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Simple Summary: Liver metastasis remains the major contributor in colorectal cancer-related death.
It has become clear that the unique immune features of liver microenvironment take part in many
steps of metastatic cascade, from pre-metastatic niche formation, tumor cell colonization to metastatic
tumor establishment. Therefore, better understanding of mechanisms orchestrating the forma-
tion of a hospitable hepatic metastatic niche is necessary for the development of effective ther-
apies. This review summarizes the current understandings of the critical role of liver immune
microenvironment in metastasis development and provides therapeutic perspective on targeting the
metastasis-prone microenvironment.

Abstract: A drastic difference exists between the 5-year survival rates of colorectal cancer patients
with localized cancer and distal organ metastasis. The liver is the most favorable organ for cancer
metastases from the colorectum. Beyond the liver-colon anatomic relationship, emerging evidence
highlights the impact of liver immune microenvironment on colorectal liver metastasis. Prior to
cancer cell dissemination, hepatocytes secrete multiple factors to recruit or activate immune cells
and stromal cells in the liver to form a favorable premetastatic niche. The liver-resident cells
including Kupffer cells, hepatic stellate cells, and liver-sinusoidal endothelial cells are co-opted by
the recruited cells, such as myeloid-derived suppressor cells and tumor-associated macrophages,
to establish an immunosuppressive liver microenvironment suitable for tumor cell colonization
and outgrowth. Current treatments including radical surgery, systemic therapy, and localized
therapy have only achieved good clinical outcomes in a minority of colorectal cancer patients with
liver metastasis, which is further hampered by high recurrence rate. Better understanding of the
mechanisms governing the metastasis-prone liver immune microenvironment should open new
immuno-oncology avenues for liver metastasis intervention.

Keywords: liver immune microenvironment; colorectal cancer liver metastasis; therapeutic perspectives

1. Introduction on Colorectal Cancer (CRC) Liver Metastasis
1.1. Liver Tropism in Cancer Metastasis

Cancer metastasis is the major obstacle to successful management of malignant disease
and accounts for approximately 90% of cancer related mortality [1]. Interestingly, the
formation of metastasis favors a few target organs, including liver, bone marrow, etc. Liver
is one of the most common metastatic sites for various malignancies [2], including colorectal
cancer, pancreatic cancer, gastric cancer, breast cancer, and melanoma, etc. Metastatic tumor
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cells usually invade into the liver parenchyma for seeding and progress. However, the
mechanisms underlying liver tropism in cancer metastasis remain largely unknown.

Numerous studies addressed that the unique structure and characteristic of liver that
it enriches in vessels with high permeability and has unparalleled dual blood connectivity,
and the immunosuppressive microenvironment, make it vulnerable to the seeding of
disseminated tumor cells [3]: The dual vascular supply of the liver by the systemic arterial
and portal venous system enhances the entrapment of circulating tumor cells, explaining
increased incidence of liver metastasis in patients with gastrointestinal cancers; In addition,
the immune microenvironment in liver has evolved to dampen immunity to neoantigens
entering the liver from the gut via portal vein so as to avoid damage to the liver [4].

The liver is comprised of heterogeneous cell populations, including parenchymal
hepatocytes, and nonparenchymal cells like hepatic stellate cells, infiltrated or resident
immune cells, and liver sinusoidal endothelial cells. Accumulating evidence shows that
both the parenchymal and the nonparenchymal cells play a role in the process of metastatic
cascade, including facilitating acquisition of epithelial–mesenchymal transition (EMT)
phenotype, migration to liver, seeding, and colonization as well as the decision to undergo
dormancy versus outgrowth [3].

1.2. Clinical Significance of CRC Liver Metastasis

Among all types of cancer, CRC is the most common cancer that predominantly
metastasizes to the liver [5]. CRC is the fourth most common and third most deadly
malignancy worldwide with a steadily rising incidence rate in developing countries [6].
Approximately 50% of CRC patients have already developed liver metastases at diagnosis,
and 40–50% of patients will develop liver metastasis after primary tumor resection within
3 years [7–9]. Consequently, emergence of liver metastasis has been used as prognostic
marker for CRC. The 5-year survival rate was dramatically decreased to 10–20% compared
to 80–90% of patients with only localized CRC [10].

CRC liver metastases mainly exhibit two distinct histopathological growth patterns
(HGPs) at the interface between the tumor and surrounding liver parenchyma, namely,
desmoplastic type (dHGP) and non-desmoplastic type [11]. dHGP is characterized by
increased angiogenesis, and the new blood vessels appear leaky and are functionally
impaired with fibrin deposits. Non-desmoplastic type includes replacement (r) and the
pushing (p) pattern. In rHGP, the tumor permeates between the liver hepatocytes, with-
out disruption of the normal architecture, while the tumor expands and compresses the
surrounding hepatocytes in pHGP. Interestingly, the distribution of immune cells was
different among three HGPs [12]. Increased cytotoxic CD8+ T cells, CD45+, CD79A+,
Kappa/Lambda, and Self-ligand receptor of the signaling lymphocytic activation molecule
family 7 (SLAMF7)+ cells and a higher CD8+/CD4+ ratio were observed in dHGP com-
pared to other HGPs [13–15]. Additionally, multiple studies showed that desmoplastic
type have improved prognosis compared to non-desmoplastic type [11,13,16–18].

Although the metastatic tumor of a small proportion of colorectal cancer liver metas-
tasis patients can be removed by surgical resection, the 5-year survival rate is still, dis-
appointingly, only around 36% [19], with 75% of patients undergoing rapid relapse after
resection [20]. The survival rate after resection depends on a number of variables: liver
metastasis, tumor size, node-positive primary cancer, preoperative carcinoembryonic anti-
gen level. Some other additional therapies, like anti-epidermal growth factor receptor
(EGFR) or anti-vascular endothelial growth factor (VEGF) (e.g., cetuximab, bevacizumab)
have been used in treating CRC, but the financial burden is very high while the efficacy
is still modest [21,22]. Immunotherapy has revolutionized the treatment of cancer, yet
it is currently not widely applicable to CRC liver metastasis but show great potential in
preclinical studies and clinical translation [23,24].
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1.3. Pathogenesis of CRC Liver Metastases

Although cancer metastasis is the major cause of cancer related mortality, metastasis
remains one of the poorly characterized aspects of cancer biology. Cancer metastasis is a
sequential series of events called “metastatic cascade”, during which locally proliferating
cancer cells acquire the invasive capability and translocate to the circulation, migrate to the
distant organ, colonize, and form metastases eventually [25]. In CRC liver metastasis, muta-
tions including KRAS, TP53, APC, PIK3CA, NRAS, BRAF, and SMAD4, etc., accompanied
by genomic and epigenomic instability initiate CRC development and acquire the invasive
phenotype [26]. Cooperating with immune cells via secretion of cytokines, chemokines,
growth factors, and proteases, CRC cells reshapes the favorable tumor microenvironment
to facilitate CRC liver metastasis [27]. The immune cells actively interact with CRC cells
at every step of the metastatic cascade, including modulating tumor-infiltrating leuko-
cytes to evade immune surveillance, formation of pre-metastatic niche, enhancing CRC
extravasation and intravasation, protection of circulating or arrested CRC cells, promot-
ing colonization, and reactivating dormant metastatic CRC cells in liver, which supports
successful liver metastasis [28,29].

