

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1-Methyl-1*H*-imidazole- κN^3)(1-methyl-2-nitrosobenzene- κN)(5,10,15,20-tetraphenylporphyrinato- $\kappa^4 N$)iron(II) dichloromethane monosolvate

Erwin G. Abucayon, Dennis Awasabisah, Douglas R. Powell and George B. Richter-Addo*

Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, USA Correspondence e-mail: grichteraddo@ou.edu

Received 24 December 2013; accepted 13 January 2014

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; some non-H atoms missing; disorder in main residue; R factor = 0.056; wR factor = 0.173; data-to-parameter ratio = 18.3.

The solvated title compound, $[Fe(C_{44}H_{28}N_4)(C_4H_6N_2)(C_7H_7-NO)]\cdot CH_2Cl_2$, is a porphyrin complex containing an octahedrally coordinated Fe^{II} atom with 1-methylimidazole [Fe-N = 2.0651 (17) Å] and *o*-nitrosotoluene ligands at the axial positions. The *o*-nitrosotoluene ligand is N-bound to iron(II) [Fe-N = 1.8406 (18) Å and $Fe-N-O = 122.54 (14)^{\circ}]$. The axial N-Fe-N linkage is almost linear, with a bond angle of 177.15 (7)°. One phenyl group of the porphyrin ligand is disordered over two orientations in a 0.710 (3):0.290 (3) ratio. The dichloromethane solvent molecule was severely disordered and its contribution to the scattering was removed with the SQUEEZE routine [van der Sluis & Spek (1990). Acta Cryst. A46, 194-201].

Related literature

Nitroso compounds are known to bind the Fe centers of many heme proteins including the blood protein hemoglobin (Keilin & Hartree, 1943; Hirota & Itano, 1978; Murayama, 1960; Gibson, 1960; Yi *et al.*, 2013). For the syntheses and crystal structures of related compounds, see: Wang *et al.* (1996); Godbout *et al.* (1999); Sohl *et al.* (2004). For a review on the interactions of *C*-nitroso compounds with metalloporphyrins, see: Lee *et al.* (2002). For the preparation of (TPP)FeCl (TPPH₂ is 5,10,15,20-tetraphenylporphyrin), see: Adler *et al.* (1970). For the use of SQUEEZE, see: van der Sluis & Spek (1990).

Experimental

Data collection

 $\alpha = 107.450(2)^{\circ}$

c = 15.0439 (15) Å

Bruker APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.779, T_{max} = 0.962$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.056 & 353 \text{ restraints} \\ wR(F^2) = 0.173 & \text{H-atom parameters constrained} \\ S = 1.00 & \Delta\rho_{\max} = 1.12 \text{ e } \text{\AA}^{-3} \\ 11596 \text{ reflections} & \Delta\rho_{\min} = -0.44 \text{ e } \text{\AA}^{-3} \\ 632 \text{ parameters} \end{array}$

T = 100 K

 $R_{\rm int} = 0.044$

 $0.54 \times 0.15 \times 0.08 \ \mathrm{mm}$

43417 measured reflections

11596 independent reflections

8649 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Fe1-N7	1.8406 (18)	Fe1-N2	2.0105 (16)
Fe1-N1	1.9992 (17)	Fe1-N3	2.0159 (16)
Fe1-N4	2.0030 (17)	Fe1-N5	2.0651 (17)

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013*; molecular graphics: *SHELXL2013*; software used to prepare material for publication: *SHELXL2013*.

The authors wish to thank the National Science Foundation (CHE-1213674 and CHE-0130835) and the University of Oklahoma for funds to support this research and to acquire the diffractometer and computers used in this work.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7178).

References

Adler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443–2445.

Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Gibson, Q. H. (1960). Biochem. J. 77, 519–526.

Godbout, N., Sanders, L. K., Salzmann, R., Havlin, R. H., Wojdelski, M. & Oldfield, E. (1999). J. Am. Chem. Soc. 121, 3829–3844. Hirota, K. & Itano, H. A. (1978). J. Biol. Chem. 253, 3477-3481.

