice because it can provide a microenvironment
similar to natural ECM and further modulate the cellular
behavior and function.

Rationale for Using Extracellular Matrix (ECM) as
Biomaterial
The optimal scaffold biomaterial should be able to provide an
environment like that in which tissue-resident cells survive, i.e.,
the ECM. It is a precise and orderly structural network composed
of large molecules such as proteins and polysaccharides. The
ECM provides physical structure, and the basic biochemical
and biomechanical signals for regulating tissue morphology,
differentiation and homeostasis (Wang et al., 2018; Nie et al.,
2020). Tissue engineering technology is to mimic the structure
and composition of the damaged tissue, providing an optimal
environment for cell survival, cell-cell and cell-tissue interactions
and signal transduction. The fabrication of functionalized
scaffolds with biological activity made of natural biomaterials is
undoubtedly a promising approach (Feng et al., 2020; Vainieri
et al., 2020). Natural biomaterials such as dECM and natural
polymers (collagen, silk fibroin, alginate, and chitosan) show
repair potential in animal models of cartilage lesion (Dai et al.,
2019; Pérez-Silos et al., 2019; Singh et al., 2019). Tissue (or organ)
from various species after decellularization can be utilized for the
repair of a damaged tissue (Sun et al., 2018; Lindberg et al., 2019).
Such as there are studies have successfully used acellular human
umbilical cord Wharton’s jelly as a biomaterial to repair articular
cartilage (Zhao et al., 2018).

Natural biomaterials are being explored and applied
increasingly extensively. The mechanism of the natural
biomaterial-driven tissue remolding remains to be elucidated,
and adverse immune responses after implantation is a great
challenge hindering application (Wu et al., 2019). Because of
natural composition and structure, natural biomaterials elicit
different host responses than others. There is a growing body
of evidence suggesting that the host immune response to a
biomaterial not only affects its function but must also be the
primary factor determining the success of the repair. The issue
of the host immune response induced by natural biomaterials,
especially dECM, is reviewed below.

Remove Immune Components via Decellularization
In recent decades, the decellularization of tissues (or organs) has
been developed and applied as an emerging technology in tissue
engineering and regenerative medicine. The main purpose of
the decellularization process is to remove immune components
(such as cells and nuclear materials), while preserving the natural
structure and biochemical components. Acellular ECM has good
biocompatibility and biological activity. Similar to the natural
matrix environment, acellular ECM can regulate the biological
function of resident cells and multifunctional stem cells and
promote the recovery of the structure and function of the
damaged tissue (Agrawal et al., 2010; Li et al., 2018). In addition
to its application in the repair of articular cartilage, acellular
ECM has been applied in various tissues (or organs) such as
bone (Huber et al., 2017), tendon (Zhang S. et al., 2018), nerve
(Chen et al., 2019), blood vessels (Gong et al., 2016), cornea
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(Chakraborty et al., 2019), and skin (Milan et al., 2019), and some
success in achieving repair.

Evaluate the Decellularize Degree of ECM
The host immune response to natural biomaterial can be
activated by cell surface markers, residual DNA, alpha-Gal
epitopes, and major histocompatibility complexes (MHCs),
among others (Sutherland et al., 2015). Few researchers
have studied the immunogenicity of allogeneic or xenogeneic
cartilage-derived biomaterials. Cartilage tissue is considered to be
“immune privilege” and does not elicit an host immune response.
Studies have shown that unsatisfying outcomes are still caused
by cartilage-derived biomaterials in vivo. The decellularization
of tissues (or organs) is typically achieved using one or a
combination of the following approaches: chemical (Ventura
et al., 2019), physical (Schneider et al., 2016), and enzymatic
(Luo et al., 2015; Li et al., 2019c). Decellularization technology
broadens the source of biomaterials by reducing immune
components. Compared to other tissues, the cartilage ECM is
dense and difficult to decellularize (Gong et al., 2011). Insufficient
decellularization easily leads to excessive residual immunogenic
components. While intense decellularization will result in
damage to the ECM ultrastructure and the loss of composition
(Gilpin and Yang, 2017; Shen et al., 2020). Both run counter to the
purpose of decellularization. Although a large number of studies
have claimed to be able to achieve effective decellularization, there
are still residual cellular constituents (Elder et al., 2010; Luo et al.,
2015; Roth et al., 2017; Ghassemi et al., 2019; Bordbar et al.,
2020). Effectively balancing the removal of immune components
with the destruction of the ECM ultrastructure (or the loss
of ECM components), and determining the impact of residual
substances on host-biomaterial interactions remain long-debated
topics. There is still a large gap in the understanding of the innate
and adaptive immune responses resulting from the application of
dECM, as well as the role of macrophages and other immune cells
in the remodeling of dECM.

