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ABSTRACT

Alternative pre-mRNA splicing generates function-
ally distinct transcripts from the same gene and is
involved in the control of multiple cellular processes,
with its dysregulation being associated with a vari-
ety of pathologies. The advent of next-generation se-
quencing has enabled global studies of alternative
splicing in different physiological and disease con-
texts. However, current bioinformatics tools for alter-
native splicing analysis from RNA-seq data are not
user-friendly, disregard available exon-exon junction
quantification or have limited downstream analysis
features. To overcome such limitations, we have de-
veloped psichomics, an R package with an intuitive
graphical interface for alternative splicing quantifica-
tion and downstream dimensionality reduction, dif-
ferential splicing and gene expression and survival
analyses based on The Cancer Genome Atlas, the
Genotype-Tissue Expression project, the Sequence
Read Archive project and user-provided data. These
integrative analyses can also incorporate clinical and
molecular sample-associated features. We success-
fully used psichomics in a laptop to reveal alternative
splicing signatures specific to stage I breast cancer
and associated novel putative prognostic factors.

INTRODUCTION

Alternative splicing fosters transcriptome diversity in eu-
karyotes through the processing of pre-mRNAs from the
same gene into distinct transcripts that may encode for pro-
teins with different functions (1,2). Alternative splicing is in-
volved in multiple cellular processes, such as apoptosis and
autophagy regulation (1,2), and is especially prevalent in
humans, where ∼93% of genes display alternatively spliced
transcripts whose regulation may differ across tissues and
developmental stages (2–4). Consistently, alternative splic-
ing dysregulation has been linked with cancer, neurodegen-
eration and other diseases (2,5,6). For instance, splicing al-

terations mediated by the key regulator SRSF1 may impact
multiple hallmarks of cancer, such as resistance to apoptosis
and tissue invasion (5).

The relevance of alternative splicing changes in physio-
logical and disease conditions, along with the increasing
economic feasibility of next-generation RNA sequencing
(RNA-seq), has progressively driven transcriptome-wide al-
ternative splicing studies (3,7–10) and promoted large con-
sortium efforts to assemble publicly accessible splicing data.
Such efforts include The Cancer Genome Atlas (TCGA),
that catalogues clinical and molecular profiling data from
multiple human tumours (11); the Genotype-Tissue Expres-
sion (GTEx) project, that focuses on profiling normal hu-
man multi-tissue data (12); and the recount2 project, an
online resource of processed RNA-seq data for over 2000
studies, mostly from the Sequence Read Archive (SRA)
(13). Among the openly available processed data from these
projects, counts of RNA-seq reads aligned to exon-exon
junctions may be exploited for alternative splicing quan-
tification and further analysis. Indeed, the ability to cou-
ple proper differential splicing analysis with, for instance,
gene expression, protein domain annotation, clinical infor-
mation or literature-based evidence enables researchers to
extract, from those comprehensive public datasets, valuable
insights into the role of alternative splicing in physiologi-
cal and pathological contexts, as well as putative splicing-
associated prognostic factors and therapeutic targets (7–
10,14).

Several tools are currently available to quantify, anal-
yse and visualise alternative splicing data. Similarly to psi-
chomics, some analyse alternative splicing based on the
commonly-employed and intuitive proportion of reads
aligned to splice junctions supporting the inclusion iso-
form, known as Percent Spliced-In or PSI (3). Examples
of such tools are AltAnalyze (15), MISO (16), SpliceSeq
(17), VAST-TOOLS (18), rMATS (19), SUPPA (20) and
Whippet (21). However, current alternative splicing analysis
tools, regardless of their quantification metric, suffer from
at least one of the following shortcomings:
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(1) Lack of support for imputing pre-processed data (e.g.
splice junction read counts), leading to redundant, time-
consuming RNA-seq read alignment and exon-exon
junction detection, preceding alternative splicing quan-
tification when exon-exon junction quantification is al-
ready available (e.g. when analysing TCGA, GTEx or re-
count2 data).

(2) Limited set of statistical options for differential splicing
analysis, mostly relying on median-based non-parametric
tests and restricted to pairwise comparisons.

(3) No incorporation of molecular or clinical information
enabling analyses that reflect factorial designs or test lin-
ear models, for example. This is particularly limiting in
the exploration of clinical datasets where, for instance,
survival analyses permit assessing the potential prognos-
tic value of alternative splicing events.

(4) No support for transcriptome-wide filtering and sub-
setting of events, based on common features or the out-
come of statistical analyses, for interactive exploration of
individual events of interest.

(5) No user-friendly interactive graphical interface neither
support for customisable statistical plots.

The major advantage of exploiting available pre-
processed splice junction read counts is that it exempts
researchers from storing and processing large FASTQ
or BAM files that require expensive computational re-
sources. To our knowledge, no other tool allows the direct
performance of transcriptome-wide alternative splicing
analysis using splice junction read counts from publicly
available RNA-seq datasets (e.g. from TCGA, GTEx and
recount2). For instance, jSplice (22) and DIEGO (23) are
differential splicing analysis tools that do quantify splicing
from junction read counts but it is for the user to convert
such counts from the aforementioned projects into the
programs’ accepted input formats. Moreover, none of those
tools currently incorporates support for survival analysis,
exploratory and differential analyses of gene expression, or
tests for association between gene expression levels and/or
alternative splicing quantifications changes.

