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MicroRNAs are well-established players in the development of multicellular animals. Most of our understanding of

microRNA function in arthropod development comes from studies in Drosophila. Despite their advantages as model sys-

tems, the long germband embryogenesis of fruit flies is an evolutionary derived state restricted to several holometabo-

lous insect lineages. MicroRNA evolution and expression across development in animals exhibiting the ancestral and

more widespread short germband mode of embryogenesis has not been characterized. We sequenced small RNA libraries

of oocytes and successive intervals covering the embryonic development of the short germband model organism,

Tribolium castaneum. We analyzed the evolution and temporal expression of the microRNA complement and sequenced

libraries of total RNA to investigate the relationships with microRNA target expression. We show microRNA maternal

loading and sequence-specific 3′ end nontemplate oligoadenylation of maternally deposited microRNAs that is conserved

between Tribolium and Drosophila. We further uncover large clusters encoding multiple paralogs from several Tribolium-spe-
cific microRNA families expressed during a narrow interval of time immediately after the activation of zygotic transcrip-

tion. These novel microRNAs, together with several early expressed conserved microRNAs, target a significant number

of maternally deposited transcripts. Comparison with Drosophila shows that microRNA-mediated maternal transcript tar-

geting is a conserved process in insects, but the number and sequences of microRNAs involved have diverged. The ex-

pression of fast-evolving and species-specific microRNAs in the early blastoderm of T. castaneum is consistent with previous

findings in Drosophila and shows that the unique permissiveness for microRNA innovation at this stage is a conserved

phenomenon.

[Supplemental material is available for this article.]

MicroRNAs are short nonprotein-coding RNAs, processed from
hairpin precursors. MicroRNAs regulate gene expression by guid-
ing the RNA-induced silencing complex (RISC) to comple-
mentary sites in the 3′ UTRs of target mRNAs, thereby inducing
translational silencing and degradation (for review, see Bartel
2004). MicroRNA-target interaction usually requires base-pairing
within a 6- to 7-mer “seed” region at the 5′ end of the mature
microRNA, and thus each microRNA can potentially target hun-
dreds of protein-coding genes (for review, see Bartel 2009).
Consistent with their functional importance, seed sequences
are the most highly conserved regions of the microRNA hairpins
(Lai et al. 2003; Lim et al. 2003a,b).MicroRNAswere first identified
for their role in the regulation of developmental timing in
Caenorhabditis elegans (Lee et al. 1993; Reinhart et al. 2000) and
were later shown to play important roles in various aspects of the
development of both invertebrates and vertebrates (for review,
see Kloosterman and Plasterk 2006). Most of our understanding
of microRNA function in the development of arthropods comes
from studies in the classical model organism Drosophila mela-
nogaster, where they control essential developmental processes
suchas the clearanceofmaternallydeposited transcripts, cell differ-
entiation and apoptosis, morphogenesis, and organogenesis
(Asgari 2013).

Despite its advantages as amodel species,Drosophila develop-
ment is not representative of the vast majority of arthropods. Fruit
flies follow the so-called “long germband” developmental mode,
which is derived and found only in a subset of holometabolous in-
sect lineages (Peel 2008; Mito et al. 2010). The most common, and
likely ancestral, mode of arthropod presegmentation development
is short germband embryogenesis (Peel 2008; Mito et al. 2010). In
short germband embryogenesis, a small number of cells in the
blastoderm (called the germ anlage) form themost anterior embry-
onic segments, and the remaining portion gives rise to the extra-
embryonic serosal membrane (Handel et al. 2000). Whereas long
germ development often occurs in a syncytium, more posterior
segments in short-germband embryogenesis arise after gastrula-
tion by growth and cell division, and patterning occurs in a cellu-
larized environment via an oscillatory mechanism (Sarrazin et al.
2012). Inmany respects, short germband embryogenesis therefore
more closely resembles the segmentation of vertebrate embryos.

The red flour beetleTribolium castaneum is an emergingmodel
organism that displays a number of ancestral features, includ-
ing the short germband mode of development (Denell 2004;
Richards et al. 2008; Roth and Hartenstein 2008). The availability
of genetic tools and awide range of embryonic patterningmutants
have established T. castaneum as a model system to study this an-
cestral developmental mode (Denell 2004; Richards et al. 2008).
T. castaneum has a fully sequenced genome (Richards et al. 2008)
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and an annotated protein-coding transcriptome (Kim et al. 2010).
In addition, the morphology of its early embryogenesis is among
the best characterized of the short germband insects (Handel
et al. 2000, 2005; Denell 2004; Benton et al. 2013).

MicroRNAs are recognized as important players in devel-
opmental gene regulation, yet their expression and function in
short-germband embryogenesis is poorly understood. Further-
more, little is known about the evolutionary constraints that act
on microRNA developmental expression in general. We explored
themicroRNA complement ofT. castaneum and expression of their
targets in a developmental context, using a combination of small
RNA and whole transcriptome RNA sequencing of successive
time intervals covering beetle embryogenesis. We find that micro-
RNA abundance markedly increases at the onset of zygotic tran-
scription, both for conserved microRNAs and a large number of
previously unannotated microRNAs organized in multiple rapidly
evolving multicopy clusters. We show that maternally deposited
protein-coding mRNAs that are down-regulated in the early em-
bryo are significantly enriched in targets of these up-regulated
microRNA families. We therefore show a role for early expressed
microRNAs in maternal transcript clearance. Comparison with
previous findings of microRNA-mediated maternal transcript deg-
radation in Drosophila (Bushati et al. 2008) allows unprecedented
insights into the evolution, expression, and function of micro-
RNAs in the early stages of arthropod development.