Residual cellular material within the ECM may contribute
to cytocompatibility problems, and some even led to acute or
chronic inflammation (Brown et al., 2009; Nagata et al., 2010;
Zhang et al., 2010). The probability of such adverse events can
be reduced to some extent through decellularization. Currently,
there are no uniform criteria for measuring the degree of
decellularization. Most researchers have accepted the following
minimum criteria to satisfy the intent of tissue decellularization:
(1) the content of double-stranded DNA (dsDNA) should be
<50 ng per mg ECM dry weight; (2) the length of DNA fragments
should be <200 bp; and (3) staining with 4′,6-diamidino-2-
phenylindole (DAPI) or H&E should indicate the lack of visible
nuclear material in tissue sections (Crapo et al., 2011). Badylak
et al. (2008) proposed these conditions based on the outcomes
of research in which an in vivo constructive remodeling process
was observed, while adverse events were avoided. Of course,
these guidelines are not sacrosanct and can differ depending on
tissue type, implantation site and host immune function. There is
still a lack of a clear scientific basis to establish optimal criteria,
and most studies based on decellularization have been evaluated
according to the universal criteria described above. The success

or failure of any implanted material is related to the host immune
system, and host innate or adaptive immune cells will respond to
the cellular content, DNA and other immune components of the
ECM (Badylak and Gilbert, 2008; Keane and Badylak, 2015).

Residual immunogenic substances in biomaterials resulted
from mildly or inadequately decellularized matrix may have
proinflammatory effects, which are associated with poor tissue
remodeling outcomes (Brown et al., 2009). The focus on nucleic
acids in the criteria for decellularization is reasonable, as residual
DNA is directly associated with adverse host reactions (Zheng
et al., 2005; Nagata et al., 2010). Numerous commercial products
composed of dECM are now available for clinical use, such as
Restore R©, GraftJacket R©, TissueMend R©, Oasis R©, and Alloderm R©.
Although most commercial products still contain DNA, the
effect of the clinical application of these products is positive to
a large extent. The residual DNA content is below 50 ng/mg
ECM dry weight, or even lower, which is not enough to cause
adverse host reactions that interfere with tissue remodeling
(Gilbert et al., 2009).

Residual DNA is usually present in small fragments, which
reduces the likelihood that it will play any substantial role
in an adverse tissue remodeling response. In the majority
of biomaterials used in the clinic, residual DNA consists of
fragments that are less than 300 bp in length, and seems to be too
short to be of concern. In addition to the low content and short
length of residual DNA, degradation of the DNA along with the
ECM is another important reason that undesirable host reactions
can be avoided in vivo, especially for some uncross-linked ECM
materials that degrade rapidly. One of the important reasons why
DNA fragments are required to be less than 200 bp as a minimal
criterion of decellularization may be that the chromosomal
DNA of apoptotic cells is autonomously degraded into 180 bp
nucleosomal units by caspase-activated DNase (CAD). This DNA
is then phagocytosed by macrophages and further degraded by
deoxyribonuclease II (DNase II) in lysosomes (Kawane et al.,
2003). The accumulation of undigested 180 bp fragmented
DNA in macrophages causes them to produce proinflammatory
cytokines, such as IFN-β and TNF-α (Yoshida et al., 2005;
Kawane et al., 2006). TNF-α may be linked to the development of
polyarthritis (Kawane et al., 2006). Additionally, residual DNA is
recognized by macrophages as a DAMP through TLRs, especially
TLR9 (Hemmi et al., 2000; Zhang et al., 2010; Ohto et al., 2015).
Related studies have shown that macrophages can be activated by
DNA fragments as small as 24 bp (Karayel et al., 2009; Aamodt
and Grainger, 2016). Thus, the current threshold for residual
DNA in decellularized tissues does not seem to be ideal, and it
serves more as a benchmark established to aid research. As innate
immune cells, macrophages participate in the host response to
biomaterials in the early stage, and the phenotype of macrophage
is significantly associated with tissue remodeling. As mentioned
previously, DNA may be one cause of skewed polarization toward
an M1 proinflammatory phenotype (Brown et al., 2009). Study
found that more M1 proinflammatory macrophages adsorbed
onto the dECM scaffold more residual content or longer DNA
fragments, while the surroundings of the scaffold from which
DNA was effectively eliminated were dominated by M2 anti-
inflammatory and remodeling macrophages (Keane et al., 2012).
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However, what is puzzling is the paucity of research on the
interaction between macrophages and residual DNA in dECM.
Obviously, there is a large gap in the understanding of the role of
these molecules in the host response to dECM.