To offer a comprehensive pipeline that integrates all the
aforementioned features through both a command-line and
an easy-to-use graphical interface, we have developed psi-
chomics, an R package to quantify, analyse and visualise al-
ternative splicing and gene expression data using TCGA,
GTEx, recount2 and/or user-provided data. Our tool in-
teractively performs dimensionality reduction, differential
splicing and gene expression and survival analyses with di-
rect incorporation of molecular and clinical features. We
successfully employed psichomics to analyse stage I breast
cancer TCGA data and identified alternative splicing events
with putative prognostic value. psichomics is freely avail-
able in Bioconductor at http://bioconductor.org/packages/
psichomics.

MATERIALS AND METHODS

psichomics was developed as an R package with a modu-
lar design, allowing to easily modify and extend its compo-
nents. These include support for multiple file formats and
automatic data retrieval from external sources (e.g. TCGA,

GTEx and recount2), parsing and standardisation of alter-
native splicing event identifiers from different programs and
annotations and the implementation of a variety of data
analysis methodologies.

The program’s workflow for alternative splicing analysis
begins with the loading of splice junction read count data
from the user’s computer or external sources, followed by
the quantification of alternative splicing (in case no pre-
computed quantification is loaded) and subsequent analy-
ses. Alternative splicing quantification is based on RNA-seq
reads that align to splice junctions and the genomic coordi-
nates (annotation) of alternative splicing events. The pro-
portion of reads aligned to junctions that support the in-
clusion isoform, known as the Percent Spliced-In or PSI (3),
was the chosen quantification metric.

Exon-exon junction quantification, gene expression and
sample-associated data retrieval

Exon-exon junction and gene expression quantifications
(obtained from pre-processed RNA-seq data) and clinical
data are accessible through FireBrowse’s web application
program interface (API) for TCGA data retrieval (http:
//firebrowse.org/api-docs). The FireBrowse API is used in
psichomics to automatically download TCGA data accord-
ing to the user-selected tumour type(s) as tab-delimited
files within compressed folders, whose contents are sub-
sequently loaded with minimal user interaction. Data for
select SRA projects (including gene expression, exon-exon
junction quantification and sample metadata) are also avail-
able for automatic retrieval and processing through re-
count2 (13).

Contrastingly, GTEx does not currently provide any pub-
lic API for automatic data retrieval, thus requiring the user
to manually download exon-exon junction quantification,
gene expression and clinical data from the GTEx website
(http://gtexportal.org), for instance.

Other SRA projects and user-owned files may also
be loaded in appropriate formats, allowing for subse-
quent alternative splicing analysis from customised data
(tutorial on http://rpubs.com/nuno-agostinho/psichomics-
custom-data).

Gene expression pre-processing

Gene expression quantifications can be filtered based on
user-provided parameters (for instance, to account solely
for genes supported by 10 or more reads in 10 or more sam-
ples, as performed by default) and normalised by raw li-
brary size scaling using function calcNormFactors from R
package edgeR (24). Afterwards, counts per million reads
(CPM) are computed and log2-transformed (if desired) us-
ing the function cpm from edgeR. Log2-transformation is
performed by default.

Alternative splicing annotation

Annotations of alternative splicing events are available
on-demand in psichomics for the Human hg19 (default)
and hg38 genome assemblies. Custom annotation files
can also be created by following the appropriate tutorial
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available at http://rpubs.com/nuno-agostinho/preparing-
AS-annotation.

The hg19 annotation of human alternative splicing events
was based on files used as input by MISO (16), VAST-
TOOLS (18), rMATS (19) and SUPPA (20). Annotation
files from MISO and VAST-TOOLS are provided in their re-
spective websites, whereas rMATS and SUPPA identify al-
ternative splicing events and generate such annotation files
based on a given isoform-centered transcript annotation.
As such, the human transcript annotation was retrieved
from the UCSC Table Browser (25) in GTF and TXT for-
mats, so that gene identifiers in the GTF file (misleadingly
identical to transcript identifiers) were replaced with proper
ones from the TXT version.

The collected hg19 annotation files were non-
redundantly merged according to the genomic coordinates
and orientation of each alternative splicing event and
contain the following event types: skipped exon (SE),
mutually exclusive exons (MXE), alternative first exon
(AFE), alternative last exon (ALE), alternative 5′ splice
site (A5SS), alternative 3′ splice site (A3SS), alternative
5′ UTR length (A5UTR), alternative 3′ UTR length
(A3UTR), and intron retention (IR). The resulting hg19
annotation is available as an R annotation package
in Bioconductor at http://bioconductor.org/packages/
alternativeSplicingEvents.hg19, whereas the hg38 annota-
tion (whose coordinates were converted from those of the
hg19 annotation through function liftOver from package
rtracklayer (26), based on the hg19 to hg38 chain file
from UCSC) is also available as an R annotation package
in Bioconductor at http://bioconductor.org/packages/
alternativeSplicingEvents.hg38.

Alternative splicing quantification

For each alternative splicing event in a given sample, its PSI
value is estimated by the proportion of exon–exon junction
read counts supporting the inclusion isoform therein (3).
The junction reads required for alternative splicing quantifi-
cation depend on the type of event (Figure 1). Alternative
splicing events involving a sum of junction read counts sup-
porting inclusion and exclusion of the alternative sequence
below a user-defined threshold (10 by default) are discarded
to avoid imprecise quantifications based on insufficient evi-
dence.