In this review, we summarize the underlying mechanisms of CRC liver metastasis
facilitated by liver immune microenvironment in the process of liver metastatic cascade, es-
pecially the pre-metastatic niche formation and CRC colonization and propagation in liver.
Furthermore, we discuss how the reciprocal interaction between immune cells and CRC
cells influence liver metastasis formation and response to therapy, and discuss the potential
of therapies that target the liver immune microenvironment to treat CRC liver metastasis.

2. Liver Immune Microenvironment for CRC Liver Metastasis

The unique and complex microenvironment of liver with enriched vessel permeability
and dampened immune response to neoantigens makes it a fertile soil for cancer cell
metastasis. In this section, we will review the hepatocyte-derived factors, non-parenchymal
cells, and various immune cells that cooperate in the liver to form a metastasis-prone
microenvironment for CRC cells.

2.1. Hepatocyte-Derived Factors
2.1.1. Inflammatory Cytokines/Chemokines and Growth Factors

A substantial number of studies has demonstrated that tumor derived factors including
cytokines and chemokines drive pre-metastatic niche formation in the distant organ to support
the incoming of metastatic tumor cells. The premetastatic niche protects tumor cells from
immune attack by cytotoxic lymphocytes, which nullifies the efficacy of immunotherapy and
facilitates metastasis [30–32]. In fact, not only tumor cells but also parenchymal hepatocytes
play a role in regulating liver metastasis. Recently, an interesting study showed that during
early pancreatic cancer development, non-malignant cells secreted IL-6 to activate signal
transducer and activator of transcription 3 (STAT3) signaling in hepatocytes. Subsequently,
these hepatocytes produced serum amyloid A1 and A2 (SAA) to induce myeloid cell accu-
mulation and alter the fibrotic microenvironment in the liver to establish the pre-metastatic
niche. Consistently, overexpression of SAA and activation of STAT3 were observed in the liver
of pancreatic cancer and colorectal cancer liver metastasis patients. In addition, circulating
SAA levels were significantly higher in liver metastasis patients, which correlated with poor
survival [33]. Another study also showed that the expression of hepatic cytokines (tumor
necrosis factor α (TNF-α), IL-1 beta, IL-6, IL-10) and other factors noted to be involved in the
colonization of CRC cells including intercellular adhesion molecule 1 (ICAM-1), chemokine
(C-C motif) ligand 2 (CCL-2), CCL-7, matrix metalloproteinase-2 (MMP-2), and MMP-9 were
significantly increased in alcohol-injured liver, and positively correlated with rate and bur-
den of CRC liver metastases [34]. Moreover, hepatocytes release multiple factors, such
as insulin-like growth factor 1 (IGF-1), hepatocyte growth factor-like protein/macrophage
stimulating-protein (HGFL), and hepatocyte-derived heregulin (HRG), which can induce
tumor cell growth, invasion, and metastasis through different mechanisms [35–37]. It was also
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reported that tumor activated hepatocyte and myofibroblast could affect the phenotype of
primary CRC cell by upregulating liver metastatic gene expression (e.g., S100P, cadherin-H1,
osteopontin, transforming growth factor beta (TGF-β), thioredoxin-1). For example, TGF-β in-
duced the expression of extracellular matrix protein by colon cancer cells, which enhances
their aggressiveness and metastatic properties [38] (Figure 1).
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Figure 1. Hepatocyte-derived factors drive pre-metastatic niche formation for cancer metasta-
sis. Schematic diagram showing the effects of hepatocyte-derived factors on establishment of
pre-metastatic niche in CRC liver metastasis. Hepatocytes activated by primary tumor cells upreg-
ulate CXCL1 and SAA1/2 expression to increase myeloid cell accumulation and ECM deposition,
which facilitates cancer liver metastasis. In addition, these hepatocytes also secrete multiple factors
like IGF-1, HGFL, HRG to promote metastatic tumor growth.

2.1.2. Cyclin-Dependent Kinases (CDKs)

CDKs play pivotal roles in the regulation of cell division and transcription in response
to extra- and intracellular cues and deregulation of CDKs is a hallmark of cancer [39].
A recent case report showed that a CDK4/6 inhibitor together with hormonal therapy
successfully managed visceral metastases and provided long-term survival in a patient
with breast cancer liver metastases [40]. CDK8 has been reported to be overexpressed in
colon cancer, and inhibition of CDK8 did not affect colon cancer cell growth but signifi-
cantly suppressed colon cancer liver metastasis. Mechanistically, CDK8 downregulated
the expression of TIMP metallopeptidase inhibitor 3 (TIMP3) via TGFβ/SMAD-driven
expression of a TIMP3-targeting microRNA, miR-181b, which consequently increased
MMP expression. In addition, CDK8 induced Mmp3 transcription in murine or MMP9
in human colon cancer cells through Wnt/β-catenin signaling pathway [41]. MMPs play
pivotal roles in various biological processes, including matrix degradation, angiogenesis,
cell adhesion, growth factor receptor signaling, apoptosis, ECM remodeling, and immune
regulation, which facilitated cancer progression and metastasis [42].

Our previous study also reported that cell cycle-related kinase (CCRK, also called
CDK20) activated nuclear factor-kappa B (NF-κB) signaling in hepatocytes (parenchymal
cells) to increase the polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC)-
trafficking chemokine C-X-C motif ligand 1 (CXCL1) expression in the liver. Increased
CXCL1 recruited PMN-MDSC and reduced natural killer T (NKT) cells in liver to form
the pre-metastatic niche for melanoma and colorectal cancer liver metastasis in CCRK
transgenic mice. Accordingly, CRC liver metastasis patients exhibited hyperactivation of
hepatic CCRK/NF-κB/CXCL1 signaling, which was associated with accumulation of PMN-
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MDSCs and a paucity of NKT cells compared to healthy liver transplantation donors [43]
(Figure 1). This study highlighted the parenchymal-immune cell crosstalk in shaping the
liver immune microenvironment for CRC liver metastasis.