An in-depth investigation of macrophage-dECM interactions
would be helpful in designing tissue engineering scaffolds more
scientifically and rationally, thus enhancing the reparative effect
and optimizing performance; further research is urgently needed.

ROLE OF MACROPHAGES IN
ECM-MEDIATED TISSUE
REGENERATION

Critical Regulator and Effector Cell in
Host-Biomaterial Interaction
In tissue engineering, the host response to biomaterials is a
key determinant of the success or failure of constructive tissue
remodeling. The repair of damaged tissues using biomaterials
is a complex process that involves the interaction of diverse
immunological and biological systems. These activities do not
occur randomly but as a series of finely regulated steps and
events, which are correlated with the emergence of different
cell types during distinct stages. The repair can be defined as
wound healing, which is traditionally divided into many complex
and overlapping stages, including coagulation and hemostasis,
inflammation, proliferation and remodeling. Similarly, the host
response to an implanted biomaterial involves the same steps
observed in these stages. The ideal biomaterial should be able to
modulate the different stages of the healing response by inducing
a transition from inflammation and scar tissue formation to
constructive remodeling and functional tissue recovery (Waters
et al., 2017). ECM-derived tissue engineering biomaterials, unlike
their synthetic counterparts, have been shown to prompt unique
and constructive tissue remodeling (Sadtler et al., 2019). ECM has
an immunomodulatory effect, particularly in terms of regulating
macrophages–the key regulator and effector cells in the host
response to biomaterials (Slivka et al., 2014; He et al., 2018).
The phenotypical response of macrophages is a key factor in
determining the outcome of downstream tissue remodeling
(Brown et al., 2012b).

As previously described, macrophages begin to infiltrate
in the early stage after implantation and become the primary
immune cells in the host response to ECM-derived scaffolds
after approximately 3–4 days (Brown et al., 2009). Recently,
macrophages have gained extensive attention and been
researched, and they are considered to be most relevant to
tissue repair mediated by ECM-derived scaffolds. Previous
studies have demonstrated the importance of macrophages in
tissue reconstruction and regeneration, especially in applications
involving tissue engineering biological scaffolds (Linares
et al., 2016; Dai et al., 2018b, 2020; Zhang et al., 2020).
Specifically, the process of ECM-mediated tissue remodeling
depends on the activation of host macrophages toward the M2
phenotype, with anti-inflammatory and immunomodulatory
functions (Dearth et al., 2016). At early points, a larger M2/M1

macrophage phenotype ratio predicts the later development of
favorable organizational reconstruction (Brown et al., 2012a).
Understanding the immunomodulatory effect of biological
scaffolds provides potential guidance for the further development
of ideal biomaterials to promote tissue repair and regeneration.
Unfortunately, to date, the underlying mechanisms by which
ECM-derived scaffolds modulate the macrophage phenotype
shift from M1 to M2 are largely unknown.

Phenotypic, Function and Plasticity
Features of Macrophages
Macrophages are a heterogeneous cell population with various
functional phenotypes that participate in a variety of biological
processes, including tissue homeostasis, inflammation, disease
progression, and functional reconstruction. Human peripheral
blood monocytes can be differentiated into macrophages
(M0) and then polarized to different phenotypes. Macrophage
phenotypes have been classified along a spectrum ranging from
M1 (classically activated, proinflammatory) to M2 (alternatively
activated, anti-inflammatory, immunomodulation, remodeling),
with multiple subclasses (Martinez and Gordon, 2014; Alvarez
et al., 2016). The nomenclature is similar to that used for Th1/Th2
lymphocytes (Mills et al., 2000). These diverse phenotypes
can be distinguished by cell surface markers (CD molecules),
secreted cytokines and effector molecules, and the metabolism
of arginine (Anderson and Jones, 2007). M1 macrophages, the
classical proinflammatory phenotype, are known to be activated
by IFN-γ alone or in combination with LPS or GM-CSF
(Tarique et al., 2015). These cells are able to secrete a series of
proinflammatory factors, including TNF-α, IL-1β, IL-6, IL-12,
and IL-23 (Lopa et al., 2015). Additionally, M1 macrophages
can produce reactive oxygen species (ROS) and present antigens
and are inducers and effectors of the Th1 inflammatory response
(Mosser, 2003). M1 macrophages produce high levels of inducible
nitric oxide synthase (iNOS), leading to the metabolism of
arginine into nitric oxide (NO). In contrast, “alternatively
activated” M2 macrophages are anti-inflammatory and promote
constructive tissue remodeling. M0 macrophages are polarized
to the M2 phenotype by exposure to a variety of signals,
including the cytokines IL-4 (classical M2-polarizing factor) and
IL-13, immune complexes, and matricryptic peptides released
during the degradation of ECM-derived scaffolds (Sicari et al.,
2014). M2 macrophages are characterized by the secretion of
IL-10, chemokine (CCL)-1, CCL-18, and TGF-β (Fahy et al.,
2014; Manferdini et al., 2017), the expression of high levels of
scavenger, galactose and mannose receptors (e.g., CD206), and
promotion of the Th2 response (Mills et al., 2000). Unlike the
metabolism of arginine in M1 macrophages, in M2 macrophages,
highly expressed arginase (Arg-1) metabolizes it to ornithine and
polyamines instead of NO. According to its specific markers and
functions, the M2 subphenotype can be further divided into four
different subclasses (M2a, M2b, M2c, and M2d) (Ryszer, 2015;
Yue et al., 2017), which are often overlooked and regarded as a
single group. The functions of the M2 subtypes and others are
shown in Table 1. Table 1 summarizes information related to
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TABLE 1 | Summary of macrophage subtypes and functions.

