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Mass & secondary structure 
propensity of amino acids explain 
their mutability and evolutionary 
replacements
Hugo J. Bohórquez1, Carlos F. Suárez1,2,3 & Manuel E. Patarroyo1,4

Why is an amino acid replacement in a protein accepted during evolution? The answer given by 
bioinformatics relies on the frequency of change of each amino acid by another one and the propensity 
of each to remain unchanged. We propose that these replacement rules are recoverable from the 
secondary structural trends of amino acids. A distance measure between high-resolution 
Ramachandran distributions reveals that structurally similar residues coincide with those found in 
substitution matrices such as BLOSUM: Asn ↔ Asp, Phe ↔ Tyr, Lys ↔ Arg, Gln ↔ Glu, Ile ↔ Val, 
Met → Leu; with Ala, Cys, His, Gly, Ser, Pro, and Thr, as structurally idiosyncratic residues. We also 
found a high average correlation (R  = 0.85) between thirty amino acid mutability scales and the 
mutational inertia (IX), which measures the energetic cost weighted by the number of observations at 
the most probable amino acid conformation. These results indicate that amino acid substitutions follow 
two optimally-efficient principles: (a) amino acids interchangeability privileges their secondary 
structural similarity, and (b) the amino acid mutability depends directly on its biosynthetic energy cost, 
and inversely with its frequency. These two principles are the underlying rules governing the observed 
amino acid substitutions.

In molecular evolution, protein stability is a solid indicator of function preservation thanks to a positive corre-
lation between protein functionality and native stability1,2. Natural protein sequences evolved to avoid aggre-
gation and increase functional diversity3, and once a protein fold is established, the selection pressure at most 
positions in the protein will preserve fold stability. Homologous families of proteins have related functions, and 
structures are similar although sequences have diverged4, even in regions with less than 30% sequence identity5,6. 
Accordingly, mutation events over time may replace a residue by another while keeping the backbone dihedral 
angles at that position unchanged7. These facts indicate that the amino acid sequence alone is an incomplete 
measure of evolutionary relationships between proteins. Indeed, structural similarities better reflect homology 
than sequence similarities8. Therefore, sequence variation around a conserved molecular architecture could be 
traced through amino acid substitution patterns fixed during protein evolution.

The intrinsic secondary structure propensities of amino acids are given by the statistics of Ramachandran dis-
tributions9–11. In this way, we could know the conformational bias of each amino acid towards specific secondary 
structures12,13. For instance, long polypeptide chains with the same backbone conformation are found exclusively 
in α − helix, PPII, and β strands structures14. In general, examining the frequency of occurrence of particular 
amino acid residues in stable secondary structures have been useful for determining protein structure, folding, 
and energetics15. We propose that, in addition, the statistics of the secondary structure of proteins may reveal their 
evolutionary information.

To confirm this assumption, we explore a combination of extensive physical quantities with the statistics 
of Ramachandran distributions PX(φ, ψ). In particular, we investigate the molecular mass as a measure of the 
amino acids biosynthetic cost. In addition, we use the protein geometry database (PGD 1.1)16 for obtaining 
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high-resolution Ramachandran distributions as 2D-binned probability histograms (Fig. 1). This choice has some 
practical advantages, including the possibility of directly applying distance measures between the distributions. 
The secondary structure distance between the amino acids (Fig. 2) is the main task in our research because the 
emerging close-distance pairs can be straightforwardly compared to pairwise mutations. The optimal bin area 
(ΔφΔψ) dividing the Ramachandran map is given by the method of Shimazaki & Shinomoto17. This is a key 
element in histogram binning because a very small bin size will result in noise amplification whereas a very large 
value will overpass important details of the distribution.

Figure 1.  High-resolution Ramachandran probability distributions PX(φ, ψ) (logarithmic scale) as derived 
from the PGD 1.1 database at 1.895° × 1.895° bin size. Structurally similar open sets: yellow, SI = {{Arg, Lys}, 
{Glu, Gln}, Leu}; green, SII = {Trp, {Phe, Tyr}}; magenta, SIII = {Ans, Asp}; cyan, SIV = {Val, Ile}. Ala, Met, and 
Ser have their first neighbor in SI; His, Thr, and Cys are adjacent to SII. Larger images of each Ramachandran 
distribution are given by Supplementary Figs. S1–S20.
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We explore the twenty amino acid distributions through some of their distinctive features such as the most 
probable conformation, which is given by the highest peak of each distribution. Additionally, we propose a plau-
sible mutability parameter that combines structural information with the molecular mass of the amino acids. Our 
results indicate that amino acid evolutionary substitutions occur by following two optimal-efficiency principles: 
(a) interchangeability between amino acids occurs by preserving secondary structural propensity, and (b) the 
mutability of an amino acid depends directly on its mass, and inversely with its frequency. The methodology 
introduced here gives the basis for developing a new kind of scoring matrices involving physical quantities and 
secondary structure statistics. Hopefully, these future efforts will further help to improve the peptide design strat-
egies, which can contribute to close the gap between the primary sequence and the 3D structure of proteins.