- Keilin, D. & Hartree, E. F. (1943). Nature, 151, 390-391.
- Lee, J., Chen, L., West, A. H. & Richter-Addo, G. B. (2002). Chem. Rev. 102, 1019–1065.
- Murayama, M. (1960). J. Biol. Chem. 235, 1024-1028.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194-201.
- Sohl, C. D., Lee, J., Alguindigue, S. S., Khan, M. A. & Richter-Addo, G. B. (2004). J. Inorg. Biochem. 98, 1238–1246.
- Wang, L.-S., Chen, L., Khan, M. A. & Richter-Addo, G. B. (1996). Chem. Commun. pp. 323–324.
- Yi, J., Ye, G., Thomas, L. M. & Richter-Addo, G. B. (2013). *Chem. Commun.* **49**, 11179–11181.

supplementary materials

Acta Cryst. (2014). E70, m51-m52 [doi:10.1107/S160053681400083X]

(1-Methyl-1*H*-imidazole- κN^3)(1-methyl-2-nitrosobenzene- κN)(5,10,15,20-tetraphenylporphyrinato- $\kappa^4 N$)iron(II) dichloromethane monosolvate

Erwin G. Abucayon, Dennis Awasabisah, Douglas R. Powell and George B. Richter-Addo

1. Comment

Nitroso compounds are known to bind the Fe centers of many heme proteins including the blood protein hemoglobin (Keilin & Hartree, 1943; Hirota & Itano, 1978; Murayama, 1960; Gibson, 1960; Yi *et al.*, 2013). The synthetic bis-nitrosoarene iron porphyrin, (TPP)Fe(PhNO)₂, was prepared and structurally characterized by X-ray crystallography (Wang *et al.*, 1996). We report the crystal structure of the six-coordinate (1-methyl-1*H*-imidazole- κN^3)(1-methyl-2-nitrosobenzene- κN)(5,10,15,20-tetraphenylporphyrinato- $\kappa^4 N$)iron(II) dichloromethane monosolvate compound, (TPP)Fe(*o*-tolNO)(1-MeIm), (I). For the syntheses and crystal structures of related compounds, see: Wang *et al.* (1996); Godbout *et al.* (1999); Sohl *et al.* (2004). For a review, see: Lee *et al.* (2002). The molecular structure of (I) is shown in Fig. 1. The Fe—N(por) bond lengths are in the 2.0159 (16)–1.9992 (17) Å range. The Fe—N(1-MeIm) and Fe—N(*o*-tolNO) bond lengths are 2.0651 (17) and 1.8406 (18) Å, respectively. The axial N—Fe—N linkage shows a near linear geometry with a bond angle of 177.15 (7)°.

2. Experimental

To a Schlenk tube equipped with a magnetic stirrer was added (TPP)FeCl (61 mg, 0.09 mmol) and THF (15 ml). Zn(Hg) (60 mg, 0.9 mmol in Zn) was added and the mixture stirred for 2 h. The resulting solution was filtered into a clean Schlenk tube and the THF removed under vacuum and the residue subsequently dried. The purple (TPP)Fe^{II} solid obtained was dissolved in 15 ml of CH₂Cl₂, treated with 2-nitrosotoluene (50 mg, 0.4 mmol), and stirred for 12 h. The solution was reduced to 5 ml, and 10 ml hexane was added. The resulting solid was collected by filtration. The IR (KBr) spectrum showed the v_{NO} band at 1350 cm⁻¹, comparable with the 1353 cm⁻¹ v_{NO} band observed for (TPP)Fe(PhNO)₂ (Wang *et al.*, 1996). The (TPP)Fe(*o*-tolNO)₂ obtained was then treated with 0.5 equivalent of 1-methylimidazole (purchased from Aldrich Chemical Company and used as received) and stirred for 30 min during which time the color of the solution changed from red-purple to brown-green. The solution was filtered and dried in vacuo. The IR (KBr) spectrum of the (TPP)Fe(*o*-tolNO)(1-MeIm) product showed the v_{NO} band at 1366 cm⁻¹. A suitable purple-needle shaped crystal was grown by slow evaporation of a CH₂Cl₂-hexane (1:1) solution of the complex at room temperature under N₂.