Results

T. castaneum small RNA sequencing and annotation

T. castaneum embryonic development is significantly longer than
that of fruit flies, spanning 6 d at 25°C. We collected embryonic
samples from different time intervals after egg laying to determine
the time points when key developmental events occurred (Supple-
mental Text; Supplemental Fig. 1). Based on these observations, we
generated small RNA sequencing libraries from seven discrete in-
tervals of T. castaneum embryogenesis covering the following key
stages: very early embryo before the onset of zygotic transcription
(0–5 h, herein referred to as “pre-ZT” embryos; note that zygotic
transcription occurs at�8 h) (Supplemental Fig. 1B); later cleavage
divisions and blastoderm formation (8–16 h); blastoderm differ-
entiation and beginning of gastrulation (16–20 h); progressing
serosal closure (20–24 h); elongating germband (24–34 h); fully
segmented germband and appendage formation onset (34–48 h);
and extended germband until hatching (48–144 h). We obtained
between 3.5 and 6.5 million reads for each sample, over 85% of
which mapped to the T. castaneum genome with no more than
one mismatch.

The previously annotated set of microRNAs in T. castaneum
comprises 203 hairpins that were experimentally identified in
mixed adult and mixed embryonic data sets. Nearly half of these
sequences have no identifiable orthologs in other species with se-
quenced genomes (Supplemental Table 1; Marco et al. 2010). We
took advantage of the discrete embryonic stage data sets to search
for putative novel microRNAs that may be expressed during nar-
row periods of time and thus escaped previous detection. We re-
vised previous annotations and uncovered a total of 123 novel
Tribolium-specific microRNA candidates using two independent
approaches for novel microRNA identification (see Supplemental
Table 1). A large fraction of these hairpins are paralogs of, or
have similar extended seed sequences to, the microRNA families
mir-3851 and mir-3836. Homology searches suggest that the

mir-3851 family is Tribolium-specific (Supplemental Fig. 2). The
miR-3836-3p has a seed sequence identical to that of the miR-3
family, but there is little similarity outside the seed, so homology
cannot be confidently assigned. Regardless of their ancestral ori-
gins, the large number of paralogs from the mir-3836 family in
T. castaneum suggests that they emergedbymultiple lineage-specif-
ic duplications. Furthermore, there is a second set of novel sequenc-
es that lack homology with any knownmicroRNAs. Many of these
sequences are found in multiple copies and can be grouped in sev-
eral families (Supplemental Fig. 2). Notably, the vast majority of
mir-3851, mir-3836, and novel microRNA family members are or-
ganized in clusters in the genome,mostly localized in subtelomeric
regions or unmapped scaffolds (Fig. 1). These clusters differ in their
members’ copy number, sequence, and organization, suggesting
rapid evolution by duplication and diversification.We collectively
refer to these clusters as “multicopy microRNA clusters.”

Small RNA temporal dynamics during T. castaneum embryogenesis

To gain insight into the developmental dynamics of small RNAs
duringT. castaneum development, we first assessed the overall con-
tent of the small RNA sequencing libraries of successive time inter-
vals. Figure 2 shows the distributions of small RNA reads in each
embryonic stage. Reads from all libraries and sizes display a very
strong bias for uracil in the first position, which is typical for
microRNAs and piRNAs. Size distributions of the sequenced reads
display two peaks at �22 and �28 nt, with the vast majority of
the �22-nt reads corresponding to known or newly annotated
microRNAs. Thorough examination of the�28-nt fraction showed
that these represent an abundant piRNA fraction (M Ninova,
SGriffiths-Jones,MRonshaugen, inprep.). The relative levels ofpu-
tative microRNAs and piRNAs change markedly as development
progresses. piRNAs are highly abundant in the earliest stages of de-
velopment, consistent with their maternal deposition (Brennecke
et al. 2008). MicroRNA levels, on the other hand, are initially very
low but gradually increase and account for nearly 30% of all small
RNA reads in the late embryo. These figures are in sharp contrast
with the small RNA distributions observed in early embryonic
developmental data sets from Drosophila, where microRNAs repre-
sentasignificant fractionof theearlyembryonicsmallRNAs(seebe-
low) and dominate past the first couple of hours of development.

Abundance, diversity, conservation, and 3′ end
modification of maternally deposited microRNAs

We hypothesized that the apparent lowmicroRNA levels in T. cas-
taneum pre-ZT embryos reflects either insignificant maternal load-
ing of microRNAs in oocytes or decreased sampling of microRNAs
by sequencing due to high piRNA levels. We therefore sought
to determine the absolute amount of microRNAs deposited in
Tribolium and Drosophila eggs. To this end, we sequenced samples
prepared from a fixed number of unfertilized eggs from T. casta-
neum and two divergent fruit fly species, D. melanogaster and
D. virilis, with spiked-in synthetic 5′-phosphorylated oligonucleo-
tides for normalization (see Supplemental Text;Methods). In addi-
tion, we quantified the absolute cellular levels of the abundant
miR-184-3p and used it as an additional endogenous reference.
miR-184-3p and spike-in levels were in a good agreement between
qPCR and sequencing estimates, confirming that the sequencing
data reflect well the microRNA abundances in this concentra-
tion range (Supplemental Text; Supplemental Fig. 3). Small RNA
size distributions of the resulting libraries are shown in Figure
3A. As expected, T. castaneum oocytes show similar profiles to
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the transcriptionally inactive 0–5-h embryos, with highly abun-
dant piRNAs. In contrast,D.melanogaster andD. virilis oocyte small
RNA profiles display two prominent peaks corresponding to ma-
ternally provided microRNAs and piRNAs. MicroRNA read count
normalization according to the endogenous and spiked-in refer-
ences independently and consistently shows �0.2 fmol of
microRNAs (�120 million microRNA molecules) per egg in
Tribolium, and approximately four times higher microRNA con-
tent in Drosophila (Fig. 3B,C). This difference in microRNA abun-
dance between the fly and beetle is not sufficient to explain the
difference in the microRNA/piRNA ratios in the two taxa (see
Discussion).