Results and Discussion
High-resolution Ramachandran Probability Distributions.  We distinguish two concepts regarding 
the backbone dihedral angles of proteins, as suggested by Dunbrack Jr. et al.11. The first is a Ramachandran plot 
or Ramachandran map, which is simply a scatter plot of the φ, ψ values for the amino acids in a single protein 
structure or a set of protein structures. It provides a simple view of the conformation of a protein. The second is a 
Ramachandran probability distribution P(φ, ψ) which is a statistical representation of Ramachandran data, usually 
in the form of a probability density function. PX(φ, ψ) gives the probability of finding an amino acid conformation 
in a specific range of (φ, ψ) values.

We obtained non-parametric density estimates of PX(φ, ψ) for each amino acid X from 1,153,791 residues 
retrieved from the high-resolution protein geometry database (PGD 1.1)16. In our approach—frequentist—events 
have a specific probability whose determination depends on the number of observations. Therefore each 

Arg Lys Glu Gln Leu Met Ala Trp Phe Tyr His Thr Cys Ser Asn Asp Val Ile Gly Pro

Arg

Lys

Glu

Gln

Leu

Met

Ala

Trp

Phe

Tyr

His

Thr

Cys

Ser

Asn

Asp

Val

Ile

Gly

Pro

Figure 2.  Distance matrix ordered according to structurally similar amino acids. The smallest distance is 
represented in yellow, and the largest distance in blue, with intermediate values in green. Open subsets appear, 
consistently, in yellow. Additionally, Gly, and Pro appear as the most distant elements, followed by Asn, Val-Ile, 
Ala, and Thr.
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distribution PX(φ, ψ) is given by a joint histogram. Such an approach depends on finding an optimal grid size, 
which can be determined with Shimazaki & Shinomoto method17. Said strategy requires a heuristic exhaustive 
sampling of a cost function whose minimum corresponds to an optimal binning of the distribution—see methods 
for details. Table 1 reports the optimal bin width for each Ramachandran probability distribution, ΔX

min. The 
weighted average of these optimal bin widths gave us the bin size used (1.895°) in the present study. Thus, we 
obtained a grid with a total of 190 × 190 bins (36,100), each one covering an area of 1.895° × 1.895° of the dihedral 
space (Fig. 1), which is a significant improvement on the resolution of Ramachandran distributions previously 
reported.

For comparison, the 3D representation of the Ramachandran distributions for the first version of PGD uses 
a grid of 20.0° × 20.0° (i.e. a total of 324 bins), from a dataset containing 72,376 residues10. In another approach, 
the predicted protein backbone torsion angles from NMR chemical shifts made by the TALOS+ program uses 
an identical bin size (20.0° × 20.0°)18,19, other studies on folding trends uses a resolution of 10.0° × 10.0° (i.e 1,296 
bins)11. An early report on detailed Ramachandran distributions used bin widths of 4.0° × 4.0° (i.e. 90 × 90 bins), 
involving 237,384 amino acids from 1,042 proteins20. Our distributions have a resolution 4.5 times higher, which 
translates into a higher accuracy in the distance computations between the set of distributions PX(φ, ψ). This high 
resolution was possible thanks to the fact that at least 84% of the structures reported at the protein data bank 
(PDB) were obtained during the last decade alone, most of which have atomic resolution.

Figure 1 reports the 3D plots of the twenty Ramachandran distributions determined for the present study; the 
dihedral angles are given in degrees, while the percentage probability per bin is given on a logarithmic scale. All 
the plots have the same height to facilitate their comparison. Larger plots are included in Supplementary Figs. S1–
S20. While most distributions look similar one to another, there are some key differences. The probability distri-
bution of glycine is very symmetrical and occupies all the allowed regions of the Ramachandran map. It is the only 
residue having a maximum at the left-handed α-helix conformation with a peak almost as high as the one at the 
α-helix region; these features are a consequence of its lack of a side chain21. On the other hand, proline—an imino 
acid—has two highly-populated states, with a slightly higher probability at the PPII conformation than at the 
α-helix conformation. It belongs to the set of structurally restricted amino acids composed by {Ile, Pro, Thr, Val}, 
which have an extremely low probability of occupying the right-hand side of the Ramachandran map. Indeed, 
the corresponding plots (Fig. 1) show few points within the quadrants I and IV (φ > 0). The conformational 
restrictions of proline arise from its pyrrolidine ring, whose flexibility is coupled to the backbone22. Isoleucine, 
threonine, and valine are the only amino acids with C-β branching, which means that they have more bulkiness 
near to the protein backbone than the rest of amino acids23. They also have a local maximum within the β-sheet 
region—shown as red shaded peaks in Fig. 1—a feature only shared with the three aromatic residues, Phe, Tyr, 
Trp, and Leu. The remaining amino acids occupy the allowed regions in a generic fashion20,24, whose distributions 
agree with the original Ramachandran and co-workers explanation in terms of steric clashes25.