3. Refinement

H atoms were located geometrically and treated as riding on their parent atoms with C-H = 0.95 Å for aromatic and 0.98 Å for methyl, and with $U_{iso}(H) = 1.2$ (1.5 for methyl) times $U_{eq}(C)$. Restraints on the 1–2 (e.s.d. = 0.004Å) and 1–3 (e.s.d. = 0.008Å) contacts as well as planarity (e.s.d = 0.008Å) of the disordered phenyl groups were required. The displacement parameters of the disordered atoms were restrained to have similar values along bonded connections (e.s.d. = 0.003Å²).

Computing details

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXL2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *SHELXL2013* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL2013* (Sheldrick, 2008).

Figure 1

The molecular structure of (TPP)Fe(*o*-tolNO)(1-MeIm) with displacement ellipsoids drawn at the 50% probability level. H atoms and the dichloromethane solvent molecule are omitted for clarity.

$(1-Methyl-1H-imidazole-\kappa N^3)(1-methyl-2-nitrosobenzene-\kappa N)(5,10,15,20-tetraphenylporphyrinato-\kappa^4 N)iron(II)$ dichloromethane monosolvate

Crystal data	
$[Fe(C_{44}H_{28}N_4)(C_4H_6N_2)(C_7H_7NO)]\cdot CH_2Cl_2$	Z = 2
$M_r = 956.72$	F(000) = 992
Triclinic, P1	$D_{\rm x} = 1.357 {\rm Mg} {\rm m}^{-3}$
a = 12.1749 (12) Å	Mo Ka radiation, $\lambda = 0.71073$ Å
b = 13.4571(13) Å	Cell parameters from 8531 reflections
c = 15.0439(15) Å	$\theta = 2.3 - 28.3^{\circ}$
$\alpha = 107.450(2)^{\circ}$	$\mu = 0.49 \text{ mm}^{-1}$
$\beta = 94.800(2)^{\circ}$	T = 100 K
$\gamma = 90.987 \ (2)^{\circ}$	Needle, purple
$V = 2340.8 (4) Å^3$	$0.54 \times 0.15 \times 0.08 \text{ mm}$
Data collection	
Bruker APEX CCD	11596 independent reflections
diffractometer	8649 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.044$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.4^{\circ}, \ \theta_{\rm min} = 1.4^{\circ}$
(SADABS; Bruker, 2002)	$h = -16 \rightarrow 16$
$T_{\min} = 0.779, \ T_{\max} = 0.962$	$k = -17 \rightarrow 17$
43417 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier
$P[E^2 > 2\sigma(E^2)] = 0.056$	Hydrogen site location: mixed
R[T > 20(T)] = 0.050	Trydrogen site location. mixed