Macrophage phenotype Inducers Expressed markers Secreted molecules Functions References

M1 IFN-γ, LPS, GM-CSF CD80, CD86, CD68,
CCR7

TNF-α, IL-1β, IL-6,
IL-12, IL-23, iNOS,
ROS, MMPs, VEGF

Proinflammatory, tissue
damage, Th1-type
reaction

Mosser, 2003; Verreck
et al., 2004; Lopa et al.,
2015; Tarique et al.,
2015; Qiu et al., 2018

M2a IL-4, IL-13 CD206, CD163 FIZZ1, Arg-1, TGF-β,
CCL-18

Tissue repair and
remodeling,
anti-inflammatory

Spiller et al., 2014;
Raimondo and
Mooney, 2018;
Wiktorowicz et al.,
2019

M2b ICs, LPS, IL-1β, TLR
ligand

IL-10R, CD86, CD163 IL-10, IL-1β, IL-6,
TNF-α

Immunoregulation,
homeostasis

Gerber and Mosser,
2001; Yue et al., 2017;
Yang et al., 2019

M2

M2c IL-10, TGF-β,
glucocorticoid

CD163, CD206 TGF-β, Arg-1, CCL-16,
CCL-18, MMPs

Pro-wound healing,
matrix deposition,
tissue remodeling

Zizzo et al., 2012;
Spiller et al., 2014;
Waters et al., 2017;
Becker et al., 2018

M2d TLR ligand, adenosine VEGF, IL-12low IL-10, VEGF Angiogenesis Grinberg et al., 2009;
Ferrante and Leibovich,
2012

IL, interleukin; IFN-γ, interferon-gamma; CD: cluster of differentiation; ICs: immune complexes; LPS, lipopolysaccharide; TLR, Toll-like receptor; TGF-β, transforming growth
factor-beta; iNOS, inducible nitric oxide synthase; TNF-α, tumor necrosis factor-alpha; CCL, chemokine ligand; ROS, reactive oxygen species; GM-CSF: granulocyte-
macrophage colony stimulating factor, Th1: type 1 helper; MMPs, matrix metalloproteinases; CCR, chemokine receptor; FIZZ1: Found in inflammatory zone 1; Arg-1,
arginase-1; VEGF, vascular endothelial growth factor.

the M1 and M2 phenotypes, including the inducers, expressed
markers, secreted molecules and functions.

Promote Tissue Regeneration by
Modulate Macrophage Polarization
Significant effort has been made to regulate macrophage
polarization using biomaterial and scaffold design strategies
to promote tissue regeneration, which is known as immuno-
informed techniques. It is hoped that the development of
biomaterials that can stimulate the polarization of macrophages
toward reparative functional phenotypes is becoming a research
hotspot (Spiller et al., 2015). Designing a biomaterial with
immunomodulatory function is a practical and efficient strategy.
One study investigated the immunomodulatory properties of
fabricated biomimetic with a bone-like staggered nanointerface
during bone regeneration, and it was found that the hierarchical
nanointerface possess the ability to facilitated M2 macrophage
polarization to promote endogenous bone regeneration (Jin et al.,
2019). Controlling the macrophage polarization by manipulating
the nanomorphology of biomaterial surface may be an effective
way to improve the performance of biomaterials (Ma et al.,
2014). MSCs exosomes-mediated response in cartilage repair was
also found to be associated with regenerative M2 macrophages
(Zhang C.H. et al., 2018). In designing an immune-informed
regenerative biomaterial, the most targeted approach to modulate
macrophage polarization is to release factors (such as IL-4, IL-
10) that direct polarization, and this can be achieved through
a controlled release system (Sridharan et al., 2015; Li M. et al.,
2020).