All these observations point to the qualitative aspects of the distributions. However, a systematic comparison 
of the twenty Ramachandran distributions requires the use of a quantitative evaluation of their similarities. In the 

Amino acid MX (Da) BX ∆X
min PX

max (%) NX WX IX

Ala 71.079 4 1.176° 0.437 113609 496.654 0.143

Arg 156.188 10 1.593° 0.265 45373 120.333 1.298

Asn 114.104 2 2.535° 0.156 46573 72.701 1.569

Asp 115.089 1 2.169° 0.192 56963 109.191 1.054

Cys 103.139 5 2.951° 0.173 15823 27.298 3.778

Gln 128.131 2 2.118° 0.307 35633 109.470 1.170

Glu 129.116 1 1.748° 0.321 48458 155.431 0.831

Gly 57.052 5 2.118° 0.124 98983 122.840 0.464

His 137.141 13 2.609° 0.173 27675 47.910 2.862

Ile 113.159 7 1.488° 0.285 74768 213.090 0.531

Leu 113.159 7 1.463° 0.276 116941 322.560 0.351

Lys 128.174 10 1.856° 0.276 40135 110.584 1.159

Met 131.193 7 1.782° 0.284 20968 59.610 2.201

Phe 147.177 11 2.169° 0.190 56511 107.242 1.372

Pro 97.117 4 2.222° 0.110 54555 60.167 1.614

Ser 87.078 4 1.978° 0.141 66612 93.593 0.930

Thr 101.105 6 2.069° 0.178 68557 121.726 0.831

Trp 186.213 14 2.687° 0.200 21118 42.340 4.398

Tyr 163.176 11 2.400° 0.184 48972 90.250 1.808

Val 99.133 4 1.622° 0.241 95564 230.082 0.431

Table 1.  Properties of the Amino acids used in the present study. MX is the residue average mass (without 
water). BX gives Davis’ biosynthetic steps37. Δ deg( )X

min  is the optimal bin angle determined by MISE method17. 
PX

max corresponds to the peak of the Ramachandran distribution PX(φ, ψ). NX is the number of points used for 
determining PX(φ, ψ). = ×W P NX X X

max  is an estimator of the maximum possible observations at the most 
frequent conformation. IX = MX/WX is the mutational inertia.
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following subsection, we show a distance matrix accounting for dissimilarities between the secondary-structural 
trends of amino acids.

Secondary-structural vs BLOSUM replacements.  A quantitative assessment of the similarities between 
the twenty distributions PX(φ, ψ) requires a distance measure. We used the city-block distance, which can be used 
to assess the differences in discrete frequency distributions. It gives more weight to the most probable dihedral 
conformations of the Ramachandran distributions.

Each amino acids X has a set of twenty distances, DX, including with itself, (in which case ||PX − PX|| = 0):

= || − || || − || … || − || || − ||D P P P P P P P P{ , , , , } (1)X X Ala X Arg X Tyr X Val

The most plausible secondary-structural replacement to X is that amino acid Y having the smallest positive 
distance to X, or the minimum positive value from the set of distances: +min D{ }X . That = −+ D P Pmin { }X X Y  
does not imply necessarily that = −+ D P Pmin { }Y Y X . In other words, the structural replacement is not always 
a reciprocal operation; hence if Y is the replacement of X, we denote this by X → Y. In the case of a reciprocal 
replacement, we denote it by X ↔ Y.

The secondary-structural distance matrix between the amino acids is shown in Fig. 2. The proximity between 
amino acids is given by a color scheme: the smallest distance is represented in yellow, and the largest distance 
in blue, with intermediate values in green. We found open subsets by a nearest-neighbor criterion: any element 
within an open subset has exactly the remaining elements of said subset as its nearest neighbors—the procedure is 
explained in the methods section. For instance, the simplest open subset is composed by two elements for which 
the other one is the closest element—i.e. those elements for which Dmin(PX, PY) = Dmin(PY, PX) or, equivalently, 
X ↔ Y.