$wR(F^2) = 0.173$	H-atom parameters constrained
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.117P)^2]$
11596 reflections	where $P = (F_o^2 + 2F_c^2)/3$
632 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
353 restraints	$\Delta \rho_{\rm max} = 1.12 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.44 \text{ e } \text{\AA}^{-3}$
direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Fe1	0.27912 (2)	0.33446 (2)	0.73638 (2)	0.01878 (10)	
01	0.28119 (13)	0.22468 (12)	0.55162 (10)	0.0307 (3)	
N1	0.32161 (14)	0.19079 (13)	0.73360 (11)	0.0206 (3)	
N2	0.42828 (13)	0.36153 (12)	0.69803 (11)	0.0187 (3)	
N3	0.23961 (13)	0.48146 (13)	0.74402 (11)	0.0191 (3)	
N4	0.13367 (14)	0.31196 (13)	0.78213 (11)	0.0212 (3)	
N5	0.33989 (13)	0.38736 (13)	0.87552 (12)	0.0213 (3)	
N6	0.35960 (14)	0.48117 (14)	1.02497 (12)	0.0231 (4)	
N7	0.22530 (14)	0.28062 (13)	0.61269 (12)	0.0249 (4)	
C1	0.25682 (18)	0.11657 (15)	0.75314 (15)	0.0252 (4)	
C2	0.31521 (18)	0.02104 (16)	0.73937 (16)	0.0274 (5)	
H2	0.2887	-0.0417	0.7483	0.033*	
C3	0.41421 (18)	0.03794 (16)	0.71148 (15)	0.0260 (4)	
H3	0.4707	-0.0106	0.6973	0.031*	
C4	0.41839 (17)	0.14389 (15)	0.70712 (13)	0.0208 (4)	
C5	0.50755 (16)	0.18962 (15)	0.67927 (13)	0.0198 (4)	
C6	0.51086 (16)	0.29226 (15)	0.67560 (13)	0.0190 (4)	
C7	0.60498 (17)	0.34018 (15)	0.64984 (14)	0.0216 (4)	
H7	0.6720	0.3084	0.6318	0.026*	
C8	0.57892 (16)	0.43990 (15)	0.65640 (13)	0.0204 (4)	
H8	0.6244	0.4912	0.6438	0.024*	
C9	0.46861 (16)	0.45290 (15)	0.68625 (13)	0.0179 (4)	
C10	0.41329 (16)	0.54554 (14)	0.70135 (13)	0.0180 (4)	
C11	0.30580 (16)	0.55733 (15)	0.72738 (13)	0.0194 (4)	
C12	0.24626 (17)	0.65065 (16)	0.73692 (15)	0.0247 (4)	
H12	0.2728	0.7132	0.7275	0.030*	
C13	0.14504 (17)	0.63272 (16)	0.76183 (15)	0.0246 (4)	
H13	0.0876	0.6805	0.7739	0.029*	
C14	0.14132 (16)	0.52730 (15)	0.76648 (13)	0.0207 (4)	
C15	0.05222 (16)	0.48178 (16)	0.79508 (13)	0.0214 (4)	
C16	0.05021 (16)	0.38091 (16)	0.80217 (14)	0.0221 (4)	
C17	-0.04337 (18)	0.33265 (17)	0.82872 (16)	0.0306 (5)	
H17	-0.1110	0.3639	0.8457	0.037*	
C18	-0.01645 (19)	0.23438 (17)	0.82475 (17)	0.0330 (5)	
H18	-0.0617	0.1835	0.8383	0.040*	