We next assessed the most abundant maternally deposited
microRNAs in Tribolium and compared these to fruit flies (Fig.
3D; Supplemental Table 2). The data show that the conserved
microRNA families bantam, mir-275, mir-305, mir-14, mir-184,
mir-995, mir-2/11/13, mir-92/310, mir-279, and mir-9 represent
the most highly maternally loaded microRNAs in the insect oo-
cytes. Clustered microRNAs are usually co-expressed, consistent
with previous findings (Baskerville and Bartel 2005; Ruby et al.

2007; Ryazansky et al. 2011). A notable
example of divergence of microRNA
maternal deposition is the mir-100/let-
7/mir-125 cluster, members of which are
loaded inTribolium but not inDrosophila.
In addition, the most abundant micro-
RNAs in the beetle oocyte belong to
two clusters: mir-279e�2944c and mir-
3889�3843. These are diverged homo-
logs of the Drosophila mir-309�6 and
mir-994�318 (Ninova et al. 2014), whose
maternal deposition in Drosophila is
modest. The maternal microRNA com-
plement of T. castaneum also contains a
number of lineage-specific microRNAs,
including the members of the massively
duplicated 40 miRNA gene cluster on
the X Chromosome, albeit at lower con-
centrations (Supplemental Table 2).

MicroRNA 3′ ends are known to be
subject to variousmodifications in differ-
ent model systems, including ligation of
additional nucleotides to the 3′ end of
the mature product (Ha and Kim 2014).
A recent study reported that up to 30%
of microRNAs in the oocytes and early
embryos of D. melanogaster and deu-
terostomes are 3′ end-modified, and in
D. melanogaster this modification was
suggested to be involved in maternal
microRNA clearance (Lee et al. 2014).
We addressed the presence and develop-
mental dynamics of microRNA 3′-end
nucleotide additions in T. castaneum
deep-sequencing data, together with a
D. virilis developmental time series pre-
viously generated by our group for com-
parison (Ninova et al. 2014). Because we
can only detect 3′ end addition of nucle-
otides different from the ones at the ge-
nomic position immediately after the
microRNA 3′ end cleavage site, our esti-

mates of the extent of microRNA modifications in insect oocytes
are likely to be conservative. Results showed at least 20% of the
maternally deposited microRNAs in T. castaneum are 3′ end-mod-
ified (Fig. 4A), which is significantly higher than later times or in
other tissues, consistent with the previous observations in D. mel-
anogaster (Lee et al. 2014). The majority of nontemplate 3′ end
additions are between 1 and 3 nt in length (Fig. 4B) and are al-
most exclusively adenosines (Fig. 4C). The proportion of reads
with modified ends varies between different microRNAs and is
poorly correlated with expression level—while some highly
abundant microRNAs are not significantly modified, several
display a particularly high ratio between their modified and
unmodified forms in oocytes (Fig. 4D). These observations are
again consistent with those in D. melanogaster (Lee et al. 2014).
Notably, among the conserved maternally loaded microRNAs in
Drosophila and Tribolium, products of the same families (e.g.,
miR-184-3p, miR-279-3p, miR-9-3p, miR-92/310-313-3p) are
heavily modified. Thus, the process of oligoadenylation of specif-
ic maternally deposited microRNAs is conserved between the two
insect taxa.

CH 10

CH2

CH3

CH4

CH5

CH6

CH7

CH8

CH9

X

Unmapped
scaffolds

Y

CH3

m
ir-

11617b

m
ir-

11619c

m
ir-

3836c-4

m
ir-

11617e

m
ir-

3851l-1

m
ir-

11613b-1

m
ir-

3836h

m
ir-

11639

m
ir-

11617c

m
ir-

11619d

m
ir-

3836c-1
 

m
ir-

3851n-1

m
ir-

3851k-2

m
ir-

11619b

m
ir-

11621

m
ir-

11617d-1

m
ir-

3836a

m
ir-

11619a-3

m
ir-

11617a-2

m
ir-

11619f

m
ir-

3836f

m
ir-

11618b-2

m
ir-

3851l-2

m
ir-

3836i-1

m
ir-

11617f-2

m
ir-

3851o-1

m
ir-

3851q

m
ir-

11618a-4

m
ir-

3836c-3

m
ir-

11619e

m
ir-

3836e

m
ir-

11618b-1

m
ir-

3851k-1

m
ir-

3836i-2

m
ir-

11617f-1

m
ir-

3851o-2

m
ir-

11618a-1

m
ir-

3836c-2
 

m
ir-

3836d

m
ir-

3836b

m
ir-

11617a-1

m
ir-

3851a-2

m
ir-

11625b

m
ir-

11624a-1

m
ir-

3851g-2

m
ir-

3851b

m
ir-

11624a-2

m
ir-

3851a-1

m
ir-

11624a-3

m
ir-

11642

m
ir-

3858b

m
ir-

3851i

m
ir-

3851j

m
ir-

11625a

m
ir-

11626a

m
ir-

3851d-1

m
ir-

3851d

m
ir-

11624b-1

m
ir-

11626b

m
ir-

11624c

m
ir-

3851c

m
ir-

3851g-3

m
ir-

3858a-1

m
ir-

3851h

m
ir-

3851f

m
ir-

11624b-2

m
ir-

3858a-2

m
ir-

3851d-2

m
ir-

3851e

m
ir-

11644

m
ir-

3851m
-1

m
ir-

11617a-3

m
ir-

11619a-1

m
ir-

3836g-1

m
ir-

11617d-2

m
ir-

3851k-3

m
ir-

11618b-3

m
ir-

11618a-3

m
ir-

3851m
-3

m
ir-

3851p

m
ir-

3851m
-2

m
ir-

11618a-5

m
ir-

11618b-4

m
ir-

3851k-4

m
ir-

11617d-3

m
ir-

3836j

m
ir-

3836g-2

m
ir-

11619a-2

m
ir-

11617a-4

m
ir-

3836c-5

m
ir-

11618a-2

m
ir-

3851r

m
ir-

3851l-4

m
ir-

3851m
-4

m
ir-

3851l-3

m
ir-

3851n-2

1 Mb

mir-3836 mir-3851Families: mir-3858

cluster of non-conserved miRs
cluster of conserved miRs

singleton Tribolium-specific miR
(other than mir-3836/3851/3858)