Alternative splicing quantification in psichomics is cur-
rently based on exon-exon junction read counts, yet intron
retention events require intron-exon junction read counts
for their quantification (27), whereas alternative 5′- and 3′-
UTR require exon body read counts. psichomics does not
currently quantify those types of alternative splicing events.

By default, psichomics quantifies all skipped exon events.
However, the user can select to measure other types of al-
ternative splicing events (Figure 1) and may hand in the list
of genes whose alternative splicing events are to be specifi-
cally quantified. Furthermore, the step of alternative splic-
ing quantification may be avoided if previously performed.
psichomics allows the user to save the quantification of al-
ternative splicing in a file to be loaded in a future session.

Data grouping

psichomics allows to group subjects and their samples or
genes and their alternative splicing events for subsequent
analysis. Subject and sample grouping can be performed
based on available phenotypic (e.g. tissue type and histol-
ogy) and clinical (e.g. disease stage, smoking history and
ethnicity) features. Gene and splicing event grouping relies
on respective user-provided identifiers. Moreover, the asso-
ciation between subject/sample groups specified by the user
and those defined by the outcome of gene expression and
alternative splicing analyses or by other clinical categorical
variables can be statistically tested with Fisher’s exact tests,
implemented through function fisher.test from stats (version
3.4.1).

Dimensionality reduction

Dimensionality reduction techniques can be performed on
tables containing alternative splicing and gene expression
quantifications, with the samples of interest as rows and the
selected (if not all) splicing events or genes as columns, af-
ter centering and/or scaling the respective distributions (by
default, they are only centered).

Principal component analysis (PCA) identifies the com-
binations of variables that contribute the most to data vari-
ance (28) and it is implemented through the singular value
decomposition (SVD) algorithm provided by the prcomp
function from R package stats (version 3.4.1). The total
contribution of each variable (splicing event or gene) to-
wards data variance along selected principal components is
measured based on the implementation of fviz contrib from
factoextra (version 1.0.5).

Independent component analysis (ICA), a method used
for decomposing data into statistically independent compo-
nents (29), can also be performed through the fastICA func-
tion from the eponymous R package (version 1.2-1), pre-
ceded by data centering and/or scaling with the scale func-
tion.

As many of the aforementioned functions cannot handle
missing data, a user-defined threshold for the accepted num-
ber of missing values per alternative splicing event or gene
(5%, by default) is used to discard variables before perform-
ing dimensionality reduction, whereas the remaining miss-
ing values are imputed for each variable as the median from
non-missing data samples.

Moreover, samples can be clustered using k-means, par-
titioning around medoids (PAM) or clustering large appli-
cations (CLARA) methods, with the latter being optimised
for large datasets and thus preferred by default. The imple-
mentation of these methods is based on the kmeans function
from stats (version 3.4.1) and pam and clara functions from
cluster (version 2.0.6), respectively.

Survival analysis

Kaplan-Meier estimators (and illustrating curves) (30) and
proportional hazard (PH) models (31) may be applied to
groups of patients defined by the user based on clinical fea-
tures derived, for instance, from TCGA and user-owned
data, with survival distributions being compared using the
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Figure 1. Splice junctions required to quantify alternative splicing based on event type. C1A and AC2 represent read counts supporting junctions between a
constitutive (C1 or C2, respectively) and an alternative (A) exon and therefore alternative exon A inclusion, while C1C2 represents read counts supporting
the junction between the two constitutive exons and therefore alternative exon A exclusion. A1* and A2* represent the sum of read counts supporting
junctions spanning the alternative first (A1) and second (A2) exon, respectively. Legend: skipped exon (SE), mutually exclusive exons (MXE), alternative
5′ splice site (A5SS), alternative 3′ splice site (A3SS), alternative first exon (AFE) and alternative last exon (ALE).

log-rank test. Survival analyses are implemented in psi-
chomics using functions Surv, survfit, survdiff and coxph
from R package survival (32).

To evaluate the prognostic value of a given alternative
splicing event, survival analysis can be performed on groups
of patients separated based on a given alternative splicing
quantification (i.e. PSI) cut-off. Patients with multiple sam-
ples are assigned the average PSI value of their respective
samples after sample filtering (e.g. when using TCGA data,
only tumour samples are used for survival analysis by de-
fault). When survival differences are estimated for multi-
ple PSI cut-offs for a single alternative splicing event, psi-
chomics suggests the optimal cut-off that minimises the P-
value of the log-rank test used to compare survival distribu-
tions, graphically supporting the suggestion with a PSI cut-
off versus P-value scatter plot. Survival analysis can also be
performed on groups defined by an expression cut-off for a
selected gene.

Differential splicing and gene expression analyses

In psichomics, analysis of differential splicing between user-
defined groups of samples can be performed on all or se-
lected alternative splicing events. Given the non-normal dis-
tribution of PSI values (33,34), median- and variance-based
non-parametric tests, such as the Wilcoxon rank-sum (also
known as Mann–Whitney U), Kruskal–Wallis rank-sum
and Fligner–Killeen tests, are available and recommended
(35). Levene’s and unpaired t-tests can nonetheless be per-
formed as well. All these tests are available through the stats
package (version 3.4.1) with their default settings, except
for Levene’s test that was implemented based on the lev-
eneTest.default function from the car package (version 2.1-
6).