C19	0.09441 (17)	0.22134 (16)	0.79584 (15)	0.0251 (4)	
C20	0.15014 (17)	0.12930 (16)	0.78117 (15)	0.0280 (5)	
C21	0.60513 (16)	0.12444 (15)	0.65022 (14)	0.0218 (4)	
C22	0.67985 (18)	0.10442 (16)	0.71722 (15)	0.0278 (5)	
H22	0.6699	0.1330	0.7818	0.033*	
C23	0.76924 (18)	0.04261 (17)	0.69030 (17)	0.0304 (5)	
H23	0.8199	0.0294	0.7366	0.036*	
C24	0.78457 (18)	0.00025 (17)	0.59626 (17)	0.0314 (5)	
H24	0.8454	-0.0420	0.5780	0.038*	
C25	0.71019 (19)	0.02015 (17)	0.52882 (16)	0.0297 (5)	
H25	0.7202	-0.0087	0.4643	0.036*	
C26	0.62130 (18)	0.08223 (16)	0.55575 (15)	0.0258 (4)	
H26	0.5712	0.0960	0.5094	0.031*	
C27	0.47130 (16)	0.63681 (14)	0.68413 (14)	0.0197 (4)	
C28	0.51245 (18)	0.72280 (16)	0.75862 (15)	0.0252 (4)	
H28	0.5013	0.7253	0.8210	0.030*	
C29	0.57002 (19)	0.80518 (17)	0.74160 (17)	0.0305 (5)	
H29	0.5985	0.8631	0.7925	0.037*	
C30	0.58573 (18)	0.80257 (16)	0.65035 (17)	0.0298 (5)	
H30	0.6255	0.8581	0.6388	0.036*	
C31	0.54309 (19)	0.71878 (18)	0.57686 (16)	0.0310 (5)	
H31	0.5529	0.7169	0.5144	0.037*	
C32	0.48549 (18)	0.63668 (16)	0.59382 (15)	0.0267 (4)	
H32	0.4556	0.5798	0.5425	0.032*	
C33	-0.04463 (16)	0.54815 (16)	0.82277 (14)	0.0233 (4)	
C34	-0.05881 (18)	0.59595 (17)	0.91690 (15)	0.0272 (4)	
H34	-0.0092	0.5831	0.9640	0.033*	
C35	-0.14542(18)	0.66269 (17)	0.94277 (16)	0.0296 (5)	
H35	-0.1544	0.6947	1.0071	0.035*	
C36	-0.21769 (17)	0.68183 (16)	0.87467 (16)	0.0287 (5)	
H36	-0.2754	0.7283	0.8921	0.034*	
C37	-0.20617 (17)	0.63337 (17)	0.78090 (16)	0.0285 (5)	
H37	-0.2570	0.6457	0.7343	0.034*	
C38	-0.12001 (17)	0.56641 (17)	0.75463 (15)	0.0269 (4)	
H38	-0.1127	0.5332	0.6902	0.032*	
C39	0.08236 (15)	0.03490 (17)	0.78418 (19)	0.0339 (6)	0.710 (3)
C40	0.0490 (2)	0.0299 (2)	0.8685 (2)	0.0446 (6)	0.710 (3)
H40	0.0687	0.0854	0.9241	0.054*	0.710 (3)
C41	-0.0130 (3)	-0.0561(2)	0.8718 (2)	0.0488 (7)	0.710 (3)
H41	-0.0361	-0.0592	0.9297	0.059*	0.710 (3)
C42	-0.0411 (3)	-0.1370 (2)	0.7912 (2)	0.0431 (7)	0.710 (3)
H42	-0.0829	-0.1961	0.7938	0.052*	0.710 (3)
C43	-0.0086 (2)	-0.1324 (2)	0.7066 (2)	0.0386 (6)	0.710 (3)
H43	-0.0288	-0.1879	0.6510	0.046*	0.710 (3)
C44	0.0535 (2)	-0.04654 (19)	0.7032 (2)	0.0327 (6)	0.710 (3)
H44	0.0764	-0.0435	0.6452	0.039*	0.710 (3)
C39′	0.1044 (3)	0.0379 (3)	0.8102 (4)	0.0386 (8)	0.290 (3)
C40′	0.1286 (5)	0.0217 (4)	0.8966 (4)	0.0430 (8)	0.290 (3)
H40′	0.1770	0.0698	0.9431	0.052*	0.290 (3)