singleton conserved miR

Figure 1. Genomic organization of known and novel microRNAs in T. castaneum. Horizontal lines rep-
resent the assembled chromosomes and the unmapped scaffolds of the T. castaneum genome assembly
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Developmental expression of conserved

and nonconserved microRNAs

We next investigated the temporal dynamics of microRNA ex-
pression throughout beetle development. MicroRNA read counts
from the different small RNA sequencing data sets are shown
in Supplemental Table 2. Figure 5A shows the correlations of
microRNA expression profiles between the different developmen-
tal stages of Tribolium in an all-versus-all manner. As expected, the
microRNA repertoire in oocytes and 0–5-h embryos is highly sim-
ilar, as zygotic expression is not active during the initial cleavage
divisions. The similarity between pre-ZT and blastoderm embryos
(8–16 h), however, is significantly lower, indicating a shift in the
microRNA expression profile upon activation of zygotic transcrip-
tion. Subsequently, the correlation of microRNA expression is the
highest between neighboring stages, and similarity decreases with
increasing developmental distance. Thus, developmental transi-
tions in T. castaneum are accompanied by shifts in the global
microRNA profiles.

To gain further insight into the diversity and dynamics of
the microRNA complement throughout beetle embryogenesis,
we assessed the normalized expression levels of the annotated
T. castaneum microRNAs at each developmental interval. Heat
maps in Figure 5B show the levels of individual microRNAs
grouped by conservation in other species. Consistent with pre-
vious notions, conserved microRNAs are generally more highly
expressed (Ruby et al. 2007; Liang and Li 2009; Roux et al.
2012; Meunier et al. 2013). We detect virtually all conserved
microRNAs during at least one stage of development, with the
vast majority displaying their highest levels in the late embryo
during morphogenesis and organogenesis (48 h–6 d). The most
strongly expressed microRNAs during the early and intermediate
stages of embryogenesis derive from three clusters, mir-9d�3791,
mir-3889�3843, and mir-279e�2944c (Fig. 5B, black arrowheads).
These clusters encode a combination of conserved and Tribolium-
specific microRNAs (Fig. 5C); clusters encoding homologs of the
conserved mir-9, mir-2944, mir-279, mir-3791, and mir-309 fam-
ilies are found in other insect lineages and represent one of the
most extreme examples of microRNA gain, loss, duplication, and
rearrangement reported to date (Ninova et al. 2014). Previous

studies by us and others have shown that members of one of these
clusters (mir-309�6) in Drosophila are strongly up-regulated in
the early fly blastoderm (Biemar et al. 2005; Ninova et al. 2014),
and that members of the homologous clusters in A. mellifera
(mir-3478�318) andmosquitoes (mir-309�286) are also highly ex-
pressed in early embryos (Zondag et al. 2012; Hu et al. 2014). In
addition, the mosquito-specific mir-2941�2946 cluster, whose 3′

mature sequences have the same seed as miR-3889-3p in T. casta-
neum, are the most abundant microRNAs in the early stages of de-
velopment (Hu et al. 2014). We detect nascent primary transcripts
of mir-9d�3791 and mir-3889�3843 in the early blastoderm nu-
clei of T. castaneum by in situ hybridization (Supplemental Fig.
4A). Taken together, these data suggest that, despite multiple rear-
rangements, the early zygotic onset of expression of these groups
of microRNAs is conserved. Interestingly, we detect nascent mir-
9d�3791 transcripts much later in development, in serosal nuclei,
suggesting a novel role of members of this cluster (Supplemental
Fig. 4B).

While the levels of Tribolium-specific microRNAs are low dur-
ingmost developmental stages, themajority display a coordinated
sharp increase in expression at the undifferentiated blastoderm
stage (8–16 h) (Fig. 5B,D). Without exception, the blastoderm-
specific pool of nonconservedmicroRNAs belong to themulticopy
novel clusters encoding divergent members of the mir-3851, mir-
3836, and other Tribolium-specific microRNA families described
above (Fig. 5B, gray arrowheads; also see Fig. 1). The expression pat-
terns of thesemicroRNA clusters suggest that they are up-regulated
for a discrete period of time, immediately following the onset of zy-
gotic transcription in the blastoderm, and are rapidly extinguished
shortly afterward. To test this, we assessed the expression of puta-
tive nascent transcripts corresponding to selected highly expressed
nonconservedmicroRNA clusters by in situ hybridization (Fig. 5E).
Due to the high sequence similarity between some regions, we ex-
pect that a subset of probes would cross-hybridize and detect tran-
scription frommore than one locus, and indeed this is the case for
the mir-3851a-1 region (Fig. 5E, third panel). The data show that
the multicopy microRNA clusters are ubiquitously expressed in
all blastoderm nuclei, but surprisingly, their expression is limited
to a very narrow time interval from the 8th–9th to the 11th cleav-
age division.
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Abundant early expressed microRNAs target maternally

loaded and zygotically down-regulated genes

Very early expressed microRNAs have been shown to play a role
in the clearance of maternally deposited transcripts in both
Drosophila and zebrafish (Giraldez et al. 2006; Bushati et al.
2008). However, the microRNAs involved in this process in the
two species (mir-309�6 and mir-430 clusters, respectively), are
not homologous, and microRNA-dependent maternal transcript
clearance is thought to be a convergent phenomenon. Nonethe-
less, a common feature is that in both taxa thesemicroRNAs are en-
coded in large clusters that have undergone multiple duplications
and diversification. The most highly expressed microRNAs in the
early embryo of T. castaneum are also encoded in large clusters, in-
cludingmir-9d�3791 (homologous to the fruit flymir-309�6 clus-
ter [Ninovaet al. 2014]),mir-279e�2944c, andmir-3889�3843 (Fig.
5B,C), aswell as other large species-specific clusters discussed above

(Figs. 1, 5B). Thus, we asked whether these or other T. castaneum
microRNAs might be involved in maternal transcript clearance.