We found the following open sets (Fig. 3): a five-member set including a couple of two-member subsets: 
SI = {{Arg, Lys}, {Glu, Gln}, Leu}—in yellow; a three-member set containing a two-member set, SII = {Trp, {Phe, 
Tyr}}—in green; and a pair of two-member sets: SIII = {Val, Ile}, and SIV = {Asn, Asp}—in cyan and magenta, 
respectively. Within this topology, Met appears as a boundary element of the first set SI; Fig. 3 shows that Met first 
five neighbors are exactly the elements of SI. In turn, every residue in SI has Met as the fifth neighbor but Glu, 
which has Ala closer; this proximity may result from Ala and Glu being the strongest α-helix formers, as their 
respective PX

max values indicate (Table 1). The SI group includes aliphatic saturated side chains, while SII contains 
the aromatic residues. Adjacent to these two major sets we found residues sharing their physiochemical charac-
teristics—as shown by their close distances to the main groups in the distance matrix (Fig. 2). Specifically, four 
residues have their nearest neighbor within a major open set: Ala have its first neighbor in SI, whereas His, Thr, 
and Cys have their first neighbor in SII. Those amino acids outside an open set or its boundaries were considered 
structurally idiosyncratic: Ala, Cys, His, Gly, Ser, Pro, and Thr. Gly and Pro are the farthest ones from any other 
residue, as the last column of Fig. 3 shows. Certainly, these amino acids populate the Ramachandran map in a 
unique way. The Ramachandran distribution of glycine is widespread over the allowed regions; while Pro is the 
most structurally restricted. Alanine has twice the probability of forming an α-helix ( = .P 0 437%Ala

max  from 
Table 1) than any other residue ( = .≠P 0 214%aver Ala

max ). The Ramachandran distribution of Thr has four peaks 
around the β and π regions unlike any other residue, including the C-β branched amino acids (Fig. 1). While Thr 
is chemically similar to Ser26, they have different structural propensities. According to our distance matrix 
(Fig. 2), Thr is closer to Tyr & Phe, while Ser is closer to His & Arg. A recent study shows that the phosphorylation 
of Ser increases its propensity of forming PPII, whereas that of Thr has the opposite effect27. This result indicates 
that Ser and Thr are far from being ideal secondary structural replacements. In summary, our classification 
reflects the intrinsic structural trends of amino acids; in particular, the SI set and its adjacent elements Met and 
Ala are the same alpha formers found by Fujiwara et. al.28. Within the same scale, the aromatic set, SII, and its 
adjacent elements (Cis, Thr) and SIII are beta formers. The remaining amino acids are turn/bend formers, includ-
ing SIV and Gly, Ser, and Pro, most of which have the lowest PX

max values in Table 1.
More importantly, nevertheless, is the fact that an unexpected pattern emerged: our structurally similar pairs 

of amino acids matches with most BLOSUM matrices pair replacements29, which are shown as shadowed boxes 
in Fig. 3. More details about the substitution matrices are in the methods section. Our list of structural replace-
ments is: Asn ↔ Asp, Phe ↔ Tyr, Lys ↔ Arg, Gln ↔ Glu, Ile ↔ Val, Met → Leu. In BLOSUM matrices, Thr and Ser 
are replacements. For all BLOSUM matrices, Gly, Pro, Cys, His, and Ala are idiosyncratic residues. In general, 
our set of structurally-similar amino acids coincide with most canonical residue substitutions given by scoring 
matrices such as BLOSUM62 and BLOSUM10029, and consensus replacements30. This is a remarkable finding 
considering the extremely low probability of randomly finding six out of seven replacement pairs: less than one 
in a 681 million, as detailed in the methods section. In consequence, our result reveals an underlying correlation 
between mutation matrices and structural propensities. Hence, the replacement rules implied by the secondary 
structure distance (Fig. 2) may be directly used for for exploring structural amino acid replacements in peptide 
design strategies.

We conclude that during evolution, mutational replacements occurred between structurally similar amino 
acids. Hence, mutations followed a process that privileges structure and hence preserves function. But BLOSUM 
and PAM substitution matrices give additional information about the mutational trends of amino acids. The 
diagonal of these matrices determine how easy is for an amino acid to be replaced. A large value means more 
resistance to change. However, our distance matrix (Fig. 2) has a diagonal of zeros. For studying the mutability, we 
explored a parameter that combines the statistical information at the PX

max with a basic extensive property.