Collectively, these studies demonstrated that in addition to tumor derived factors,
hepatocytes also participated in the formation of pre-metastatic niche for cancer metastasis.

2.2. Liver Non-Parenchymal Cells

In addition to hepatocyte-derived factors, increasing evidence suggests that non-
parenchymal cells, such as liver resident fibroblast hepatic stellate cells (HSCs), liver
resident macrophage Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), and
liver infiltrating immune cells around the hepatocytes also have critical roles in multiple
stages during the development of CRC liver metastases either by direct or indirect cell-to-
cell interaction.

2.2.1. Hepatic Stellate Cell (HSC) and Cancer Associated Fibroblasts (CAF)

HSCs, also known as perisinusoidal cells, are resident pericytes localized in the perisi-
nusoidal space of Disse, accounting for ∼10% of all resident cells in liver [44]. HSCs have
various functions in normal and injured liver, and play a pivotal role in premetastatic niche.
Our previous study showed that activated HSCs induced monocyte-intrinsic p38 MAPK
pathway to trigger enhancer reprogramming for M-MDSC differentiation and immunosup-
pression, indicating the non-parenchymal-immune cell crosstalk in HCC development. In
addition, the accumulation of M-MDSC in fibrotic liver was associated with reduced cyto-
toxic T cells and HCC progression [45]. Besides, a study also showed that pancreatic ductal
adenocarcinoma (PDAC)-derived exosomes containing macrophage migration inhibitory
factor (MIF) were taken up by KCs and subsequently activated resident HSC via TGF-β,
leading to upregulation of fibronectin (Figure 2, in space of disse). This fibrotic environment
further recruited tumor associated macrophages in liver premetastatic niche and facilitated
the adhesion of disseminated tumor cells [31]. In addition, activated HSC secreted periostin
to enhance CRC and endothelial cell survival in liver via the αvβ3 Integrin-Akt/PKB path-
way [46]. Co-injection of HSC with CRC cells significantly promoted liver metastasis by
enhancing angiogenesis [47].

Meanwhile, as a type of fibroblast, activated HSCs also preserve the metastatic-prone
features of common cancer associated fibroblasts (CAF). CAF is one of the most abun-
dant stromal cells in the tumor microenvironment, which can promote tumor growth,
angiogenesis, and metastasis. In CRC, the distribution of CAFs in primary CRC has been
demonstrated to be associated with malignant potential and prognosis of CRC patients [48].
Fibroblast activation protein-α (FAP) derived from CAFs was reported to be related to liver
metastasis and poor clinical outcome [49]. Mechanistically, CAFs facilitated liver metastasis
by supporting CRC cells’ adhesion and promoting CRC cell stemness and drug resistance.
CAFs secreted hepatocyte growth factor (HGF) to induce CD44 expression on CRC cells
via HGF/MET/AKT signaling, which promoted adhesion and migration of CRC cells [50].
Moreover, TGFβ1 induced adhesion of CRC cells to CAFs, and co-migration of CAFs and
CRC cells remarkably enhanced liver metastasis [51]. CAFs can also directly transferred
exosomes (containing miR-92a-3p) to CRC cells, which subsequently activated Wnt/β-
catenin pathway and inhibited mitochondrial apoptosis, contributing to cell stemness, EMT,
metastasis, and 5-FU/L-OHP resistance in CRC [52]. Reciprocally, CRC cells also induced
and modified CAFs to facilitate metastasis. CRC cells activated HSCs and induced their
differentiation into CAFs [53]. Similarly, elevated carcinoembryonic antigen (CEA) level
by CRC cells activated and transformed fibroblast to CAF phenotype, which remodeled
the extracellular matrix and promoted CRC cells adhesion and liver metastasis [54]. In
addition, it was reported that the crosstalk between SMAD4 deficient CRC cells (instead of
SMAD4 proficient CRC cells) and CAFs induced bone morphogenetic protein 2 (BMP2)
expression in CAFs and consequently promoted CRC invasiveness and liver metastasis in
preclinical model [55]. Dysregulation of BMP signaling in CAF predicted and modified
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CRC progression and prognosis. Targeting CAF by regulation of BMP signaling reduced
CRC liver metastasis [56].
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Figure 2. Immunoregulation of disseminated tumor cells by metastatic-prone liver immune microenvironment. The
successful colonization of colorectal cancer cells in liver depends on the interaction between tumor cells and the liver
immune microenvironment. The primary tumor cells secrete multiple factors to recruit MDSCs and macrophages in liver,
which suppresses NKT cells, facilitates the arrest and invasion of the tumor cells and promotes angiogenesis. LSECs support
the arrest, retention, and transmigration of tumor cells by the expression of adhesion molecules, and secrete fibronectin (FN)
and MIF to induce EMT phenotype in CRC cells. Kupffer cells can both inhibit tumor cell growth by secretion of TNF-α and
support tumor cell metastasis via suppression of CD8+T cells, activation of HSC, and promoting tumor cell invasion. The
activated HSCs upregulate fibronectin, recruit macrophage to promote adhesion of disseminating tumor cells, and secrete
periostin to enhance angiogenesis.

2.2.2. Liver Sinusoidal Endothelial Cell (LSEC)

LSECs are the major resident non-parenchymal cells in liver, which line the low shear,
sinusoidal capillary channels of the liver. LSECs have vital immunological functions like
antigen presentation, leukocyte recruitment, and physiological functions like filtration
and endocytosis [57]. When the disseminating tumor cells arrive at the liver through the
circulation, they are arrested and trapped in the sinusoidal capillaries in liver. Here, some
tumor cells are killed by the immunosurveillance of tissue resident KCs and NK cells [58]
and the remaining surviving tumor cells extravasate into the perisinusoidal space (space
of Disse). In this process, LSECs upregulate the expression of cell adhesion molecules,
such as vascular cell adhesion molecule 1 (VCAM-1), intercellular cell adhesion molecule 1
(ICAM-1), and E-selectin to support the arrest, retention, and transmigration of the tumor
cells. Multiple preclinical studies showed that inhibition of adhesion molecules by targeting
integrin β2 (ligand of ICAM-1) [59], blockade of adhesion molecules [60], and disruption
of inflammatory TNFα/TNF receptor 2 (TNFR2) signaling [61,62], Notch signaling [63]
reduced liver metastasis.