Extracellular matrix-based scaffolds exhibit such
immunoregulation potential, and the resulting constructive
remodeling response is associated with a timely transition
of the macrophage phenotype from proinflammatory M1 to
immunomodulatory and constructive M2 (Sicari et al., 2014;
Wu et al., 2019). Both the classically and alternatively activated
macrophage phenotypes are transient and difficult to define,
which means that macrophages can polarize into diverse
phenotypes based on changes in the microenvironment (Tarique
et al., 2015). The microenvironment in which biomaterials are
implanted in vivo is complex, and macrophages are exposed to
a variety of stimuli, including various cytokines and effectors
secreted by host immune cells (Kimura et al., 2016), immune
components, biochemical cues (e.g., surface chemical and
composition) (Palmer et al., 2014; Hotchkiss et al., 2018) and
biophysical cues (e.g., topography, stiffness, and pore size)
(Madden et al., 2010; Bartneck et al., 2012; Abaricia et al., 2020)
of biomaterials or scaffolds, and degradation products (Sicari
et al., 2014). The activation and phenotypical polarization of
macrophages in vivo is modulated by multiple factors. These
factors should be taken into account in the design of future
tissue engineering bioscaffolds to regulate the host response
in a direction that favors constructive tissue remodeling (e.g.,
polarization of macrophages toward an M2 phenotype) (Garg
et al., 2013; Alvarez et al., 2016).

The implantation of a biomaterial can induce a host response,
which determines the outcome of constructive remodeling of
the damaged tissue. The mechanism of ECM derived scaffolds
mediate immunomodulation (e.g., the macrophage phenotype
shifts from M1 to M2) in vivo is still unclear (Mimura
et al., 2016; Huleihel et al., 2017). Moreover, not all ECM
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scaffolds derived from diverse source tissues can induce this
phenomenon. The effect of ECM scaffolds derived from eight
different source tissues (all porcine) on the polarization of
macrophages was investigated. Macrophages exposed to ECM
from the small intestinal submucosa, urinary bladder, brain,
esophagus, and colon expressed a predominantly M2 phenotype.
Conversely, macrophage exposure to dermal ECM resulted in a
predominantly M1 phenotype, whereas liver ECM and skeletal
muscle ECM did not significantly change the phenotype of
the macrophages (Dziki et al., 2017). It is notable that some
studies on regulation of the macrophage phenotype by ECM have
conflicting results (Meng et al., 2015). Different decellularization
protocols are applied to each tissue, which makes the analysis
more complicated. In addition, unique ECM components
from diverse source tissues make the seemingly contradictory
results somewhat reasonable. Despite the marked differences
and heterogeneity among various macrophage subtypes, their
phenotype is highly plastic and dynamic (Hume, 2015). In fact,
macrophage phenotypes exist in a range, with M1 and M2
as extreme values. Any given cell can express or co-express
characteristics of the M1 or M2 phenotype, rather than exhibit
a discrete functional state with a well-defined boundary (Mosser
and Edwards, 2008). The description of macrophage activation
and polarization is currently controversial and confusing, and the
lack of a consensus diminishes the reference value of research
and hinders progress to some extent. A guideline, published in
2014, will contribute to the better unification of experimental
standards in future research (Murray et al., 2014). Although
there is evidence that it is too simple to classify activated
macrophages as M1 or M2, many studies in the literature have
adopted these categories to illustrate specific findings. The simple
classification of macrophages into M1 and M2 is inadequate,
but it is useful for examining the inflammatory phenotype in
response to biomaterials, especially when measuring the levels of
inflammatory cytokines. The process of ECM-derived scaffolds
facilitating tissue repair by regulating macrophage phenotypical
transformation is complex. A clear and detailed report on
distinguishing macrophage phenotypes will help analyze and
understand this process. Modulating the components of the
immune system to promote tissue regeneration. Once we have
a clear understanding of host-biomaterial interactions, it will be
possible to construct suitable immuno-informed decellularized
tissue that can control tissue remodeling and initiate beneficial
reprogramming in vivo (Taraballi et al., 2018).