Molecular mass and optimum evolutionary cost.  Molecular mass is a fundamental extensive property 
that might have played a central role in defining the actual protein landscape. Previously, our group revealed a 
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very high correlation (R = 0.98) between mass and the electronic energy of amino acids—excluding the two 
sulfur-containing side chains31. In the present study, we found a complex relationship between the amino acids 
mass MX and the structural trends via the probability at the most frequent conformational state,  PX

max; this quan-
tity is given by the highest peak of each Ramachandran distribution—max(PX(φ, ψ)). PX

max corresponds to the 
most frequent conformation and, therefore, it is an indicator of structural persistence32.

The α-helix conformation is the highest peak for all amino acids (but proline) with alanine at the top as the 
strongest helix former. While mass has an overall poor correlation with PX

max (R = 0.05), we identified two main 
and opposite trends delimited by separate ranges of PX

max: (a) > .P 0 200%X
max  defines the set of strong helix 

formers {Ala, Glu, Gln, Ile, Met, Leu, Lys, Arg, Val} (in descending order), with a negative correlation R = −0.61; 
and, (b) ≤ .P 0 200%X

max  defines the weak helix formers: {Trp, Asp, Phe, Tyr, Thr, His, Cys, Asn, Ser, Gly, Pro}, with 
a positive correlation of R = 0.76. The small set of C-β branched amino acids ({Ile, Thr, Val}) plus proline shows a 
correlation of R = 0.78 between mass and PX

max. After excluding these four elements from the two main sets, their 
respective correlations rise to R = −0.87 for the strong helix formers, and to R = 0.87 for the set of weak helix 
formers. In strong helix formers, the negative correlation between PX

max and the molecular mass indicates that 
light side chains have a better chance of forming an alpha helix than heavy ones. These three correlations reveal a 
direct involvement of the molecular mass on the α-helical propensities of the amino acids.

A recent observation by Lehmann et. al. reports a negative correlation between the background frequency and 
codon degeneracy of amino acids with mass33. Seligmann already observed that the evolutionary rate of amino 
acid replacements correlates negatively with mass34. Accordingly, heavier amino acids are less frequent, which 
suggests that the genomes preserve a fundamental distribution ruled by simple energetics. Inverse correlations 
between the average amino acid biosynthetic cost and the levels of gene expression are consistent with natural 

Figure 3.  Rows ordered according to the cityblock distance. Open sets are indicated by the same color code 
used in Fig. 1. The shadowed boxes contain the BLOSUM100 pair replacements. The procedure for determining 
an open set consists on finding rows with the same set of first neighbors. For instance, the first neighbor of Arg 
(top row) is Lys; after placing the Lys row under the top row, we see that they share the seven first neighbors (up 
to Trp). The third row corresponds to Arg second neighbor, i.e. Glu, which also shares the same first neighbors 
with the previous ones up to Trp. The fourth row corresponds to Arg third neighbor, i.e. Gln, whose fifth 
neighbour is Ala, unlike the previous rows. The fifth row corresponds to Arg fourth neighbor, i.e. Leu, which 
has all the previous rows as its first neighbors. In this way, the yellow box includes those elements whose first 
four neighbors are completely contained within the set. Methionine is a frontier element of this set: its first five 
neighbors are exactly the elements of the whole closed set; however, Glu does not include Met within its first five 
neighbours and for that reason Met is not contained in the set. The remaining open sets SII to SIV were obtained 
in the same way. Notice that Pro and Gly are the farthest residues from any other one, as a consequence of their 
structural propensity uniqueness.



www.nature.com/scientificreports/

7SCientifiC REPOrTS | 7: 7717 | DOI:10.1038/s41598-017-08041-7

selection to minimize costs35. Seligmann also shows a positive correlation (R = 0.80) between the molecular mass 
MX and the total energetic cost per amino acid (in ATPs)34, as reported by Akashi & Gojobori36. According to 
Lehmann et al., highly expressed proteins tend to use amino acids with relatively low synthetic costs33. Therefore, 
heavy amino acids are less frequent because they are biosynthetically more expensive. We found a further confir-
mation of this statement: the molecular mass grows with the number of biosynthetic steps, as shown in Fig. 4. The 
values proposed by Davis37, are included in Table 1 as BX. The number of biosynthetic steps has been proposed as 
a natural way of determining the evolutionary history of amino acids38, and so does the amino acids molecular 
mass. We found a correlation of R = 0.64 between mass and biosynthetic steps, which rises up to R = 0.88 after 
excluding the set of outliers {Asn, Asp, Gln, Glu} (Fig. 4).

In summary, we found a high correlation—by parts—between the molecular mass and the probability at the 
most frequent conformational state (PX

max). We also found a high correlation between mass and the number of 
biosynthetic steps (BX). These correlations are consistent with the fact that evolution privileges energetically opti-
mal costs34,39. Thus, in the quest for a physical quantity that can explain amino acid’s mutability, mass is irreplace-
able as a fundamental measure of energetic cost.