To correct for multiple testing where applicable, P-value
adjustment methods for the family-wise error rate (Bonfer-
roni, Holm, Hochberg and Hommel corrections) and the
false discovery rate (Benjamini–Hochberg and Benjamini–
Yekutieli methods) are available through function p.adjust
from package stats (version 3.4.1). By default, multiple test-
ing correction is performed using the Benjamini-Hochberg
method.

Although the aforementioned statistical tests are also
available to analyse the expression of single genes, genome-

wide differential gene expression analysis is implemented
based on gene-wise linear model fitting (using lmFit from
R package limma (36)) for two selected groups, followed by
moderated t-tests and the calculation of log-odds of differ-
ential expression, using empirical Bayes moderation of stan-
dard errors (function eBayes from limma) and gene-wise
variance modelling (limma-trend).

Statistical results can be subsequently explored through
density and volcano plots with customisable axes to assist
in the identification of the most significant changes when
analyzing distributions across single or multiple events, re-
spectively. A corresponding table with the results of all sta-
tistical analyses is also available and can be retrieved as a
tab-delimited plain text file.

Correlation between gene expression and alternative splicing
quantifications

The Pearson product-moment correlation coefficient,
Spearman’s rho (default) and Kendall’s tau, all available
with cor.test from stats (version 3.4.1), can be used to
correlate gene expression levels with alternative splicing
quantifications. Such analyses allow, for instance, to test the
association between the expression levels of RNA-binding
proteins (RBPs) and PSI levels of interesting splicing events
to identify which of these may undergo RBP-mediated
regulation. As such, a list of RBPs is provided in-app (37),
but the user can also define their own group of genes of
interest for the test.

Gene, transcript and protein annotation and literature sup-
port

The representational state transfer (REST) web services
provided by Ensembl (38), UniProt (39), the Proteins API
(40) and PubMed (41) are used in order to annotate genes
of interest with relevant biomolecular information (e.g. ge-
nomic location, associated transcript isoforms and protein
domains, etc.) and related research articles. psichomics also
provides the direct link to the cognate entries of relevant
external databases, namely Ensembl (42), GeneCards (43),
the Human Protein Atlas (44), the UCSC Genome Browser
(45), UniProt (39) and VAST-DB (46).
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Performance benchmarking

To measure the time taken by psichomics to load data,
normalise gene expression, quantify PSIs for skipped exon
events and perform global differential expression and splic-
ing analyses between pairs of GTEx tissues and between
normal and primary solid tumour samples from multiple
TCGA cohorts, the program was run 10 times with the same
settings for different combinations of normal human tissues
and tumour types in a machine running OS X 10.13.1 with 4
cores and 8GB of RAM, using Safari 11.0.1, RStudio Desk-
top 1.1.383 and R 3.4.1. The median duration of the 10 runs
was used as the performance indicator.

To determine the approximate time complexity of the
aforementioned steps in psichomics, gene expression and
exon-exon junction quantification datasets were prepared
based on approximate distributions obtained from the re-
spective TCGA datasets: negative binomial distributions
with a dispersion parameter of 0.25 and 0.2 reads and a
mean parameter of 2000 and 100 reads for raw gene expres-
sion and exon-exon junction quantification, respectively.
Each run was performed on datasets with numbers of sam-
ples ranging from 100 to 2500 in intervals of 100 (i.e. 100,
200, 300, . . . , 2500) and 20 000 genes or 200 000 splice
junctions (gene expression or exon-exon junction quantifi-
cation, respectively). Splice junction identifiers (required
for alternative splicing quantification) were randomly re-
trieved from the TCGA reference annotation. Based on
their respective read counts, around 9000 alternative splic-
ing events (i.e. those for which all involved inclusion and
exclusion junctions were retrieved) were quantified across
selected samples per run. For differential gene expression
and splicing analyses, samples were randomly divided into
two groups based on the emitted values of a Bernoulli dis-
tribution with a probability of success of 50%.

Polynomials of orders 1–6 were fitted to the relation be-
tween running time and the number of samples. As the run-
ning time is assumed to always increase with an increasing
number of analysed samples, fitted polynomials were con-
strained to be monotone for 0 or more samples, using func-
tion monpol from R package MonoPoly (47). The best poly-
nomial fits (Figure 3) were selected based on analyses of
variance (ANOVA) between fitted polynomials of consec-
utive orders, starting with the comparison between polyno-
mials of orders 1 and 2. A polynomial with higher order is
only selected if exhibiting a significantly better fit (P-value
< 0.05).

Alternative splicing quantification benchmarking

The publicly available RNA-seq data from multiple hu-
man, mouse and chicken tissue and cell line samples used
in the development of VastDB (46) were aligned with
splice-aware STAR (48) against the respective transcript-
annotated genomes: UCSC hg19 genome assembly and
GENCODE v19 annotation for human, UCSC mm10
genome assembly and GENCODE vM14 annotation for
mouse, and Ensembl 70 genome assembly and annotation
for chicken. In total, 120/706/34 (human/mouse/chicken)
exon skipping events quantified by psichomics (using func-
tion quantifySplicing with default settings) were compared

with the respective RT-PCR- and VAST-TOOLS-derived
PSI values, available from VastDB (46).