In addition, the reciprocal crosstalk between tumor cells and LSECs also enhance
survival and metastatic potential of tumor cells and promote angiogenesis. Ligands
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such as CD44, sLewA, and sLewX expressed on tumor cells interacted with E-selectin on
inflamed LSECs, which promoted CRC liver metastasis [64,65] and further increased adhe-
sion molecule expression on LSECs by upregulating high-mobility group box 1 (HMBG1)
release [66]. Simultaneously, LSECs secreted fibronectin and macrophage migration in-
hibitory factor (MIF) that could induce EMT phenotype in CRC cells resulting in increased
invasion and migration of CRC cells into the liver parenchyma [67] (Figure 2, in sinu-
soid/space of disse).

2.2.3. Kupffer Cell

Kupffer cells (KC) are resident macrophages in the liver, which play a dual role in
the tumor microenvironment of liver metastasis. On one hand, KCs exert tumoricidal
activity by phagocytosis, releasing oxygen metabolites, cytotoxic cytokines, and secreting
proteases [68–71]. During the initial stage of CRC liver metastasis, KCs secrete TNF-α
in liver, contributing to metastasis control [61]. On the other hand, KCs can induce cell
adhesion molecule expression on LSECs, which helps the adhesion of disseminated tumor
cell arrest in liver, and produces factors (e.g., IL-6, MMPs, VEGF, etc.) that promote tumor
cell invasion, proliferation, and angiogenesis. In the tolerant state, KCs can also release
inhibitory cytokine IL-10, induce regulatory T cells (Tregs), and express T cell inhibitory
molecule programmed cell death 1 ligand (PD-L1), which ameliorates anti-tumor immu-
nity [72] (Figure 2, in sinusoid/space of disse). Collectively, these studies highlighted a
complex non-parenchymal/immune cell-immune cell crosstalk in liver microenvironment.

2.3. Liver-Infiltrating Immune Cells
2.3.1. Neutrophil and Myeloid-Derived Suppressor Cell (MDSC)

Neutrophils are innate immune cells and show functional plasticity driven by multi-
ple factors in cancer, depending on different microenvironments [73,74]. Various factors
have been demonstrated to support the recruitment and accumulation of neutrophils
and PMN-MDSC in liver metastases. It was shown that tumor derived tissue inhibitor
of metalloproteinases (TIMP)-1 level was increased in CRC patients and correlated with
liver metastasis [75]. Mechanistically, TIMP1 upregulated stromal-derived factor (SDF)
1 to recruit neutrophils to the liver, which facilitated CRC liver metastasis. Inhibition of
SDF-1/CXCR4 axis or depletion of neutrophils significantly reduced liver metastasis in
mice [75]. Additionally, lysyl oxidase-like 4 (LOXL4) protein was demonstrated to be
upregulated in neutrophils in CRC liver metastases with replacement HGP compared to
desmoplastic type of liver metastases and the adjacent normal liver, which was associated
with resistance to neoadjuvant anti-angiogenic therapy [76]. The expression of LOXL4
was significantly higher in circulating neutrophils of these patients compared with healthy
control, and can be induced by stimulation with lipopolysaccharide and TNF-α. These
studies suggested the multifunctional role of neutrophils in liver metastases. Another
study showed that CRC cells overexpressed VEGF-A to induce CXCL1 secretion from
macrophages, which subsequently recruited CXCR2 positive MDSC in liver to form the
metastatic niche [77]. Similarly, it was showed that secretion of OPN, MMP9, S100A8,
S100A9, SAA3, and VEGFA were increased in a CT26FL3 liver metastasis mouse model
to enhance bone marrow derived-cell recruitment in liver for pre-metastatic niche for-
mation [78]. Our previous study also found that CCRK-CXCL1 mediated PMN-MDSC
recruitment in liver and reduced NKT cell infiltration were significantly correlated with
melanoma and CRC liver metastasis. Inhibition of PMN-MDSC restored NKT cell infiltra-
tion and ameliorated liver metastasis [43]. In a mouse colon cancer and lung cancer liver
metastasis model, accumulation of MDSC was associated with liver metastasis dependent
on TNFR2 signaling. Disruption of TNFR2 signaling significantly reduced MDSC accu-
mulation and liver metastasis [62]. Clinically, it was also demonstrated that circulating
MDSC level was positively correlated with metastatic tumor burden in various types of
solid tumors [79].
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In addition, neutrophils can also promote liver metastasis in an immune-independent
manner. Neutrophils arrested on LSEC in liver sinusoids increased tumor cell adhesion
by interaction of CD11b/CD18 (Mac-1) on neutrophils and ICAM on tumor cells, acting
as a bridge between disseminating tumor cells and liver parenchyma [80] (Figure 2, in
sinusoid/space of disse/parenchyma).

2.3.2. Monocyte, Tumor Associated Macrophage (TAM) or Metastasis-Associated
Macrophage (MAM)

Macrophages are plastic and can polarize to tumoricidal or pro-tumorigenic macrophages
under different microenvironments. In liver metastases, monocytes and TAMs or MAMs
were recruited in liver by tumor cells via CCL2 secretion. And adoptive transfer of in-
flammatory monocytes preferentially migrated to the metastatic sites and differentiated
into MAMs [81]. Recruitment of macrophages in the liver facilitated liver metastasis by
inducing liver fibrosis and immunosuppression [82,83]. CCR2 antagonists or knockout of
CCL2 in tumor cells significantly reduced metastatic tumor burden [81,84,85]. In a mouse
CRC liver metastasis model, loss of Ndrg2 (N-myc downstream-regulated gene 2) gene
in macrophage shifted TAM polarization to M1 phenotype and thus alleviated CRC liver
metastasis [86] (Figure 2, in sinusoid/space of disse/parenchyma). However, it is difficult
to differentiate the effect of inhibiting tumor cell seeding or growth in most studies using
animal models, when reduced liver metastasis was observed.