Mass over the frequency at the most probable conformation correlates with mutability.  The 
background frequency or natural abundance of amino acids, NX, may be indicative of their evolutionary age: 
more abundance reflects an early adoption in molecular evolution40. The values of NX were obtained from the 
PGD 1.1 database (Table 1). The quantity = ×W P NX X X

max  is an estimator of the maximum observations at the 
most frequent conformation. In this way, WX combines the probability at the most probable conformation with 
the background frequency. In the previous section we showed that an amino acid has less probability to be 
changed if it is more energetically expensive, and therefore mass directly measures the resistance to be changed. 
Additionally, less frequent amino acids are also less replaceable, indicating an inverse correlation with the muta-
bility. Under these considerations, we define a “replacement inertia” as the mass MX weighted by WX: IX = MX/WX. 
It summarizes the energetic cost per number of observations at the most probable conformation. We hypothesize 
that IX might reflect the mutability of amino acids—i.e. the diagonal of substitution matrices (see more details in 
the Methods).

Figure 4.  Correlation between the molecular mass of the amino acids MX and their energetic cost as accounted 
by the number of biosynthetic steps BX proposed by Davis37. The outliers {Asn, Asp, Gln, Glu} are excluded from 
the Pearson’s correlation and from the linear interpolation.
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In order to test if IX reflects the mutability of amino acids, we selected thirty replacement matrices reported 
by the AAindex41: twenty-seven that were built from sequence alignments—including a selection of six PAM and 
eight BLOSUM matrices; two more that were crafted from force fields (THREADER and SAUSAGE)42; and a last 
one that was obtained from replacements at the genetic code level43. Supplementary Table S1 contains the list of 
matrices used in our survey. We computed the Pearson correlation coefficient between IX and each mutability, 
which is shown in Fig. 5; in this figure, the correlation with alignment-derived matrices is colored in blue; the 
correlation with force-field derived appears in purple; and the correlation with the genetic code based matrix is 
plotted in green.

We found a very strong average correlation between IX and the whole mutability set of = .R 0 8530 . This aver-
age value can be explained by the strong correlation found between IX and the mutability of matrices derived from 
sequence alignments, which have values R > 0.78, as Fig. 5 shows. For the family of BLOSUM matrices, R values 
were obtained between 0.90 and 0.96, with an average correlation of = .R 0 92B . For PAM matrices, the correlation 
was lower with an average value of = .R 0 82P  for the six PAM matrices included in our survey.

On the other hand, the correlation between IX and the mutability of the THREADER substitution matrix 
was the lowest we found, RTHREADER = 0.52. The second lowest correlation for was with the matrix based on the 
genetic code (RBENNER = 0.64). The other force field derived matrix gave a correlation of RSAUSAGE = 0.68. These 
low correlations may have an interesting explanation: while force field based substitution matrices do not include 
evolutionary information, BENNER matrix, on the other hand, assumes that the genetic code is the only determi-
nant of amino acid substitutions. As a consequence, the underlying factors controlling these matrices are poorly 
reflected on IX. Therefore, we must conclude that the very high correlation between IX and the mutability of matri-
ces derived from sequence alignments implies that molecular mass, abundance, and the most probable secondary 
structure conformation may have played a decisive role on shaping the molecular evolution of proteins.

However, how significant an average correlation of = .R 0 85 between IX and the mutability set is? We evalu-
ated the correlation coefficients between the mutability of all the substitution matrices, which yields a total of 430 
correlations for the thirty matrices considered. The average value for these correlations is = .R 0 84430 . This value 
differs little from R , which means that IX describes amino acids mutability as well as any the mutability of the 
accepted mutation matrices. The correlation matrix with significance levels for IX and the mutability of the whole 
set of matrices is shown in Supplementary Fig. S1. An excerpt of this plot is shown in Fig. 6, which includes the 
following matrices: BLOSUM30, BLOSUM62, BLOSUM100, PAM40, PAM160, and PAM250. This plot reveals 
that the correlations between PAM and BLOSUM fall within 0.70 and 0.83. Expectedly, correlations between 
matrices of the same family are higher, up to 0.96 for BLOSUM and up to 0.97 for PAM. It is surprising that IX had 
better simultaneous correlations with both matrix families than they have with each other. This observation holds 
for the eight BLOSUM and six PAM matrices included in our study, as shown in Supplementary Fig. S21.