C41′	0.0830 (6)	-0.0638 (5)	0.9157 (4)	0.0474 (9)	0.290 (3)
H41′	0.1013	-0.0749	0.9746	0.057*	0.290 (3)
C42′	0.0109 (5)	-0.1329 (4)	0.8489 (5)	0.0452 (9)	0.290 (3)
H42′	-0.0226	-0.1902	0.8627	0.054*	0.290 (3)
C43′	-0.0128 (5)	-0.1189 (5)	0.7619 (5)	0.0414 (8)	0.290 (3)
H43′	-0.0609	-0.1674	0.7154	0.050*	0.290 (3)
C44′	0.0340 (5)	-0.0336 (5)	0.7431 (4)	0.0393 (7)	0.290 (3)
H44′	0.0177	-0.0240	0.6834	0.047*	0.290 (3)
C45	0.31048 (16)	0.47243 (16)	0.93911 (14)	0.0224 (4)	
H45	0.2610	0.5210	0.9257	0.027*	
C46	0.42338 (17)	0.39635 (17)	1.01665 (15)	0.0257 (4)	
H46	0.4677	0.3807	1.0654	0.031*	
C47	0.41053 (16)	0.33881 (16)	0.92439 (14)	0.0240 (4)	
H47	0.4449	0.2752	0.8979	0.029*	
C48	0.34210 (18)	0.56187 (18)	1.11202 (15)	0.0293 (5)	
H48A	0.3083	0.6213	1.0974	0.044*	
H48B	0.4131	0.5848	1.1491	0.044*	
H48C	0.2932	0.5335	1.1479	0.044*	
C49	0.11486 (18)	0.29409 (18)	0.57262 (15)	0.0296 (5)	
C50	0.1022 (2)	0.36033 (19)	0.51683 (16)	0.0344 (5)	
C51	-0.0039 (2)	0.3676 (2)	0.4774 (2)	0.0464 (7)	
H51	-0.0151	0.4120	0.4391	0.056*	
C52	-0.0943 (2)	0.3112 (2)	0.4925 (2)	0.0501 (7)	
H52	-0.1659	0.3190	0.4658	0.060*	
C53	-0.0798 (2)	0.2441 (2)	0.54629 (19)	0.0438 (6)	
H53	-0.1409	0.2050	0.5560	0.053*	
C54	0.0256 (2)	0.23475 (19)	0.58583 (17)	0.0350 (5)	
H54	0.0369	0.1880	0.6218	0.042*	
C55	0.2007 (2)	0.4181 (2)	0.49696 (18)	0.0395 (6)	
H55A	0.2423	0.3694	0.4511	0.059*	
H55B	0.2484	0.4483	0.5551	0.059*	
H55C	0.1750	0.4738	0.4719	0.059*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.02012 (16)	0.01441 (15)	0.02301 (16)	-0.00056 (11)	0.00536 (11)	0.00665 (11)
01	0.0399 (9)	0.0239 (8)	0.0262 (7)	0.0005 (7)	0.0085 (7)	0.0030 (6)
N1	0.0235 (8)	0.0148 (8)	0.0236 (8)	-0.0022 (6)	0.0039 (7)	0.0057 (6)
N2	0.0221 (8)	0.0136 (7)	0.0201 (8)	0.0002 (6)	0.0014 (6)	0.0047 (6)
N3	0.0195 (8)	0.0184 (8)	0.0203 (8)	0.0002 (6)	0.0026 (6)	0.0070 (6)
N4	0.0241 (8)	0.0170 (8)	0.0210 (8)	-0.0035 (6)	0.0020 (7)	0.0039 (6)
N5	0.0200 (8)	0.0183 (8)	0.0275 (9)	-0.0019 (6)	0.0051 (7)	0.0091 (7)
N6	0.0206 (8)	0.0251 (9)	0.0234 (8)	-0.0040 (7)	0.0029 (7)	0.0073 (7)
N7	0.0256 (9)	0.0180 (8)	0.0302 (9)	-0.0028 (7)	0.0065 (7)	0.0051 (7)
C1	0.0319 (11)	0.0155 (9)	0.0283 (10)	-0.0027 (8)	0.0071 (9)	0.0059 (8)
C2	0.0339 (12)	0.0158 (10)	0.0353 (11)	-0.0008 (8)	0.0058 (9)	0.0112 (9)
C3	0.0306 (11)	0.0144 (9)	0.0332 (11)	-0.0001 (8)	0.0018 (9)	0.0079 (8)
C4	0.0265 (10)	0.0140 (9)	0.0207 (9)	-0.0011 (7)	0.0008 (8)	0.0038 (7)
C5	0.0226 (9)	0.0149 (9)	0.0201 (9)	0.0000 (7)	0.0000 (7)	0.0029 (7)