To determine the maternally deposited mRNA complement,
and its fate after zygotic genome activation, we used RNA sequenc-
ing to estimate protein-coding transcript levels in unfertilized oo-
cytes, early blastoderm embryos (8–16 h), embryos at the stage
of blastoderm differentiation, gastrulation, and serosal closure
(16–24 h), and embryos at the stage of germband elongation and
segmentation (24–48 h). The resulting �300 million paired-end
readsweremapped against theT. castaneum genome and transcrip-
tome, detecting at least one fragment for 15,221 out of the 16,503
annotated protein-coding genes (92%). Gene expression levels
were highly similar between replicates (r > 0.96), and differential
expression analyses show that a large number of transcripts signif-
icantly change their abundance between different intervals (Fig.
6A; Supplemental Fig. 5). In particular, we find a large number
of transcripts that are highly up-regulated between embryonic
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development and oocytes, likely reflecting developmental pro-
cesses activated in the early embryo. A substantial number of tran-
scripts also display a smaller yet significant negative change
in their levels with the progression of embryogenesis, indicat-
ing maternal transcript clearance. We predicted the putative
microRNA targets of the T. castaneum transcripts by two differ-
ent microRNA target prediction approaches—detection of canon-
ical microRNA-target binding sites (Bartel 2009), and using the
miRanda algorithm, which takes into account sequence comple-
mentarity and RNA-RNA duplex free energy (Enright et al. 2003).
These methods resulted in 12,565 and 12,660 predicted
microRNA targets among the 13,412 genes with available 3′ UTR
annotations, respectively, with 144,579 individual microRNA-
target pairs overlapping between the two sets, and 276,412 and
241,723 pairs unique for each set. We then calculated whether
the targets of individual mature microRNAs are enriched among
the protein-coding transcripts that are significantly (more than
twofold) down-, up-, or not regulated between oocytes and embry-
os. Despite the poor overlap of individual target sites between the
target prediction methods, the overall trends in microRNA target
enrichment are highly consistent. Distributions of the hypergeo-
metric P-values of target enrichment based on canonical interac-

tions are shown in Figure 6B, and the complete data sets for both
target prediction algorithms, as well as analyses performed using
an alternative differential expression algorithm, are available as
Supplemental Table 3. The significance ofmicroRNA target site en-
richmentwithin zygotically up- and down-regulated geneswas ad-
ditionally assessed by permutation tests, yielding similar results
(Supplemental Table 3). The data show that genes that are down-
regulated between oocytes and embryos, particularly in the early
blastoderm (8–16 h), are strongly enriched in targets of a specific
set of microRNAs. In general, these microRNAs do not target a sig-
nificant proportion of genes that are up-regulated or thatmaintain
their expression. We further assessed the expression levels, se-
quence, genomic localization, and evolutionary relationships of
the microRNAs that specifically target zygotically down-regulated
genes but not up-regulated genes (enrichment of targets in the
down-regulated set with P < 0.001 after Bonferroni correction).
First, we note that this set of microRNAs consists of multiple para-
logs from a small number of families, inferred by manual inspec-
tion of hairpin multiple sequence alignments (Fig. 6B labels;
Supplemental Fig. 2). Altogether, this set of microRNAs includes
15 of the 16 members of the mir-279e�2944c, mir-3889�3843,
and mir-9d�3791 clusters, as well as novel and previously
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Figure 5. Developmental expression of conserved and nonconserved microRNAs throughout T. castaneum development. (A) Heat maps representing
Spearman’s correlation values for all-versus-all comparisons of the microRNA expression levels in oocytes and embryonic intervals of 0–5, 8–16, 16–20,
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Figure 6. MicroRNA targeting ofmaternally deposited transcripts in T. castaneumoocytes anddeveloping embryos. (A) Venndiagrams showing the num-
ber and overlap between greater than twofold up- and down-regulated transcripts (P < 0.05) between T. castaneum oocytes and the three embryonic time
intervals (8–16, 16–24, and 24–48 h). (B) Hypergeometric P-value for mature microRNA targets enrichment predicted based on canonical site interactions
among genes down-regulated (“down”), up-regulated (“up”), and not regulated (“none”) from oocytes to 8–16, 16–24, and 24–48 h embryos. “Inters”
denotes the intersection of the three individual sets. The two groups of microRNAs with enrichment P-value < 0.001 (Bonferroni corrected) in the down-
regulated transcripts are expanded and labeled (right). Arrowheads indicatemicroRNA family and clustering. The values underlying the heatmap represen-
tation and full data are available as Supplemental Table 3. (C) Alignments of mature sequences of major seed families with highly enriched targets in the
zygotically down-regulated gene set. Side bars indicate microRNA families color-coded as in B. Shading indicates 100% base identity at a given position.
MicroRNAs with identical sequences are collapsed on a single line. (D) Relationship of microRNA expression and target enrichment in the down-regulated
gene set in the 8–16h embryo. Vertical lines show themedian, upper, and lower quantile values, andhorizontal line shows the 0.001 P-value after Bonferroni
correction threshold. Points corresponding to the microRNAs outlined in B and C are color-coded accordingly. Selected microRNAs are labeled.
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annotatedmembers of themir-3851 andmir-3836 families, which
are uniquely up-regulated upon the activation of zygotic transcrip-
tion. Sequence comparisons further showed thatmanymicroRNAs
that lack overall sequence similarity have identical 6-,7-, or 8-mer
seed regions (herein referred to as “seed families”) (Fig. 6C), and
thus have highly similar predicted canonical target sets. Major
seed families include AGUACG (3p arms of mir-3851b-q, mir-
3889, mir-3840, and mir-3841), AGUACA (3p arm of mir-3851a
and mir-11618b), CACUGG (3p arms of mir-3836 and mir-309/3
families), AUCACA (3p arms of mir-2944, mir-2/13, mir-11, and
mir-308; complementary to the K-box motif) (Lai et al. 1998),
UAAAGC (3p arms ofmir-9,mir-3893, andmir-3843; complemen-
tary to the Brd-boxmotif) (Leviten et al. 1997); GACUAG (3p arms
of miR-279a to e), and AAUACU (3p arms of mir-8 and novel
microRNAsmir-11625a/b). Inaddition,zygoticallydown-regulated
genes are also enriched in target sites of miR-283-3p, miR-252-3p,
andmiR-277-3p. Sylamer analysis (vanDongenet al. 2008) showed
that of all possible 6-mer nucleotidewords, motifs complementary
to theseedregionsofmicroRNAsfromtheabovefamiliesareamong
the most highly and significantly enrichedmotifs in the 3′ UTR of
the zygotically down-regulated genes (Supplemental Table 4).