Figure 5.  Pearson correlation coefficients between the replacement inertia IX (Table 1) and the mutability of 
thirty replacement matrices. Alignment derived matrices are shown in blue, force field derived matrices in 
purple, and the genetic code derived matrix in green. See Supplementary Table S1 for the abbreviations.
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Our results indicate that amino acids mutability may be an evolutionary invariant that depends on the bio-
synthetic cost per amino acid and on the background frequency. These observations might have relevant conse-
quences for future developments and improvements of the actual scoring matrices, as well on structure prediction 
and design.

Conclusions
Our study provides compelling evidence about the physiochemical nature of the substitution matrices. Taylor’s 
early work44 on evolutionary biochemistry45 proposes an integrative amino acid classification schema based on 
Dayhoff ’s PAM matrix and properties such as volume and polarity. In a complementary way, our approach puts 
the evolutionary concepts closer to physiochemical properties, which might be helpful for treating proteins as 
integrated physical and historical wholes.

The main findings of the present work agree with accepted ideas about the molecular evolution of proteins. 
In the first place, we claim that secondary structural similarities resemble to a great extent the canonical replace-
ments given by substitution matrices (Figs 2 and 3). We interpret this result as a manifestation of an underlying 
structural preservation principle according to which amino acids interchangeability is highly determined by their 
secondary structural similarity. It might be a consequence of the fact that less structurally important parts of a 
protein evolve faster than more important ones. In this way, conservative substitutions occur more frequently 
in evolution than more disruptive ones. Our result agrees with Koonin & Wolf view according to which the 
primary causes of protein evolution could have more to do with fundamental principles of protein folding than 
with unique biological functions46. In the second place, we showed that amino acids mutability is correlated with 
the replacement inertia IX (Fig. 5). Therefore, amino acids mutability depends on the biosynthetic cost, the most 
probable conformation, and the background frequency. Davis proposes that the timeline of genetically encoded 
amino acids correlates with the number of chemical reactions required to synthesize each amino acid37,38,47. As a 
consequence, the correlation between mass and biosynthetic steps (Fig. 4) indicates that the mutability of amino 
acids might be a timeline of protein evolution as well.

Undeniably, the biosynthetic cost, structural preservation, and frequency distribution of amino acids, all 
played a significant role in the molecular evolution of proteins. Indeed, two main selective factors determining the 
evolution of proteins are structural robustness against misfolding, and energy-cost efficiency46,48,49. Protein syn-
thesis is very error-prone in comparison to DNA replication, and hence many folding-recognition mechanisms 
seem to have evolved to minimize costs of erroneous protein synthesis49. This energy-cost efficiency may explain 
why highly expressed proteins evolve slowly and at rates largely unrelated to their functions48.

Figure 6.  Correlation matrix plot with significance levels between the replacement inertia (IX) and the 
mutability of a representative set of BLOSUM and PAM matrices. The lower triangular matrix is composed by 
the bivariate scatter plots with a fitted smooth line. The upper triangular matrix shows the Pearson correlation 
plus significance level (as stars). Each significance level is associated to a symbol: p-values 0.001 (***), 0.01 
(**), 0.05 (*). This plot was generated with the Performance Analytics package in R program57. The correlation 
matrix for the complete mutability set is plotted in Supplementary Fig. S1.
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We can summarize our two main findings in similar terms with the following optimal-efficiency principles: (a) 
amino acids interchangeability occurs by preserving the secondary structural propensity, and (b) the amino acid 
mutability depends directly on its biosynthetic energy cost, and inversely with its frequency at the most probable 
conformation. We believe that these two principles are the underlying rules governing the observed amino acid 
substitutions. They provide a unified interpretation to mutation matrices, outside the statistical realm alone. Our 
results also indicate that amino acids mutability might be an invariant scale that differs little from one substitution 
matrix to another (Supplementary Fig. S21). These results may offer a new understanding of the evolutionary 
processes determining the structure of proteins.

Finally, the statistical similarities between secondary structural propensities used here offer a viable methodol-
ogy for systematically exploring amino acid structural replacements. For instance, one can determine a structural 
distance matrix limited to the β-strand region, which may differ from the one of the whole Ramachandran map. 
With this type of sectoral statistics one can envision new rules for the design of polypeptide chains.

Methods
Data source.  We calculated the Ramachandran distributions from the protein geometry database PGD 1.1, 
retrieved in June 201616. We selected crystallized protein geometries with resolution equal or less than 2Å, a 
R-factor equals to 0.2, and a R-free maximum of 0.3. In order to avoid over-representation bias of some protein 
families, we used 7,398 proteins with a maximum identity of 25%. A total of 1,153,791 residues were considered.