ARTICULAR CARTILAGE ECM (AC-ECM)

Rich in Collagen
Articular cartilage ECM (AC-ECM) is a biomaterial widely
studied in cartilage tissue engineering at present. It has good
biocompatibility and is very similar to the natural cartilage matrix
in terms of composition. AC-ECM scaffolds support cell adhesion
and proliferation and are able to recruit autologous endogenous
stem cells and induce their differentiation toward chondrocytes
in vivo, allowing them to maintain the chondrocyte phenotype
and thus achieving the in situ regeneration of cartilage (Xue et al.,

2012; Almeida et al., 2016; Nasiri and Mashayekhan, 2017; Li
et al., 2019a). The main components of AC-ECM are Col II and
proteoglycans, and Col II accounts for over 80% of the dry weight
of AC-ECM. The collagen network is essential in determining the
mechanical properties of cartilage, and small amounts of other
collagen types (I, III, V, VI, IX, X, and XI) also exist in AC-ECM
(Gannon et al., 2015a,b; Campos et al., 2019; Wang et al., 2020a).
Col II plays a vital role in the development and maturation
of chondrocytes. It has an immunomodulatory effect, relieving
the degeneration of cartilage matrix in OA by inhibiting the
STAT1 signaling pathway of proinflammatory macrophages (Dai
et al., 2018a). Macrophages express prochondrogenic cytokines,
which stimulate chondrocytes to secrete matrix components
while activating glycine receptors and reducing the intracellular
calcium concentration to inhibit chondrocyte apoptosis and
hypertrophy (Dai et al., 2018b). In short, both AC-ECM and Col
II-based engineering scaffolds have great potential for the repair
of damaged cartilage.

However, what is often overlooked and worrying is that Col
II has immunogenicity and can induce arthritis by emulsification
with an adjuvant, which is known as collagen-induced arthritis
(CIA) (Trentham et al., 1977). The following discussion of
this problem is mainly focused on the frequently studied AC-
ECM scaffold.

Antigenic and Immunogenic Responses
to Collagen
Before discussing the immunochemical property of any protein,
it is important to draw a distinction between the potentially
ambiguous terms “antigenicity” and “immunogenicity.”
Although it is difficult to make such a distinction due to the
presence of a number of extrinsic factors, and for the purpose
of the present discussion, the following simple distinction is
adopted: antigenicity will be used to refer to the ability of
a substance to interact with antibodies or cellular receptors,
whereas immunogenicity will be used to refer to the ability to
induce an immune response–a process that includes antibody
synthesis and interaction. Therefore, we can think of any
biomaterial that has immunogenicity to also have antigenicity.

Collagen is considered to be a safe and multifunctional
biomaterial, but it has also raised concerns regarding its
potential to elicit an immune response. Although the clinical
incidence of adverse reactions to collagen implants is low, this
do occur. Previously, it was widely accepted that collagen is
an inert protein and does not have immunogenicity. Later
studies have shown that it can interact with antibodies, but
still regarded as a weak antigen. In tissue engineering, the
interpretation of the immunogenicity of collagen-based scaffolds
is often complicated by the presence of other non-collagen
components, including cellular and nuclear contents, MHCs, and
alpha-Gal epitopes, among others (Wong and Griffiths, 2014;
Sutherland et al., 2015). Currently, few studies have targeted the
immunological properties of collagen. Due to most collagen-
based scaffolds were composed of type I collagen (and a small
amount of type III collagen), which is generally not thought
to evoke a potentially adverse host immune response (Bayrak

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 10 May 2021 | Volume 9 | Article 664592

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-664592 April 28, 2021 Time: 17:19 # 11

Wei et al. Host-Biomaterial Interaction

et al., 2013; Shetty et al., 2013; Yuan et al., 2014). However,
as research progresses to address the issue of cartilage repair
and regeneration, AC-ECM (enriched with Col II) and marine
collagen (extracted from marine organisms) have shown good
prospects for application and thus received increasing attention
from researchers (Pustlauk et al., 2016; Tamaddon et al., 2017;
Dai et al., 2018b). Allogeneic or xenogeneic Col II can induce
arthritis (i.e., CIA) when emulsified with an adjuvant. Therefore,
the immunological property of collagen has once again raised
concern, which will be described in detail below.

Trentham et al. (1977) first discovered that emulsified Col II
could induce arthritis and established an experimental arthritis
model–a CIA model (Trentham et al., 1977). CIA is the most
extensively studied model of rheumatoid arthritis (RA), mainly
involving distal joints (especially the posterior ankle joint) (Wu
et al., 2015). Its pathological features are similar to those of RA,
including synovial hyperplasia, inflammatory cell infiltration, and
cartilage destruction (Scarneo et al., 2019; De et al., 2020). Col
II is the major protein in the cartilage of joints targeted by RA,
and anti-Col II autoantibodies are present in the serum of RA
patients, which indicates that Col II can induce an autoimmune
response of an arthritic nature in the body (Manivel et al., 2015).
There is some evidence that antibodies in RA patients target the
same Col II molecular regions as in those in CIA (Burkhardt et al.,
2002). In addition, the presence of T and B cell immunity has
also been reported (Dimitrijević et al., 2020), but it is not clear
whether this is a pathogenic factor or result of RA. Recent studies
have also shown that the immune response may be involved
in the development of OA. When inflammation occurs on the
surface of articular cartilage for some reason, various components
(mainly Col II) are exposed and thus stimulate B lymphocytes to
produce anti-Col II antibodies, resulting in an immune response
in OA. Therefore, as a biomaterial in cartilage tissue engineering,
whether AC-ECM rich in Col II will cause an intraarticular
immune reaction has become a concern. The mechanism of
CIA is still unclear, but it is certainly inextricably linked to the
structural characteristics of Col II.