Different numbers of junction reads were simulated for
different given PSI values to test the impact of read cov-
erage on the accuracy and precision of PSI estimation by
psichomics. For each given PSI, junction reads support-
ing the exon inclusion were simulated as the number of
successes obtained from a Bernoulli distribution with the
event’s junction read coverage (i.e. reads supporting inclu-
sion plus reads supporting exclusion) as the number of ob-
servations and the PSI value as the probability of success.
Those inclusion reads were then divided by the event’s junc-
tion read coverage to estimate an ‘observed’ PSI value (as
performed by psichomics) that was compared to the given
‘real’ PSI value. These simulations were performed for PSI
values from 0 to 1 in 0.1 intervals and event coverages of 10,
20, 50, 100, 500 and 1000 junction read counts, with each
combination being tested 10000 times.

TCGASpliceSeq (49) provides pre-computed alternative
splicing quantifications across TCGA cohorts. As those
quantifications are performed similarly by TCGASpliceSeq
and psichomics, PSI estimates for each matching (based on
genomic coordinates) alternative splicing event and sample
from both tools were correlated across the entire TCGA
dataset.

RESULTS

psichomics offers both a graphical and a command-line in-
terface. Although most features are common to both in-
terfaces, we recommend less experienced users to opt for
the graphical interface based on the shiny package (version
1.0.5), a web application framework available for R. To start
the graphical interface, the user is required to load the psi-
chomics package in R and run function psichomics(), re-
sulting in the automatic launch of the user’s default web
browser and of the program’s graphical interface as a local
web app.

Case study: exploration of clinically-relevant, differentially
spliced events in breast cancer

Breast cancer is the cancer type with the highest incidence
and mortality in women (50) and multiple studies have sug-
gested that transcriptome-wide analyses of alternative splic-
ing changes in breast tumours are able to uncover tumour-
specific biomarkers (7,8,14). Given the relevance of early de-
tection of breast cancer to patient survival and in order to
pinpoint putative biomarkers that can be exploited from the
earlier stages of the disease, we used psichomics to identify
novel tumour stage-I-specific molecular signatures based on
differentially spliced events.

For the purposes of this case study, default psichomics set-
tings were used unless otherwise stated. The analysis steps
summarised below are easily reproducible by following the
tutorials on http://rpubs.com/nuno-agostinho/psichomics-
tutorial-visual (visual interface) and http://rpubs.com/
nuno-agostinho/psichomics-cli-tutorial (command-line in-
terface).

Alternative splicing quantification of the most recent
TCGA breast cancer processed RNA-seq data available (28

http://rpubs.com/nuno-agostinho/psichomics-tutorial-visual
http://rpubs.com/nuno-agostinho/psichomics-cli-tutorial
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January 2016) was performed by psichomics for skipped ex-
ons, mutually exclusive exons, alternative 5′ and 3′ splice
sites and alternative first and last exons.

PCA was performed on alternative splicing and gene ex-
pression quantifications. A tumour-stage-independent sep-
aration between tumour and normal samples based on al-
ternative splicing is particularly evident (Supplementary
Figure S1A-C) and consistent with previous studies (7,8).
Some of the events reported as significantly altered by those
studies overlap those highlighted in our analysis (Supple-
mentary Figure S1B), including RPS24 alternative exon 6,
more excluded in multiple cancer types (8) and considered
a potential driver of hepatocellular carcinoma (51).

Nonetheless, this strong tumour-stage-independent sep-
aration may be undermining splicing alterations that dis-
criminate the initial stages of tumour progression, i.e.
changes that contribute specifically to the separation be-
tween normal and tumour stage I samples. Therefore, PCA
was performed on the alternative splicing quantification
and gene expression data from the 181 tumour stage I
and 112 normal breast samples (Figure 2A, B and Supple-
mentary Figure S1D, respectively). Principal component 1,
the most explanatory of data variance, separates these two
groups for both PCA on alternative splicing quantification
and gene expression. Among the top 20 events that most
contribute to that separation in principal components 1 and
2, those in genes LRRFIP2, NUMB, EXOC1, MYO18A,
FBLN2 and SLMAP (Figure 2B) are described as associ-
ated with cancer (8,52–54) and are also among the 12 events
that are shared with the top 20 contributors to principal
components 1 and 2 separating between all tumour stages
and normal samples (Supplementary Figure S1A, B and
Tables S1–S2), suggesting that alternative splicing changes
discriminating between tumour and normal breast samples
can already be identified at the earlier stages of the disease.

Amongst the alternatively spliced genes contributing to
the separation between tumour stage I and normal sam-
ples, SLMAP encodes a membrane protein suggested to be
a mediator of phagocytic signalling of macrophages and a
putative biomarker in drug-resistant cancer cells (54). Exon
23 encodes the protein’s tail anchor and thus its splicing,
which our analyses find altered in breast stage I tumours,
determines its subcellular localisation (55).

We also detected alterations in the splicing of exon 12 in
NUMB, whose protein is crucial for cell differentiation as
a key regulator of the Notch pathway. Of note, the RNA-
binding protein QKI has been shown to repress NUMB
exon 12 inclusion in lung cancer cells by competing with
core splicing factor SF1 for binding to the branchpoint se-
quence, thereby repressing the Notch signalling pathway,
which results in decreased cancer cell proliferation (53).
Consistently, when analyzing all TCGA breast normal and
tumour samples, we show NUMB exon 12 inclusion is in-
creased in cancer and negatively correlated with QKI ex-
pression (Spearman’s rho = –0.549, P-value < 0.01; Sup-
plementary Figure S2).