Assessment of microRNA expression levels in the context of
their targeting properties showed that the vast majority of
microRNAs targeting down-regulated genes in the blastoderm are
among the most highly expressed microRNAs at that stage (Fig.
6D). The reciprocity between specific microRNA up-regulation and
the down-regulationof their targets in the early blastodermstrongly
suggests that these microRNAs are involved in maternal transcript
clearance inT. castaneum. We also note that a different set of highly
expressedandconservedmicroRNAs, includingmiR-9-5p,mir-263,
andmir-276, target a substantial fractionof genesup-regulateddur-
ing embryogenesis, reflecting a likely role for these microRNAs in
other developmental processes (Supplemental Table 3).

Previous findings in D. melanogaster showed that highly ex-
pressed members of themir-309�6 cluster in the early embryo, in-
cluding mir-9/4/79, mir-5/6/2944, mir-3/309, and mir-279/286,
are involved in maternal transcript turnover (Bushati et al. 2008).
Our results suggest that these microRNA families have a conserved
role in maternally deposited transcript regulation in the early em-
bryo of holometabolous insects. Furthermore, we identify several
additional, Tribolium-specific microRNA families involved in the
process, including mir-3889, mir-3840, mir-3841, and mir-3851
families. We therefore suggest that the microRNA repertoire in-
volved in maternal transcript clearance has diverged.

Discussion

Abundance and modifications of maternally

deposited microRNAs

Oocyte maturation is accompanied by the deposition of a large
number of protein and RNA factors, including small RNAs
from the microRNA and piRNA classes. In Drosophila, maternal
piRNA deposition is required for the inheritance of transposon
defense (Brennecke et al. 2008). The role of maternally provid-
ed microRNAs, on the other hand, is not well understood:
microRNAs can be detected in Drosophila oocytes, but it is unclear
whether these areproducts generated at earlier stagesof gonadalde-
velopment, or if their deposition is required for subsequent events
in embryonic development. For instance, genetic knockout of the
maternally provided mir-310�mir-313 cluster in Drosophila does
not result in developmental defects (Tsurudome et al. 2010;

Pancratov et al. 2013). MicroRNAs are not present at high levels
in small RNA libraries of zebrafish, Xenopus, and mouse oocytes,
and the roles of maternally deposited microRNAs in these species
are not well understood (Chen et al. 2005; Watanabe et al. 2005;
Ohnishi et al. 2010; Lee et al. 2014).

As in vertebrates, the cloning frequency of microRNAs in
oocytes of Tribolium is very low compared to subsequent develop-
mental stages. However, absolute quantification of T. castaneum
maternally deposited microRNAs shows a concentration of
�0.2 fmol per oocyte, which is commensurate with previous esti-
mates of microRNA copy numbers in mammalian cells (Bissels
et al. 2009) and likely reflects physiologically relevant levels. Thus,
the underrepresentation of microRNAs in the T. castaneum oocyte
libraries is not due to absence of maternal loading but to very high
levels of piRNAs. RNA sequencing shows high levels of transposon
activity in the Tribolium embryo, and we speculate that the high
abundance of piRNAs is related to this observation (M Ninova,
S Griffiths-Jones, M Ronshaugen, in prep.).

The metabolism of maternally provided microRNAs is not
well understood. It was recently demonstrated that a substantial
proportion of the microRNA complement in oocytes is 3′-end
adenylated post-transcriptionally. Since thismodification enhanc-
es microRNA degradation, it provides a plausible mechanism to
control clearance of maternally loaded microRNAs (Lee et al.
2014). Consistent with this possibility, we detect high levels of
3′-end oligoadenylatedmicroRNAs in Tribolium andDrosophila oo-
cytes. Interestingly, only specific mature microRNAs are modified
at high levels, but this is not obviously determined by microRNA
sequence (Lee et al. 2014). Our data demonstrate that the speci-
ficity of microRNA adenylation in oocytes is similar for abundant
microRNA orthologs between Drosophila and Triboliium, suggest-
ing that the mechanism that regulates this process is conserved
among holometabolous insects, across at least �300 million years
of evolution. Further work is required to elucidate the molecular
basis and developmental effects of this process.

MicroRNA-mediated maternal transcript clearance in T. castaneum

One of the earliest events during animal development is the deg-
radation of maternally deposited transcripts in the egg and the
activation of the zygotic genome—a process termed the ma-
ternal-to-zygotic transition (MZT) (for review, see Tadros and
Lipshitz 2009). MicroRNAs have been implicated in the MZT of
both invertebrates and vertebrates. However, the data suggest
that involvement of microRNAs in this function has evolved con-
vergently in the two clades (Bushati et al. 2008). In zebrafish,
among the first zygotically expressed transcripts is a large cluster
encoding over 50mir-430 paralogs, which target a significant frac-
tion of the maternally provided mRNAs (Giraldez et al. 2006). In
Drosophila, a similar role was proposed for the early expressed
mir-309�6 cluster (Bushati et al. 2008). Genetic knockout of the
mir-309�6 cluster results in the delayed degradation of a number
of maternally provided mRNAs but does not cause significant em-
bryonic defects (Bushati et al. 2008). We speculate that members
of the mir-309�6 cluster are not the only microRNAs involved in
maternal transcript regulation in Drosophila, as other microRNAs
from the same seed families—including miR-2/11/13-3p, miR-
279/996-3p, and mir-9 paralogs—are present in the early embryo.