A Col II molecule consists of three identical α1 chains (a
homotrimer), each containing 1487 amino acids with a molecular
weight of approximately 130 kDa (Miller, 1971). Each of the
three α1 chains forms a left-handed helix by itself and then
further intertwines to form a right-handed triple-superhelical
structure, which is the main and unique structural region of
the molecule, known as the “triple-helical domain.” The greatest
feature of the “triple-helical domain” is the periodically repeated
arrangement of amino acids presenting [Gly-X-Y]n, in which the
positions of X and Y are usually occupied by proline (Pro) and
hydroxyproline (Hyp), respectively (Canty and Kadler, 2005).
Each chain has a short peptide extension at each end of the
helix, the telopeptide (i.e., the amino (N)- and carboxyl (C)-
telopeptides), which is a non-helical structure and does not
contain Gly-X-Y repeats (Liu et al., 2015). The telopeptide region
determines the intermolecular interactions that contribute to
(and stabilize) normal fiber assembly. The amino acid sequences
of telopeptides may vary from species to species, while certain
cross-linked regions involved in fiber formation are highly
conserved. Once secreted into the ECM, collagen molecules will

be arranged head to tail in a quarter-stagger array and then
covalently cross-linked into fibers through polymerization and
disulfide bonds, forming the skeleton of the cartilage matrix. The
structures of the Col II molecule and assembled fibrils are shown
in Figure 2A.

The antigenic epitopes that determine the immunogenicity
of Col II can be divided into three main categories: (1) those
located the non-helical terminal regions (telopeptides), existing
in both natural and denatured collagen; (2) those dependent on
the amino acid sequence of the helical region of the molecule,
exposed after this region is unwound and thus present in
denatured collagen; and (3) those dependent on the triple-helical
conformation, which only exist in natural collagen as the integrity
of the triple helix must be maintained (Figure 2B). Sequence
homology is highly conserved in the helical portion of Col II
among different species, and the degree of change in the amino
acid sequence is less than a few percent. Hidden epitopes (such
as amino acid sequences in the helical region) interact with
antibodies when the triple helix is unwound (Dodge and Poole,
1989). This fact may have implications for the host immune
response to AC-ECM implants as they denature and degrade.
The degree of telopeptide variation is much greater, which is
considered to be the main determinant of Col II immunogenicity.
Some studies have tried to reduce the immunogenicity by
using proteolytic enzymes (e.g., pepsin) to remove the terminal
telopeptides, resulting in what is known as Atelocollagen (Lin
and Liu, 2006; Jeevithan et al., 2015; Figure 2B). However, there
is still a lack of scientific evidence regarding the effect of this
treatment on collagen immunogenicity. It should be made clear
that pepsin treatment does not completely remove telopeptides.
Furthermore, although this process cannot disrupt the triple-
helical structure, the destruction of fiber networks will reduce the
mechanical properties of collagenous implants (Shayegan et al.,
2016). In the absence of a clear immunological benefit obtained
by Atelocollagen, the other two types of antigenic epitopes of
collagen molecules cannot be ignored.

It should be clarified that Col II-induced arthritis (CIA)
develops slowly with the aid of an adjuvant, thus stimulating a
high and persistent antibody response, which can be interpreted
as an amplification effect. AC-ECM derived scaffolds usually
undergo cross-linking, which delays the degradation of the
scaffold and appears to have an effect similar to that of adjuvant.
Col II is capable of inducing CIA in different species, but the
sensitivity to Col II varies among species. Despite the fact that
some implants containing Col II did not elicit adverse immune
reactions in animal models (Nehrer et al., 1998; Mainil-Varlet
et al., 2001), none of these studies were conducted in species
previously shown to be susceptible to CIA. Although there is
no evidence to support the theory that the implantation of
biomaterials containing Col II could induce autoimmunity, there
is also no direct evidence to disprove this theory.