Complementary analyses deemed 1285 events to be dif-
ferentially spliced between tumour stage I and normal sam-
ples (|� median PSI| > 0.1 and FDR ≤ 0.01, Benjamini–
Hochberg adjustment to Wilcoxon rank-sum test; Figure
2C and Supplementary Table S5) and therefore potential

biomarkers for early breast cancer diagnosis. Some of the
identified events (for instance, in FBLN2 and AP2B1), have
already been described as oncogenic drivers following ex-
perimental validation (8). We also looked for alternative
splicing alterations between tumour stages I and II, II and
III, and III and IV (FDR ≤ 0.05) and across all tumour
stages (FDR ≤ 0.05, Benjamini–Hochberg adjustment to
Kruskal–Wallis rank sum test). The respective differentially
spliced events are listed in Supplementary Tables S6–S9.

Among the differentially spliced events between tumour
stage I and normal breast samples, several potentially asso-
ciated with prognosis were identified in UHRF2, MAPK10,
RIF1, MFF, TPM1, ITGA6 and NFASC, based on overall
survival analyses stratified by their respective optimal PSI
cut-offs (labelled in Figure 2C; survival curves in Figure 2D
and Supplementary Figure S3).

Detected alterations in alternative splicing may simply re-
flect changes in gene expression levels. Therefore, to dis-
entangle these two effects, differential expression analy-
sis between tumour stage I and normal samples was also
performed (Supplementary Figure S4). Alternative splicing
changes seem to be independent from alterations in the ex-
pression of cognate genes for 4 of the 7 prognosis-associated
splicing events (labelled points in Supplementary Figure
S4).

One of such events is the alternative splicing of UHRF2
exon 10. Cell-cycle regulator UHRF2 promotes cell prolif-
eration and inhibits the expression of tumour suppressors
in breast cancer (56). psichomics reveals that higher inclu-
sion of UHRF2 exon 10 is associated with normal sam-
ples and better prognosis (Figure 2D), and potentially dis-
rupts UHRF2’s SRA-YDG protein domain, related to the
binding affinity to epigenetic marks (Figure 2E). Hence,
exon 10 inclusion may suppress UHRF2’s oncogenic role
in breast cancer by impairing its activity through the induc-
tion of a truncated protein or a non-coding isoform (Figure
2E). Moreover, this hypothesis is independent from gene ex-
pression changes, as UHRF2 is not differentially expressed
between tumour stage I and normal samples (|log2(fold-
change)| < 1; Supplementary Figures S4 and S5A) and
there is no significant difference in survival between patient
groups stratified by its expression in tumour samples (log-
rank P-value = 0.279; Supplementary Figure S5B).

To unveil putative regulators of the splicing of UHRF2
exon 10, its inclusion levels were correlated with the ex-
pression of each of ∼1300 RNA-binding proteins (RBPs)
identified in a previous study (37) across TCGA breast, all
TCGA and GTEx samples (Supplementary Table S10). We
found dozens of RBPs with expression significantly corre-
lated with UHRF2 exon 10 inclusion in both the oncological
and the physiological contexts and then focused on those for
whose knockdowns there are ENCODE RNA-seq data (57)
(Supplementary Table S10). Among these, TUFM, whose
expression is indeed consistently strongly negatively corre-
lated with UHRF2 exon 10 inclusion levels in TCGA breast
samples (Spearman’s rho = –0.39, P-value < 10−42; Supple-
mentary Figure S6A), all TCGA tumour types (Spearman’s
rho = –0.34, P-value < 10−253; Supplementary Figure S6B)
and GTEx samples (Spearman’s rho = –0.26, P-value <
10−174; Supplementary Figure S6C), is the only one whose
knockdown induces a change (in this case, an increase) in
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Figure 2. Alternative splicing analyses on tumour stage I and normal breast cancer samples from TCGA. (A, B) PCA on PSI levels from tumour stage
I and normal breast cancer samples; score (A) and loading (B) plots. The loading plot depicts the projection of splicing events on the two first principal
components, with selected events labelled with their cognate gene symbol. The bubble size in panel B represents the relative contribution of each alternative
splicing event to the selected principal components. (C) Volcano plot of differential splicing analysis performed between tumour stage I and normal breast
cancer samples using the Wilcoxon rank-sum test with Benjamini–Hochberg (FDR) adjustment for multiple testing. Significantly differentially spliced
events (|� median PSI| ≥ 0.1 and FDR ≤ 0.01) are highlighted in orange, with selected events with putative prognostic value depicted in purple. (D) One
such event is an UHRF2 skipped exon, whose PSI distributions in tumour stage I and normal samples are depicted in the density plot (left), whereas its
prognostic value is illustrated by the Kaplan–Meier survival curves (right; patients separated by a PSI cut-off of 0.09). (E) Protein domain disrupted by
UHRF2 exon inclusion. UHRF2 transcripts in blue, UHRF2 exon 10 in green and UniProt domains in red. All images were retrieved from psichomics as
is, with the exception of the gene symbol overlay in B and C, the FDR label and the arrow highlighting the PSI cut-off in D and panel E.