2.3.3. NK Cell

NK cell accounts for 50% of the liver lymphocyte population and exhibits anti-tumor
function mediated by the release of cytotoxic granules, TNF-related apoptosis-inducing
ligand (TRAIL) and Fas ligand (FasL) [87]. As part of innate immunity, NK cells can exert
killer function towards transformed and stressed cells. Besides, NK cells can also modulate
innate and adaptive immunity by secretion of chemokine and cytokine [88,89]. Substantial
evidence shows that NK cell plays a pivotal role in controlling cancer metastasis [90]. In a
preclinical mouse CRC liver metastasis model, NK cells were demonstrated to restrain CRC
liver metastasis. However, the function of NK cells was impaired in hepatic metastases
compared to NK cells in healthy livers. More interestingly, the differentiation of NK cells
was instructed by signals from the liver microenvironment bearing metastatic tumors,
indicating the complex crosstalk between NK cells and CRC liver metastases [91]. Further
mechanistic study revealed that CRC liver metastases produced lactate to modulate the
pH of the tumor microenvironment, which induced mitochondrial stress and apoptosis of
liver-resident NK cells migrating towards the tumor, leading to metastases outgrowth [92].
In addition, nucleotide-binding oligomerization domain family pyrin domain contain-
ing 3 (Nlrp3) inflammasome-IL-18 pathway could also regulate the maturation, surface
expression of the death ligand FasL, and tumoricidal activity of hepatic NK cells. Thus,
Nlrp3 deficiency significantly impaired effective NK-cell-mediated tumor attack required
to suppress CRC liver metastasis [93]. Moreover, TRAIL-expressing NK cells were proved
to be important in suppressing liver metastasis. Neutralization of TRAIL using monoclonal
antibody abolished NK cell-mediated metastasis control [94]. Clinically, it was shown
that NK cell infiltration combined with CD8+ T cells has enhanced the prognosis of CRC
patients, indicating a potential supporting role for NK cells in the anti-CRC effects of CD8+
T cells [95].

2.3.4. NKT Cell

NKT cells are innate-like lymphocytes that share properties of both NK cells and T
cells. Similar to NK cells, NKT cells can exert both anti-tumor killer function and modulate
immune responses by secretion of cytokines [96]. It has been reported that CXCL16 could
promote NKT cell liver infiltration to potently suppress CRC liver metastasis in vivo [97].
Another study further pointed out that gut microbiome used bile acids as a signal to
regulate LSEC-derived CXCL16 which recruited NKT cells in liver [98]. Consistently, our
recent study demonstrated that CCRK-CXCL1-MDSC axis activation promoted CRC liver
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metastasis through suppression of anti-tumor hepatic NKT cells, while depletion of MDSC
could restore hepatic NKT cells and reduce CRC liver metastasis [43]. In comparison, some
controversial studies also pointed out that NKT cells exacerbated liver metastasis arising
from intraocular melanomas by inhibiting the anti-tumor activity of liver NK cells [99].
Therefore, further studies were needed to investigate the different subsets and functions of
NKT cells in the context of liver metastasis derived from different cancer types.

2.3.5. Regulatory T Cells (Tregs) and Other Cells

CD4+FoxP3+ Tregs are immunosuppressive cells that suppressed effector T cell func-
tions. It has been reported that increased accumulation of Tregs dependent on TNFR2
signaling correlated with colon and lung cancer liver metastasis. Genetically deficient
for TNFR2 or TNFR2 antisense oligodeoxynucleotides significantly reduced Tregs and
MDSC accumulation and decreased liver metastasis [62]. In a retrospective study, high Treg
infiltration predicted poor clinical outcome of CRC liver metastasis patients, suggesting
that infiltrating Treg cells support the growth of established CRC liver metastases [100].

In addition, bone marrow-derived VEGFR1-positive progenitors were also recruited
to the pre-metastatic niche, and then formed clusters and promoted the adherence and
growth of subsequently disseminating tumor cells [101]. These immature myeloid cells
also secreted MMP9 to promote tumor cell invasion to the parenchyma [102].

2.4. Role of Extracellular Matrix (ECM)

ECM is a structural scaffold comprised by dynamic macromolecules and their regula-
tory factors [103], which can support outgrowth and treatment resistance of the arrived
tumor cells. Proteomic analysis of three sequential CRC liver metastases in one patient
found different ECM phenotypes for recurrent metachronous metastases, associated with
different grades of malignancy [104]. Different components of ECM have been studied.
In CRC liver metastasis patients, fibroblasts in liver increased ECM stiffening, which en-
hanced angiogenesis and promoted drug resistance of anti-angiogenic therapy. Reduction
of stiffness largely increased the efficacy of anti-angiogenic therapy [105]. Similarly, pre-
operative treatment with anti-VEGF therapy markedly enhanced hyaluronic acid (HA,
component of ECM) deposition within the tumors. Preclinical models demonstrated that
hypoxia drove the remodeling of the ECM and thus increased tumor stiffness and reduced
drug perfusion in liver metastases. Depletion of HA could reduce the physical barriers to
systemic treatments in CRC liver metastases [106].

Neutrophil extracellular traps (NET), also a component of ECM, are comprised of
extracellular fibres, primarily webs of DNA, with associated proteolytic enzymes secreted
by neutrophils in response to inflammatory cues that trap and kill invading pathogens.
Emerging evidence showed that NET can sequester tumor cells arriving at liver, increase
their retention, promote tumor cell proliferation and migration, and thus facilitate metasta-
sis [107,108]. It was shown that NET-like structures around metastatic breast cancer cells
were observed in both the lungs of mice and clinical breast cancer specimens. Inhibition of
NET formation or digestion of NET markedly reduced metastasis [109].

2.5. Immune Checkpoint Molecules

Immune checkpoint molecules such as programmed cell death protein 1 (PD-1),
cytotoxic T lymphocyte-associated antigen-4 (CTLA4), and T cell immunoglobulin and
mucin-domain containing-3 (Tim-3), are negative regulators of the immune system to
prevent self-attack. However, this mechanism is utilized by cancers to escape from anti-
tumor immunity. Previous study showed that the expression of PD-L1 was increased in
liver metastases compared to primary CRC, indicating different intrinsic microenvironment
between primary and metastatic CRC [110], which may help CRC liver metastases escape
from immune surveillance. In addition, it was reported that chemotherapy can modulate
PD-L1 and TIM-3 expression in CRC liver metastases, suggesting the potential strategy of
combined chemo-immunotherapies [111]. Preclinical study showed that dual CTLA4 and
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PD-1 blockade could significantly suppress colon cancer growth and liver metastasis by
enhancing T cell responses and M1 macrophage polarization [112].

3. Therapeutics for CRC Liver Metastasis
3.1. Current Therapies for CRC Liver Metastasis

Over the past few decades, advancements have been made in understanding the
potential mechanisms and developing therapies for cancer liver metastasis. Although it
has been greatly improved, the overall survival of cancer liver metastasis patients remains
low. It is difficult to cure the cancers once they metastasize to other organs. The present
therapeutic strategies in use for eradicating metastatic tumors are fundamentally the
same as treatment targeting primary tumors. For CRC liver metastasis patients, current
therapies for liver metastasis are surgical resection, systemic and localized therapies, and
combination regimen is also frequently used.