We have identified a number of conserved and species-specif-
icmicroRNAs in T. castaneum that are highly expressed in the early
embryo and target a significant fraction of down-regulated mater-
nal transcripts during the MZT. Thus, the data suggest that
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microRNAs are involved in the degradation of maternally depos-
ited transcripts in this lineage. The conservedmicroRNAs involved
in maternal transcript down-regulation in the blastoderm of the
flour beetle include homologs of the Drosophila mir-309�6 cluster
members and othermicroRNAswith identical seeds. Taken togeth-
er, the data suggest that microRNA-mediated maternal transcript
degradation by the 3p mature arms of microRNAs from the seed
families AUCACA (mir-2944/5/6, mir-2/13 and mir-11), UAAAGC
(mir-9/79/4 family), and CACUGG (mir-309/3 family) is a con-
served feature inholometabolous insects.mir-279 familymembers
are very highly expressed in the early embryo and show one of the
strongest target enrichment values among the down-regulated
transcripts in the early embryo. In addition, we observed high ex-
pression levels and target site enrichment in the zygotically down-
regulated genes targeted by mir-8 and mir-283, and to a lesser ex-
tent, mir-277 andmir-252. The roles of thesemicroRNAs inmater-
nal transcript clearance in Drosophila have not been previously
addressed; further studies are required to determine whether the
involvement of these deeply conserved microRNAs in the MZT is
conserved in insects or represents a Tribolium-specific co-option.

Several T. castaneum-specific microRNAs also target a signifi-
cant fraction of the maternally deposited transcripts that decrease
at the blastoderm stage. These include the multicopy microRNA
families mir-3836 and mir-3851 and four hairpins encoded
in the mir-3889�3843 and mir-9d�3791 clusters: mir-3889,
mir-3840, and mir-3841, and mir-3893. Notably, 3p products cor-
responding to the seed families of mir-3851a (AGUACA) and
mir-3851b to q, mir-3889, mir-3840, and mir-3841 (AGUACG)
are not found inDrosophila, suggesting that thesemicroRNA-target
interactions are a diverged feature between these insect lineages.

Taken together with previous studies in Drosophila, findings
in T. castaneum suggest that microRNA-mediated maternal tran-
script degradation is a conserved mechanism in holometabolous
insects, but the precisemicroRNAs participating in this process dif-
fer somewhat between species. MicroRNAs involved in maternal
transcript clearance in vertebrates (Giraldez et al. 2006; Lund
et al. 2009) have no sequence similarity or common seed motifs
with any of the insect microRNAs, illustrating the likelihood of
convergence in this process (see below). Nevertheless, compari-
sons of the microRNAs in the MZT in different organisms reveal
the common phenomenon of large, fast-evolvingmicroRNA poly-
cistrons involved in this process.

Dynamic evolution of early expressed microRNAs

Our analysis of the genomic positions, sequences, and target-
ing properties of the early expressed T. castaneum-specific
microRNAs reveal complex relationships. The mir-3851 and
mir-3836 families, and novel mir-8 seed family members, are
found in large and diverse clusters located in multiple genomic
positions. These microRNAs are not colocalized with any con-
served microRNAs, but other members from these seed families,
such asmir-309, havedeeper evolutionaryorigins and are clustered
with other conserved microRNAs. MicroRNA hairpins are short,
and thus any putative fast-evolving sequences can diverge to the
point at which they cannot be confidently identified as homologs.
On the other hand, the formation of microRNAs with identi-
cal seeds (microRNA convergence) may be common, as the
microRNA seed region is very short, andnewhairpins often emerge
de novo in animal genomes. Despite their high degree of diver-
gence in terms of encoded hairpin copy number, family, and se-
quence, the T. castaneum-specific microRNA clusters display a

very similar temporal expression pattern spanning only a few
rounds of cell division after the initiation zygotic transcription.
Wepropose that newly emergedmicroRNAswith convergent seeds
and similar expression patterns to existing microRNAs are more
likely to be retained, as they “mimic” the existing microRNA and
thus do not cause significant transcriptome perturbations by
down-regulating new transcripts. In the light of this hypothesis,
one explanation for the origin of the mir-3836 and mir-3851 clus-
ters is that their foundingmembers emerged from randomhairpins
in early activated regions and subsequently duplicated and diversi-
fied. Alternatively, if microRNAs with identical seeds are consid-
ered to be highly diverged paralogs, we can speculate that the
mir-3836 and mir-3851-encoding clusters, and the three clusters
encoding members of the conserved mir-5/6/2944, mir-9/4, mir-
279/286, and mir-309/3 families, have common origins but have
significantly diverged via multiple duplications, rearrangements,
and losses (including the acquisition of amir-8 paralog that rapidly
diverged). These scenarios of cluster evolution are notmutually ex-
clusive: It is likely that some seed families are evolutionarily related,
whileothers emergedbyconvergence.Eitherway, the evolutionary
patterns of the early expressed microRNAs are uniquely dynamic.

Our previous work demonstrated that one characteristic of
the early Drosophila embryo is high levels of fast-evolving
microRNAs (Ninova et al. 2014). Data from T. castaneum now sug-
gest that the early embryonic expression of fast-evolving and evo-
lutionarily younger microRNAs is not restricted to Drosophila but
represents a conserved feature of holometabolous insects. Studies
in other organisms have also suggested that early embryogenesis
is permissive or robust to evolutionary change in the transcrip-
tome compared to later stages of development: In Drosophila, ver-
tebrates, and plants, the early embryonic transcriptome is, on
average, younger, faster evolving, and characterized with higher
variation in orthologous gene expression (Domazet-Lošo and
Tautz 2010; Kalinka et al. 2010; Quint et al. 2012; Heyn et al.
2014). Even though the underlying causes of this phenomenon
are elusive, our results suggest that the apparent flexibility of the
molecular networks active in early development also impacts the
evolution of the microRNA complement expressed at that stage.