Discussion of Potential Immune
Response to AC-ECM
Articular cartilage ECM derived scaffolds are typically obtained
in two ways: the granulation of cartilage by chopping or crushing,
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FIGURE 2 | (A) Three α1 chains intertwine to form a type II collagen (Col II) molecule, which consists of three parts: a triple-helical domain and N- and
C-telopeptides. Collagen molecules spontaneously assemble into fibrils head to tail in a quarter-stagger array and are stabilized by covalent bonds (blue bars). The
molecule can be treated with pepsin to remove (not completely remove) telopeptides, yielding Atelocollagen. (B) Antigenic epitopes of Col II include those located
within the telopeptides (dark brown triangles), those located in the helical region and dependent on the conformation (red sector), and those located in the helical
region and dependent on the amino acid sequence (green ovals).

followed by decellularization and cross-linking to produce a
highly porous customized scaffold structure, but at the expense
of mechanical properties (Yang et al., 2008; Browe et al., 2019).
Or the decellularization of intact cartilage explants without
complete disruption of the collagen network, with relatively
better mechanical properties but a very low porosity that
limits the infiltration of cells (Schwarz et al., 2012; Li et al.,
2019c). To some extent, these two kinds of scaffolds may alter
the immune response induced by Col II. The purification of
commercial collagen products is usually conducted at 4◦C to
prevent denaturation, a requirement apparently not met in the
preparation of AC-ECM derived scaffolds. Whether Col II in
AC-ECM derived scaffolds retains its natural structure, whether
the decellularization process leads to the exposure of antigenic
epitopes and whether cross-linking can hide antigenic epitopes
remains unknown. In contrast to pure Col II-derived scaffolds,
AC-ECM derived scaffolds contain other components such as
GAGs that wrap around Col II, which may hide its antigenic
determinants. These questions remain to be answered by follow-
up research. An in-depth understanding of the immunological
properties of Col II-containing scaffolds and their impact on
cartilage will lay a foundation for the more scientific design of
optimal scaffolds for use in cartilage tissue engineering.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Nowadays, a wide variety of biomaterials are used for the
repair of cartilage and other tissues in tissue engineering.
However, most of biomaterials do not function as expected,

or some even lead to the occurrence of adverse events.
These unsatisfactory results are mainly due to the adverse
interaction between the implanted biomaterials and the host’s
immune system. The host-biomaterial interaction is crucial to
determining the outcome of downstream tissue reconstruction.
It is influenced by numerous factors, such as immune
components of material, cytokines and inflammatory agents
induce by implants. Macrophages are the critical immune
regulators, and can promote inflammatory or facilitate repair
and regeneration attributing to their plasticity and versatility.
The relationship between tissue healing and the immune system
is very complex, since immune components of material or
the cells involved could drastically change the repair outcome.
Modulating the immune system through immunomodulatory
biomaterials to promote repair is an effective strategy in future
tissue engineering.

In recent years, Col II-containing scaffolds, especially AC-
ECM-derived scaffolds, have become a hot research topic.
It is worth noting that Col II has immunogenicity and
could induce arthritis (i.e., CIA), an issue that is easily
overlooked by the public and has attracted our attention. In
this paper, the immunological characteristics of Col II are
analyzed, and the potential immunogenicity of Col II-containing
biomaterials is summarized.

An in-depth exploration of the host immune response to
biomaterials not only is critical to understanding the repair
mechanisms of these biomaterials but also paves the way for
the development of ideal cartilage repair biomaterials in the
future. All kinds of biomaterials have been explored for their
potential in cartilage repair, and some have shown good results,
which largely depend on the host response to the implanted
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biomaterial. Biomaterials have been designed with a keen
interest in the development of “passive biomaterials” to limit
undesirable immune responses. Emphasis has been placed on
promoting repair by preventing (or reducing) protein adhesion
to the surface of the implanted biomaterial and the resulting
inflammatory/immune cell activation and interaction. However,
researchers have come to realize that the immune system plays
a fundamental role in coordinating and defining the nature of
the repair process. Allowing specific biological reactions is helpful
for biomaterial-mediated remodeling. The link between the host
response and tissue repair is complicated, and studies of host-
biomaterial interactions have mainly focused on macrophages.
The concept of the optimal biomaterial is shifting from
reducing the host response to triggering the desired immune
response, thereby facilitating constructive remodeling. With the
continuous development of tissue engineering and regeneration
medicine, regulating the interaction between biomaterials and

the host must be a key part of the design and a focus
of future work in this field. This future work will lead to
developments that will hopefully promote the clinical translation
of biomaterials.
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Dimitrijević, M., NevenaArsenović-Ranin, Kosec, D., Bufan, B., Nacka-Aleksić, M.,
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