3.1.1. Surgical Resection

Based on multiple retrospective and comparative studies, surgical resection remains
the gold standard in treating CRC liver metastasis patients and provides long-term sur-
vival [19,113–115]. There are two strategies of surgical resection, namely, simultaneous
resection and staged resection. But no significant statistical difference on survival was
observed between two types of resection [116]. Generally, patients with good liver function
and general condition and without metastasis in other organs except liver, are suitable for
surgical resection. In particular cases, when CRC patients developed both liver metastases
and small lung metastases, liver metastases can still be resected with lung metastases
resected or ablated synchronously/metachronously. In a retrospective study, 99 (16%) of
612 patients survived for ten years after hepatic resection, while 34% of the 5-year survivors
succumb to cancer related death [117]. Although surgical resection provides better survival,
only a minority of patients are resectable when diagnosed [118]. In addition, more than
50% of patients will still develop local and distant recurrence after resection [117,119].

3.1.2. Systemic Therapy

For patients with extensive colorectal cancer metastases to both liver and other organs,
systemic chemotherapy is a more appropriate option. The combination of oxaliplatin or
irinotecan plus leucovorin and 5-fluorouracil is a frequently used chemotherapy regimen
that could significantly improve disease outcome in CRC liver metastasis patients [120–122].
Drugs that target epithelial and vascular endothelial growth factor pathways, such as
cetuximab and bevacizumab, are also used to treat these patients [21,22].

Moreover, emerging strategies have been designed to increase the resectability of
CRC liver metastasis patients. In these patients with initially unresectable liver metastases,
treatment of neoadjuvant chemotherapy may not cure the disease but downstage the tumor,
which provides an opportunity for resection. Numerous studies in this field endeavor to in-
crease the eligibility for resection, refining the indications and contraindications for surgery,
and improving patient survival [123]. The National Comprehensive Cancer Network
(NCCN) guidelines recommend FOLFOX (folinic acid plus fluorouracil and oxaliplatin),
FOLFIRI (folinic acid and short-term infusional fluorouracil plus irinotecan), or XELOX
(capecitabine and oxaliplatin; also called CAPOX) with or without bevacizumab; FOLFIRI
with or without cetuximab or panitumumab; or FOLFOX with or without panitumumab
or cetuximab (if RAS wild type) (https://www.nccn.org/professionals/physician_gls/
(accessed on 24 March 2021).). Data showed that 12.5% of unresectable CRC liver metasta-
sis patients acquired the opportunity to liver resection by chemotherapy and had longer
survival with lower operative risk [124,125].

3.1.3. Localized Therapy

Localized therapy including radiofrequency ablation (RFA), hepatic artery catheter
chemotherapy and chemoembolization and portal vein embolization (PVE), radiation

https://www.nccn.org/professionals/physician_gls/
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therapy, are used in patients with unresectable liver metastases without extrahepatic dis-
eases [126]. Among all the treatment modalities, RFA is more frequently used, for its
minimal invasiveness with lower mortality rate, fewer complications, reduced hospital
days, and costs compared to other therapies. RFA may not cure the disease for most CRC
liver metastasis patients, but relieve or control the disease and improve the quality of
life of unresectable patients [126]. Hepatic artery catheter chemotherapy and chemoem-
bolization and portal vein embolization can also be considered as alternative treatments
to systemic chemotherapy, which can increase drug delivery in the liver but reduce sys-
temic toxicity and showed improved response rate compared to conventional systemic
chemotherapy [127]. Selective internal radiation therapy (SIRT) delivering 90Yttrium
microspheres to the hepatic artery is another alternative choice for CRC liver metastasis
patients. This treatment achieved a high response rate and encouraging survival in CRC
liver metastasis patients [128].

3.2. Therapeutic Perspectives
3.2.1. Targeted Therapy Development, e.g., CDKs

Although liver metastasis accounts for most cancer related mortality in CRC patients,
the underlying mechanisms driving this disease progression remain largely unknown,
leading to the lack of effective therapy. A recent case report showed that CDK4/6 inhibitors
exhibited encouraging clinical outcome in treating metastatic breast cancer and colon can-
cer [40]. Concordantly, our recent studies demonstrated that as the latest family member
of CDK, CCRK is the novel signaling hub exploitable in liver disease [129]. Upregula-
tion of CCRK was observed in multiple cancers, such as HCC and colon cancer, which
correlated with tumor staging and poor survival and prognosis [130]. In hepatocellular
carcinoma (HCC), CCRK mediates tumor development in different etiologies, including
hepatitis B virus infection [131], non-alcoholic fatty liver disease [132], via orchestrating
a self-reinforcing circuitry comprising of AR, GSK3β, β-catenin, AKT, EZH2, and NF-κB
signaling, and also facilitate tumor immune evasion [133–135]. Knockout Ccrk in mouse
hepatoma significantly enhances the efficacy of immune checkpoint inhibitor by disrupting
immunosuppression and unleashing anti-tumor immune response [135,136]. In addition,
the ectopic expression of CCRK induced by chronic inflammation in liver shapes the im-
mune microenvironment by accumulating immunosuppressive PMN-MDSCs and reduced
anti-tumor NKT cells to facilitate CRC liver metastasis [43]. Collectively, CCRK plays a
pivotal role in regulating liver microenvironment. Thus, modulation of CCRK may be
potential therapy for CRC liver metastasis. Given the ability to design inhibitors of a
number of the CDK enzyme family (most notably CDK4/6 as highlighted above), then
development of a selective inhibitor to target CCRK would be both a feasible and attractive
drug development opportunity.

3.2.2. Immunotherapy Development

Multiple treatment modalities have been developed to treat CRC liver metastasis;
however, the efficacy remains unsatisfying. Most patients relapse after these treatments
and succumb to the disease; therefore, more effective therapeutic strategies are desperately
needed. In addition, development of effective adjuvant therapy after curative treatment of
primary CRC tumor to prevent liver metastasis may be of great clinical significance based
on the high occurrence of CRC liver metastasis.