UHRF2 exon 10 inclusion (Supplementary Figure S6D).
Of note, TUFM (also known as EFTU) is a mitochondrial
translation elongation factor (58) and there is indeed an
enrichment in genes encoding for mitochondrial ribosomal
proteins (e.g. MRPL27, MRPS23, MRPL13, and MRPS7)
among those with expression consistently correlated with
UHRF2 exon 10 inclusion. Moreover, UHRF2 deletion has
been previously associated with mitochondrial dysfunction
resulting in cell injury (59). We found TUFM to be over-
expressed in multiple cancers (Supplementary Figure S6E)
and particularly in breast tumours (Supplementary Figure
S6F). Unfortunately, we found neither literature nor data
(e.g. binding motifs or RIP/CLIP-seq studies) to hypothe-
sise the direct binding of TUFM to UHRF2 pre-mRNA.
Similarly, the absence of available transcriptomes for the
knockdowns of other human RBPs, some known to be in-
volved in splicing (e.g. GEMIN6 (60) and SNRNP25 (61)),
prevent us from conjecturing on their putative regulatory
role on UHRF2 exon 10 splicing. In any case, the reported
findings result from analyses performed within psichomics
and hint at a potentially overlooked TUFM-mediated exon

skipping mechanism that could contribute to further eluci-
date the role of UHRF2 splicing in cancer.

To our knowledge, the putative prognostic value of
UHRF2 exon 10 and its potential regulation by TUFM
(or any other RPB topping Supplementary Table S10) have
never been described and, together with the finding of both
novel and previously validated cancer-specific alternative
splicing alterations, demonstrate the potential of psichomics
in uncovering alternative splicing-related molecular mecha-
nisms underlying disease and physiological conditions.

Benchmarks

The time required to load, quantify and analyse data from
different TCGA and GTEx cohorts was benchmarked. The
breast cancer cohort contains the highest number of RNA-
seq samples available in TCGA, thus being that for which
it takes more time to load, quantify and analyse alternative
splicing and gene expression data. Contrastingly, processed
data from GTEx come bundled in files containing all tis-
sues. Although only data from specified tissues are loaded,
scanning though the large GTEx file still delays data load-
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Figure 3. Performance benchmark for alternative splicing analysis using RNA-seq data from multiple TCGA and GTEx sample types. (A) Median times
of 10 runs of data loading, gene expression (GE) normalisation, skipped exon (SE) event quantification and differential expression and splicing analysis
(normal versus tumour for TCGA data or pairwise tissue comparison for GTEx data) using psichomics. The default settings were used during the runs.
(B) Estimation of the time complexity of each of the aforementioned steps in psichomics. Randomly generated synthetic datasets of different sample size s
were used as input. Equations and coefficient of determination (R2) for the best fits are displayed.

ing. Tissues from GTEx were loaded in pairs for subsequent
differential splicing analyses (Figure 3A).

Synthetic datasets for gene expression and exon-exon
junction quantification of multiple sample sizes were gener-
ated, based on TCGA data distributions, to determine the
time complexity of each step in psichomics as a function of
the number of input samples s (Figure 3B). Assuming a con-
stant number of genes (20 000 in the benchmark) or exon-
exon junctions (200000), the time taken to load data grows
quadratically with s. Gene expression normalisation and
differential expression are based on commonly-used, time-
efficient bioinformatics tools and the times taken for each
also grow quadratically with s. Alternative splicing quan-
tification is associated with element-wise operations on ma-
trices of dimensions s by the number of alternative splicing
events and takes a runtime approximately proportional to
the square of s, for a given number of alternative splicing
events (∼9000 for each benchmarked run). Finally, differen-
tial splicing is based on multiple, distinct statistical analyses
of alternative splicing quantification data and grows linearly
with s.

Although jSplice’s (22) and DIEGO’s (23) splicing quan-
tifications rely on junction read counts, their alternative
splicing module expression and junction usage metrics, re-
spectively, are not directly comparable with psichomics’ PSI
values. To evaluate their accuracy in the absence of any
known tool with the same input (junction read counts)
and output metric (PSI) as psichomics, psichomics-estimated
PSI values were compared to those estimated by RT-PCR
and using VAST-TOOLS (18) across multiple tissue and
cell line samples from human, mouse and chicken (46).
VAST-TOOLS follows an analogous, and therefore more
directly comparable, procedure for computing PSI values
and there is a substantial overlap between the alternative
splicing event annotations used by the two tools. psichomics
estimates highly correlate with both others, particularly for
mouse and human (Supplementary Figure S7), suggesting

robustness and reproducibility in alternative splicing quan-
tification by psichomics. Of note, the lower correlation for
chicken samples is attributable to a single outlier, as its
removal increases the correlation coefficients between psi-
chomics and RT-PCR estimates (Pearson’s r = 0.87, P-value
< 0.01; Spearman’s rho = 0.87, P-value < 0.01) and psi-
chomics and VAST-TOOLS estimates (Pearson’s r = 0.93,
P-value < 0.01; Spearman’s rho = 0.94, P-value < 0.01).

To assess the influence of RNA-seq read coverage on psi-
chomics PSI estimates, different numbers of junction reads
per event were simulated for different given PSI values
(10000 times for each combination). Supplementary Figure
S8 shows that the accuracy of PSI estimation by psichomics
is expectedly sensitive to junction read coverage, particu-
larly for intermediate PSI values, with 90% prediction in-
tervals <0.1 for coverage higher than a few hundred reads.

Alternative splicing events annotated by TCGASpliceSeq
(49), an online tool that displays pre-computed PSI values
across multiple TCGA tumour types, were matched to those
from psichomics based on their genomic coordinates. In to-
tal, 321 183/757 749 (42%) skipped exon, 70 837/126 725
(56%) alternative 5′ splice site and 90 940/155 799 (58%)
alternative 3′ splice site events were successfully matched.
When available from both programs, PSI estimates for each
of the 482 960 alternative splicing events in each of the 9913
matched samples were compared between TCGASpliceSeq
and psichomics, being highly correlated (N = 92 444 302;
Pearson’s r = 0.97, P-value < 10−15; Spearman’s rho = 0.94,
P-value < 10−15; Supplementary Figure S9).