Data analysis.  The statistical analysis of the present work was implemented in Python 2.7 programming 
language50,51. A Python routine extracts the observed (φ, ψ) values from the PGD database for each amino acid 
(PGDread.py). The 2D optimization process was done with a routine that computes the cost function by chang-
ing the bin width equally for both dihedral variables Δ = Δφ = Δψ, (MISE.py). The Ramachandran distribution 
histograms were computed and plotted with Matplotlib libraries (3DRamadistr.py)52. The cityblock distance was 
taken from the SCIPY package. A total of 600 code lines were written for the complete analysis shown here. The 
Python codes are available upon request.

Histogram optimization.  Histograms are a type of non-parametric density estimates for which the num-
ber of parameters equals the number of data points53. A different approach uses analytic functions for obtaining 
smooth distributions that minimize low resolution and outliers effects54. The discrete (histogram) representation 
of the joint probability distribution PX(φi, ψj) depends on the bin width of the dihedral variables, i.e. Δφ and Δψ. 
A coarse binning size decreases the data noise but it might overpass relevant details of the structural information. 
On the other hand, a very fine grain bin size might highlight underlying statistical noise. The mean integrated 
squared error (MISE) can be estimated from the data through a cost function C(Δ). A histogram with the bin size 
that minimizes the MISE is optimal17. This method guarantees that a substantial increasing in the observations 
will further increase the accuracy of the histogram representation of probability distributions even more. The 
main assumption underlying this method is that the distribution can be represented by a smooth continuum 
function. Previous works have proven that Ramachandran distributions obey such assumption11. We assumed 
a regular partitioning of the Ramachandran maps i.e having the same bin size Δ for both dihedral variables: 
Δ = Δφ = Δψ. The cost function for two variables is therefore given by

Δ =
−

Δ
C n v( ) 2

(2)4

where the mean n and the variance v of the number of occurrences are given, respectively, by = ∑n n
N i

N
i

1 , and 
= ∑ −v n n( )

N i
N

i
1 2. The obtained optimal bin value for each amino acid is ΔX (Table 1). We used the weighted 

average as the bin with for all the Ramachandran distributions: Δ = ∑ Δ ∑N N/X X X X X
20 20 . From the obtained ΔX 

values, Δ = . °1 887 , which was approximated by the integer fraction 360°/190 ≃ 1.895°, i.e. we used 190 bins in 
each angular coordinate, for a total of 190 × 190 = 36,100.

Amino acid classification.  We classified the amino acids according to the city-block (Manhattan) distance. 
Our grouping method takes advantage of the fact that a metric induces a topology on a set. Accordingly, we 
determined the topology induced by the city-block distance over the set of amino acids. The increasing distance 
between a given element X and the remaining ones determines an ordered list. Therefore, for the present case, 
we have twenty ordered lists, one for each amino acid. The intersection between the first neighbors of these lists 
gave us open subsets. An open subset consists on those elements such that, for every element within the subset, 
its neighbors belong to the same subset. Figure 3 reports the twenty ordered lists with an example about how to 
obtain open sets.

Substitution matrices and mutability.  The most common method of evaluating the amino acid substi-
tution patterns is through substitution matrices such as PAM55 or BLOSUM29. A typical substitution matrix has 
20 × 20 elements, in which non-diagonal pairwise scores (log odds) represent the probability of one amino acid 
could be substituted by other in protein evolution. The diagonal scores of the matrix are estimators of amino acid 
mutability. For each amino acid, a greater score implies lesser possibilities to be substituted, on the other hand, 
lesser scores implies a greater chance to be substituted55,56. We used a set of thirty substitution matrices reported 
in the AAindex41 and NCBI (ftp://ftp.ncbi.nih.gov/blast/matrices/).

Probability of randomly finding six out of seven sets.  Substitution matrices, such as BLOSUM62 & 
BLOSUM100, define seven replacement pairs of amino acids. Our structural similar pairs do coincide with six of 
them. We need an assessment of the probability for correctly obtaining six out of seven pairs. The probability of 
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obtaining the first element of a pair is the number of elements of such pair (2) divided by the total of elements (14). 
Then, the probability of finding the match is the number of pair elements still in the set (1) divided by the total left 
(13). Hence, the combined probability of randomly finding the first pair out of seven is P1 = 2/14 × 1/13. By a similar 
reasoning, the probability of obtaining a second pair is P2 = 2/12 × 1/11, and so on. Therefore, the probability of simul-
taneously finding six out of seven pairs is ∏ = Pi i1

6 , or equivalently, ∏ = = . ×= −
−1/681,080,400 1 468 10k k k2

7 2
2 (2 1)

9. 
In other words, there is a chance of one in 681 million of simultaneously obtaining six correct pairs from a set of  
seven pairs.
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