Immunotherapy, including immune checkpoint inhibitors (ICIs), cancer vaccines, and
chimeric antigen receptor (CAR) T cell therapy, has achieved promising results in many
cancers and revolutionized the treatment of cancer by enhancing anti-tumor immune
responses. A recent study showed that anti-PD-L1 monotherapy in patients with metastatic
or unresectable CRC with mismatch repair deficiency (dMMR)/microsatellite instability-
high (MSI-H) displayed remarkable anti-tumor activity with manageable toxicity [23].
Additionally, a case report showed that patients who progress on anti-programmed cell
death protein 1 (PD-1) therapy still respond to combinatory immunotherapies (nivolumab
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plus ipilimumab) [137]. Another phase I clinical trial escalating dosage of CAR-T therapy
in metastatic CRC patients also observed potential treatment response in some patients
without severe adverse events [24]; however, the efficacy remains limited owing to the
inhibitory impact of the tumor immune microenvironment, and many patients still cannot
benefit from these treatment [138,139].

As discussed above, the immunosuppressive microenvironment in liver contributes
to the generation of pre- and pro-metastatic niches to facilitate cancer liver metastasis
development, immune evasion, and affect treatment response. A preclinical study showed
that CAR T-cell therapy in conjunction with reduction of Tregs and MDSCs hindered
CRC growth [140,141], indicating that combination of immunotherapy and targeting the
immunosuppressive immune microenvironment may be potentially effective in treating
CRC liver metastasis or as adjuvant therapy to prevent liver metastasis.

3.3. Current Clinical Trials

Several therapeutic strategies are under investigation in clinical trials, including
chemotherapy, targeted therapy, radiotherapy, ablation, surgery, immunotherapy, and
more frequently, the combination of a few therapies (Figure 3). Current ongoing clinical
trials for CRC liver metastasis are listed in Table 1. Chemotherapy (either systematically
or locally administered) combined with other therapies remains the major strategy in
clinical trials. Many studies reported that neoadjuvant chemotherapy could convert unre-
sectable liver metastases to resectable tumors, which improved clinical outcomes [142,143].
Interestingly, immunotherapy such as CAR-T cell or modified T cell therapy, immune
checkpoint inhibitor (ICI), TLR agonist, and Granulocyte-macrophage colony-stimulating
factor (GM-CSF) are also being investigated in several clinical trials (Table 1). In addition,
other therapies, such as ultrasound mediated local therapy, Vitamin D3, and ATP128 (a
self-adjuvanted chimeric recombinant protein vaccine) are under investigation.
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Table 1. Ongoing clinical trials evaluating the use of different modalities in metastatic colorectal cancer.

Trial ID Phase Study Population Intervention Recruitment Status

Targeted therapy and chemotherapy (Locally or systemically)

NCT04509635 III
Colorectal Cancer Liver Metastasis

with Progression After First-line
Treatment of Cetuximab

Cetuximab±Chemotherapy Not yet recruiting

NCT03493061 II Unresectable Colorectal Cancer
Liver Metastases

Irinotecan; Oxaliplatin;
Floxuridine Recruiting

NCT04189055 II
Neo Wild-type RAS/RAF Metastatic

Colorectal Cancer with Liver
Metastases

Cetuximab; Irinotecan Recruiting

NCT04276090 NA
Unresectable Colorectal
Metastases/Intrahepatic

Cholangiocarcinoma

Codman Catheter;
Synchromed Pump Hepatic

Artery Chemotherapy
Recruiting

NCT03697044 NA Colorectal Cancer Liver Metastases
Irinotecan Drug-Eluting-Bead

Trans Arterial
ChemoEmbolisation

Not yet recruiting

NCT03125161/
NCT02102789 III Unresectable Colorectal Cancer

Liver Metastases
HAI; Chemotherapy ± target

therapy or mFOLFOX6 Recruiting

NCT04003792 II Unresectable Colorectal Cancer
Liver Metastases

oxaliplatin; FOLFIRI Protocol;
Bevacizumab Recruiting

NCT00695201 I Unresectable Colorectal Cancer
Liver Metastases

Floxuridine, Oxaliplatin,
CPT-11 Active, not recruiting

NCT04194034 I/II Unresectable Colorectal Cancer
Liver Metastases TG6002; Flucytosine (5-FC) Recruiting

NCT04595266 II Colorectal Cancer Liver Metastases
FOLFOX regimen; Anti-EGFR

or Bevacizumab;
LIVERPEARLS-Irinotecan

Not yet recruiting

NCT03164655 II Unresectable Colorectal Cancer
Liver Metastases

Oxaliplatin, Cetuximab,
Bevacizumab, Panitumumab,

Irinotecan, Leucovorin,
5-Fluorouracil

Recruiting

NCT03031444 II/III Resectable Colorectal Liver
Metastasis

Cetuximab plus
FOLFIRI/FOLFOX;

FOLFIRI/FOLFOX/CapeOX
Recruiting

NCT04525326 III Unresectable Colorectal Cancer
Liver Metastases

Cetuximab; Bevacizumab;
mFOLFOX/FOLFIRI

(Standard Chemotherapy)
Not yet recruiting

NCT03366155 II Colorectal Cancer Liver Metastases
Panitumumab; FUDR-Dex;

Oxaliplatin; 5FU; Irinotecan;
cetuximab

NCT01312857 II Resected Colorectal Cancer Liver
Metastasis with Wild Type RAS panitumumab Active, not recruiting

NCT03732235 NA Refractory Colorectal Cancer Liver
Metastases

TACE+ systemic Bevacizumab;
FOLFIRI+Bevacizumab; TACE Recruiting

NCT04126655 I/II Colorectal Cancer Liver Metastases Arfolitixorin + 5-FU;
Calciumfolinate + 5-FU Recruiting

NCT03477019 I/II Liver Metastasis from Breast- and
Colorectal Cancer SonoVue; Focused Ultrasound Recruiting

NCT03458975 II Colorectal Cancer Liver Metastases Contrast enhanced ultrasound;
Sonoporation Recruiting

NCT04021277 I Colorectal Cancer Liver Metastases PS101-mediated Acoustic
Cluster Therapy Recruiting

NCT03493048 II RAS wildtype Unresectable
Colorectal Cancer Liver Metastases

Irinotecan; Cetuximab;
5-fluorouracil; Oxaliplatin;

Leucovorin
Recruiting

NCT03801915 II Colorectal Cancer Liver Metastases MVT-5873 Recruiting

NCT02172651 Early
Phase 1

Stage I-III Colon Cancer or
Resectable Colon Cancer Liver

Metastases
Vitamin D3 Recruiting
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Table 1. Cont.