DISCUSSION

Alternative splicing is a regulated molecular mechanism in-
volved in multiple cellular processes and its dysregulation
has been associated with diverse pathologies (1–3,5). The
advent of next-generation sequencing technologies has al-
lowed the investigation of transcriptomes of human biologi-
cal samples to be expanded to alternative splicing. RNA-seq
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data, like those yielded by the GTEx and TCGA projects,
are indeed playing crucial role in the improvement of our
insights into the role of alternative splicing in both physio-
logical and pathological contexts (2,3,6–8).

However, the most commonly used tools for alternative
splicing analyses currently do not allow researchers to fully
benefit from the wealth of pre-processed RNA-seq data
made publicly available by the aforementioned projects. For
instance, they lack support for estimating PSIs based on
splice junction read counts. Such functionality would allow
users to overcome the difficulties caused by the raw RNA-
seq data from GTEx and TCGA being under controlled
access and, more importantly, their processing requiring
computational resources inaccessible to the majority of re-
search labs. psichomics thus exploits pre-processed alterna-
tive splicing annotation and exon–exon junction read count
data from TCGA and GTEx, two of the richest sources of
molecular information on human tissues in physiological
and pathological conditions, as well as recount2 and user-
owned data, allowing researchers to hasten alternative splic-
ing quantification and subsequent analyses by avoiding the
time-consuming alignment of RNA-seq data to a genome
or transcriptome of reference followed by splice junction de-
tection.

Together with support for the integration of molecular
and sample-associated clinical information, the group cre-
ation functionalities featured in psichomics ensure full cus-
tomisability of data grouping for downstream analyses. In-
teresting groups to compare in TCGA, for instance, may
range from the simple contrast between reformed and cur-
rent smokers in lung cancer to complex combinations of
gender, race, age, country and other subject attributes across
multiple cancers. When survival data are available, survival
analyses can be performed on samples by PSI or gene ex-
pression levels, thereby assessing the putative prognostic
value of a respective molecular feature.

The integrative analysis of publicly available TCGA data
by psichomics allowed us to identify multiple exons differ-
entially spliced between breast tumour stage I and nor-
mal samples, therefore deeming them potential diagnostic
biomarkers, and to assess their putative prognostic value.
The output of psichomics is validated by identified alter-
native splicing alterations that have been previously linked
to the disease, including events in RPS24, NUMB, FBLN2
and AP2B1. Previously understudied, yet intriguing, events
were also identified, such as the skipping of SLMAP exon
23 and UHRF2 exon 10. These may provide novel insights
into the early stages of breast cancer development. Indeed,
it is of utmost importance to foster alternative splicing anal-
yses of clinical samples as a crucial complement to more
conventional research focused on total gene expression.

To ensure researchers with different skills can take the
most out of psichomics, users lacking a computational back-
ground may feel more comfortable using the intuitive and
more accessible graphical interface, whereas advanced users
may opt for the command-line view. Should the demand-
ing computational resources for hosting psichomics in a
web server become available, we also envisage its web de-
ployment, so that the program’s latest version is publicly
available on-demand with no installation required, levering
the intuitive graphical interface to make alternative splic-

ing analyses more enticing to less computationally-inclined
biomedical researchers.

Notwithstanding its merits, a current limitation of psi-
chomics is the current support only for events quantified
based on exon–exon junction read counts, as not all types
of alternative splicing events can be profiled using splice
junction reads alone. For instance, exon–intron junction,
exon body and intron body quantifications are vital to con-
firm intron retention and alternative 5′ and 3′ UTR events
over further transcriptional variations (27,62). However, al-
though GTEx (but neither TCGA nor recount2) readily
provides intron and exon body read quantification for re-
trieval, none provides exon–intron junction quantification.
As input data may also be user-provided, we are developing
support for the missing types of events to be included in a
future update.

Another limitation of psichomics is its reliance on exist-
ing alternative splicing event annotations and an on the
pre-processing of RNA-seq data by third-party pipelines
(as is the case for GTEx, TCGA and recount2), depriv-
ing the user of the flexibility to identify de novo alternative
splicing events. However, as we detail in http://rpubs.com/
nuno-agostinho/preparing-AS-annotation, when FASTQ
or BAM files are accessible, psichomics supports the load-
ing of alternative splicing annotations generated by differ-
ent programs that take those files as input, namely rMATS
(19), which is able to generate de novo annotations.

Using psichomics, we are able not only to identify novel
exons differentially spliced between tumour stage I and nor-
mal breast samples but also to pinpoint potentially clin-
ically relevant splicing events by embracing clinical data
and evaluating their prognostic value. We expect that fel-
low researchers and clinicians will be able to intuitively em-
ploy psichomics to assist them in uncovering novel splicing-
associated prognostic factors and therapeutic targets, as
well as in advancing our understanding of how alternative
splicing is regulated in physiological and disease contexts.

DATA AVAILABILITY

psichomics is an open-source R package publicly avail-
able in Bioconductor at https://bioconductor.org/packages/
psichomics, along with graphical and command-line inter-
face tutorials based on the presented case study.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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