Methods

Animal husbandry, sample collection, and deep sequencing

T. castaneum wild-type adults (Michael Akam, University of
Cambridge) were reared following a standard protocol (The Beetle
Book: http://wwwuser.gwdg.de/~gbucher1/tribolium-castaneum-
beetle-book1.pdf) at 25°C, and wild-type D. melanogaster and
D. virilis were maintained under standard conditions. Details on
embryo collection timing are provided in the Supplemental Text.
RNA was extracted using a standard TRIzol protocol. Small RNA
and RNA libraries were constructed using the Illumina TruSeq
Small RNA Sample Prep and TruSeq Stranded mRNA Sample Prep
kit, respectively. Libraries were assessed using the Agilent 2200
TapeStation and sequenced on the Illumina MiSeq (embryonic
small RNA sequencing) or the Illumina HiSeq 2000 (oocytes small
RNA sequencing and whole-transcriptome sequencing) platforms
in the University of Manchester Genomic Technologies facility.

Embryo fixation, immunohistochemistry,

and in situ hybridization

Embryos were dechorionated, fixed, and devitellinated using a
standard protocol. Whole-mount fluorescent in situ hybridization
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with �1 kb-long DIG-labeled antisense RNA probes and antibody
staining procedures were performed according to the protocol in
Kosman et al. (2004), but omitting the proteinase K treatment
step. Primers for RNA probe synthesis templates and antibodies
used for detection are listed in Supplemental Table 5. Images
were visualized by confocal microscopy on an Olympus FV1000,
and image stacks were processed with Fiji (Schindelin et al. 2012).

Small RNA sequencing data analysis and microRNA prediction

Adapter sequences were trimmed from the T. castaneum small
RNA reads using the Cutadapt tool (http://code.google.com/p/
cutadapt/), retaining reads longer than 16 nt. Reads were first fil-
tered against T. castaneum tRNA genes predicted using tRNAscan-
SE (v1.3) (Lowe and Eddy 1997), and then mapped to the latest
version of the T. castaneum genome assembly (r4.0) using Bowtie
(v1.0) (Langmead et al. 2009) with the following parameters: -v 1
–a –best –strata –m 5. Mapped reads were used as input to two in-
dependent microRNA discovery methods—mirdeep2 (Friedländer
et al. 2008) and an implementation of the method described in
Marco et al. (2010). Newly discovered microRNAs were submitted
to miRBase (Kozomara and Griffiths-Jones 2014). MicroRNA read
counts were calculated, correcting for mapping to multiple loca-
tions, and expression was normalized as reads per millionmapped
to the genome. D. melanogaster and D. virilis oocyte small RNA li-
braries were analyzed as previously (Ninova et al. 2014).

For 3′ nontemplate end additions, reads that did not map to
the genome with 0 mismatches were sequentially trimmed by
1 nt from their 3′ end and remapped. Upon each iteration, perfect-
ly mapping reads were retained. Resulting trimmed sequences cor-
responding to full-length microRNAs were analyzed using a
custom Perl script (see Supplemental Material).

MicroRNA evolutionary conservation

T. castaneummicroRNAs were grouped into families based on best
BLASTN hits (-word_size = 4) (Altschul et al. 1990) and manual in-
spection and editing of the resulting alignments using RALEE
(Griffiths-Jones 2005). Curated alignments were used to build
covariance models, and these models were searched against the
genomes of Dendroctonus ponderosae, D. melanogaster, D. virilis,
A. mellifera, and Bombyx mori using INFERNAL (Nawrocki et al.
2009) with an E-value cutoff of 1. MicroRNAs with no hits were
considered species-specific. Hits scoring below this threshold
were added to previous alignments and manually inspected for
hairpin folding and homology.

RNA sequencing data analysis and differential expression

Paired-end transcriptomedataweremapped to theT. castaneum ge-
nome (r4.0) usingTopHat (Trapnell et al. 2009)withdefault param-
eters and supplying the currently available protein-coding gene
annotations (iBeetle, http://bioinf.uni-greifswald.de/tcas/genes/
annotation/). Gene expression counts were obtained using htseq-
count (Anders et al. 2015), and differential gene expression be-
tween oocytes, 8–16-, 16–24-, and 24–48-h embryos was assessed
using the DESeq R package (Anders andHuber 2010). Gene expres-
sion changes with P-values smaller than 0.05 after Benjamini–
Hochberg correctionwere considered as significant.We further val-
idated these results using the Cuffdiff program from the Cufflinks
package (Trapnell et al. 2010) as analternativeapproach to estimate
gene differential expression (Supplemental Table 3).

MicroRNA target predictions and enrichment analyses

MicroRNA target sites in the annotated 3′ UTR of T. castaneum
protein-coding genes (r4.0, iBeetle Database, http://ibeetle-base.

uni-goettingen.de/) were predicted using two independent target
prediction algorithmswith the default parameters—an implemen-
tation of the canonical site target pairing as described in Bartel
(2009), provided by Antonio Marco, and miRanda (Enright et al.
2003). When multiple transcripts per gene were present (7% of
all annotations), different UTRs weremerged; we note that consid-
ering individual transcripts separately produces very similar results
(data not shown). Target enrichment was independently assessed
by hypergeometric (phyper R function) and permutation tests.
For the latter, random samples of equal sizes to the significantly
up- and down-regulated gene sets between oocytes and later stages
were drawn without replacement 1000 times, and numbers of
microRNA targets were calculated. P-values were corrected for
multiple testing using the Bonferroni correction. Sequence motif
enrichment in transcript UTRs was assessed by sylamer (van
Dongen et al. 2008).

Data access

All RNA sequencing data from this study have been submitted to
the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm
.nih.gov/geo/) under accession number GSE63770.
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