Trial ID Phase Study Population Intervention Recruitment Status

Ablation, radiotherapy, surgery

NCT03088150 NAII Colorectal Cancer Liver Metastases Thermal ablation; Surgical
resection Recruiting

NCT03963726/
NCT03654131/
NCT04081168

NA/II Colorectal Cancer Liver Metastases stereotactic radiotherapy;
microwave ablation Recruiting

NCT02185443 II Unresectable Colorectal Cancer
Liver Metastases SBRT Recruiting

NCT04491929 NA Refractory Colorectal Cancer Liver
Metastases

Selective Internal Radiation
Therapy With 90Y Resin Recruiting

NCT03895723 NA Colorectal Cancer Liver Metastases laparoscopic and robotic liver
resection or open surgery Recruiting

NCT02954913 NA Colorectal Cancer Liver Metastases Simultaneous Resection Recruiting

NCT03803436 II Unresectable Colorectal Cancer
Liver Metastases

liver transplantation vs triplet
chemotherapy+antiEGFR Recruiting

NCT02864485/
NCT01479608/
NCT02597348

NA; II; III Unresectable Colorectal Cancer
Liver Metastases liver transplantation Recruiting

NCT02215889 I/II Colorectal Cancer Liver Metastases Partial Liver Segment 2/3
Transplantation Recruiting

NCT03494946 NA Colorectal Cancer Liver Metastases Liver transplantation vs
Chemotherapy Recruiting

NCT04161092 NA non-resectable/ non-abatable
colorectal liver metastases

Liver transplantation Ltx or
best alternative care Not yet recruiting

NCT03488953 NA Isolated, Irresectable Colorectal
Liver Metastases

Living donor liver
transplantation with

two-staged hepatectomy
Recruiting

NCT03577665 NA Colorectal Cancer Liver Metastases Curative Proton Beam Therapy Recruiting

NCT04108481 I/II Colorectal Cancer Liver Metastases Durvalumab; Yttrium-90
RadioEmbolization Recruiting

Immunotherapy

NCT02754856 I Resectable Colorectal Cancer Liver
Metastases Durvalumab; Tremelimumab Recruiting

NCT03370198 I Unresectable Liver Metastases from
Colorectal Cancer

Hepatic Transarterial
Administrations of

NKR-2(modified T cells)
Active, not recruiting

NCT02850536 I Liver Metastases or Pancreas Cancer anti-CEA CAR-T cells Active, not recruiting

NCT04513431 Early
Phase 1

Stage III Colorectal Cancer
Colorectal Cancer Liver Metastasis Anti-CEA-CAR T Not yet recruiting

Combination therapy

NCT04062721 Ib/II Unresectable Colorectal Liver
Metastases

radiofrequency ablation (RFA)
plus in situ TLR agonist and

GM-CSF
Not yet recruiting

NCT04202978 I/II Colorectal Cancer Liver Metastases Camrelizumab Combined
With Apatinib XELOX RFA Recruiting

NCT03223779 I/II Colorectal Cancer Liver Metastases TAS-102; Photon SBRT Recruiting

NCT02738606 II
Resectable Colorectal Cancer Liver

Metastases and unresectable
Colorectal Cancer Lung Metastases

liver surgery and
chemotherapy Recruiting

NCT03127072 IV Unresectable Colorectal Cancer
Liver Metastases

Radiofrequency Ablation
(RFA); chemotherapy ± target

therapy
Recruiting



Cancers 2021, 13, 2418 15 of 22

Table 1. Cont.

Trial ID Phase Study Population Intervention Recruitment Status

Combination therapy

NCT04562727 NA/II Colorectal Cancer Liver Metastases Microwave Ablation
Combined with Chemotherapy Not yet recruiting

NCT03135652 II
Colorectal Cancer Liver Metastases

Receiving Surgery or
Radiofrequency Ablation

Adjuvant SBRT;
Chemotherapy Recruiting

NCT03101475 II Colorectal Cancer Liver Metastases

Durvalumab (MEDI4736);
Tremelimumab; Sterotactic

body radiation therapy (SBRT);
Radiofrequency ablation (RFA)

Recruiting

NCT04508140 II Colorectal or Gastric/GEJ Cancer
with Liver Metastasis BO-112 with Pembrolizumab Recruiting

NCT03507699 I Colorectal Cancer Liver Metastases

Liver radiation therapy;
Nivolumab Injection;
Ipilimumab Injection;

CMP-001

Recruiting

NCT04166383 II Colorectal Cancer Liver Metastases VB-111; Nivolumab Recruiting

NCT03785210 II

Refractory Primary Hepatocellular
Carcinoma or Liver Dominant

Metastatic Cancer from Colorectal or
Pancreatic Cancers

nivolumab; tadalafil; oral
vancomycin Recruiting

NCT04430985 II Colorectal Cancer Liver Metastases
Oxaliplatin; 5-Fluorouracil;

Leucovorin; Nivolumab;
Ipilimumab

Recruiting

NCT03698461 II Colorectal Cancer Liver Metastases
Atezolizumab; Bevacizumab;
Oxaliplatin; Levoleucovorin;

5-FU
Recruiting

NCT03310008 I Colorectal Cancer with Potentially
Resectable Liver Metastases

NKR-2(modified T cells) with
FOLFOX Active, not recruiting

NCT04046445 I/II Stage IV Colorectal Cancer ATP128; BI 754091 Recruiting

NA, not applicable.

4. Conclusions

In this review, we emphasized on the critical role of the premetastatic niche in the
liver microenvironment in facilitating cancer liver metastasis. The disseminating tumor
cells depend on interaction with the liver immune microenvironment for arrest, immune
evasion, colonization, migration, and proliferation. Thus, a better understanding of the
molecular mechanisms orchestrating the formation of a hospitable hepatic metastatic niche
and the identification of the drivers supporting this process is critical for the development
of better therapies to stop or at least decrease liver metastasis. Besides, the anatomic
proximity between liver and colon as well as specific signals derived from CRC cells may
partially explain the clinical preference of CRC liver metastasis. Nevertheless, CRC liver
metastasis may also share similar mechanisms with the liver tropism of different cancer
metastasis via the regulations of liver immune microenvironment, as we summarized
here. Therefore, mechanistic insights on CRC liver metastasis may also pave ways to new
perspectives in liver metastasis from other cancer types.

Traditional chemotherapy, surgical resection, and localized therapy still dominate the
treatment for CRC liver metastasis. Although these therapies can remove or control the
metastatic tumors, recurrence remains the major challenge for successful management of
the disease. Immunotherapy is characterized by strong and long-lasting effects with fewer
side effects. Based on the importance of hepatic niche in every step of liver metastasis,
targeting the immune microenvironment by immunotherapy will be potential in treating
CRC liver metastasis. Future studies should use preclinical models or single cell sequencing
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to investigate the complex immune crosstalk in the liver microenvironment to identify the
potential target and translate to the clinics.
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