C6	0.0205 (9)	0.0167 (9)	0.0197 (9)	-0.0004 (7)	0.0015 (7)	0.0053 (7)
C7	0.0222 (10)	0.0167 (9)	0.0254 (10)	-0.0007 (7)	0.0051 (8)	0.0050 (8)
C8	0.0202 (9)	0.0172 (9)	0.0235 (9)	-0.0010 (7)	0.0037 (8)	0.0052 (8)
C9	0.0203 (9)	0.0157 (9)	0.0172 (8)	-0.0022 (7)	0.0010 (7)	0.0043 (7)
C10	0.0218 (9)	0.0148 (9)	0.0172 (8)	-0.0015 (7)	0.0020 (7)	0.0045 (7)
C11	0.0238 (10)	0.0168 (9)	0.0180 (9)	0.0007 (7)	0.0021 (7)	0.0056 (7)
C12	0.0248 (10)	0.0211 (10)	0.0305 (10)	0.0027 (8)	0.0057 (8)	0.0105 (8)
C13	0.0253 (10)	0.0214 (10)	0.0299 (10)	0.0056 (8)	0.0053 (8)	0.0110 (8)
C14	0.0217 (10)	0.0192 (9)	0.0215 (9)	0.0028 (7)	0.0000 (8)	0.0073 (8)
C15	0.0180 (9)	0.0242 (10)	0.0194 (9)	0.0020 (8)	0.0005 (7)	0.0031 (8)
C16	0.0186 (9)	0.0225 (10)	0.0222 (9)	-0.0027 (8)	0.0027 (8)	0.0023 (8)
C17	0.0244 (11)	0.0263 (11)	0.0369 (12)	-0.0063 (9)	0.0106 (9)	0.0016 (9)
C18	0.0296 (11)	0.0222 (11)	0.0431 (13)	-0.0070 (9)	0.0171 (10)	0.0002 (9)
C19	0.0263 (10)	0.0190 (10)	0.0280 (10)	-0.0070 (8)	0.0075 (8)	0.0033 (8)
C20	0.0361 (12)	0.0168 (10)	0.0299 (11)	-0.0071 (9)	0.0098 (9)	0.0040 (8)
C21	0.0222 (10)	0.0125 (9)	0.0303 (10)	-0.0010 (7)	0.0027 (8)	0.0061 (8)
C22	0.0293 (11)	0.0213 (10)	0.0295 (11)	0.0019 (8)	-0.0021 (9)	0.0040 (8)
C23	0.0257 (11)	0.0215 (10)	0.0401 (12)	-0.0002 (8)	-0.0058 (9)	0.0060 (9)
C24	0.0241 (11)	0.0203 (10)	0.0462 (13)	0.0039 (8)	0.0046 (10)	0.0040 (10)
C25	0.0317 (11)	0.0222 (11)	0.0326 (11)	0.0030 (9)	0.0065 (9)	0.0032 (9)
C26	0.0272 (11)	0.0208 (10)	0.0284 (10)	0.0014 (8)	0.0018 (9)	0.0060 (8)
C27	0.0208 (9)	0.0135 (9)	0.0261 (10)	0.0011 (7)	0.0047 (8)	0.0071 (7)
C28	0.0324 (11)	0.0179 (10)	0.0266 (10)	0.0003 (8)	0.0008 (9)	0.0091 (8)
C29	0.0333 (12)	0.0163 (10)	0.0396 (12)	-0.0045 (9)	-0.0050 (10)	0.0077 (9)
C30	0.0291 (11)	0.0172 (10)	0.0465 (13)	-0.0027 (8)	0.0046 (10)	0.0147 (9)
C31	0.0384 (13)	0.0277 (11)	0.0317 (11)	-0.0008 (9)	0.0102 (10)	0.0145 (9)
C32	0.0345 (11)	0.0190 (10)	0.0256 (10)	-0.0049 (8)	0.0055 (9)	0.0047 (8)
C33	0.0200 (9)	0.0225 (10)	0.0262 (10)	-0.0005 (8)	0.0036 (8)	0.0051 (8)
C34	0.0269 (11)	0.0274 (11)	0.0259 (10)	0.0007 (9)	0.0042 (9)	0.0053 (9)
C35	0.0277 (11)	0.0270 (11)	0.0304 (11)	-0.0017 (9)	0.0106 (9)	0.0012 (9)
C36	0.0219 (10)	0.0204 (10)	0.0443 (13)	0.0012 (8)	0.0107 (9)	0.0085 (9)
C37	0.0210 (10)	0.0266 (11)	0.0371 (12)	0.0006 (8)	0.0003 (9)	0.0089 (9)
C38	0.0241 (10)	0.0287 (11)	0.0261 (10)	0.0025 (8)	0.0025 (8)	0.0053 (9)
C39	0.0362 (12)	0.0202 (10)	0.0475 (14)	-0.0028 (10)	0.0134 (11)	0.0115 (10)
C40	0.0508 (13)	0.0324 (11)	0.0524 (13)	-0.0122 (11)	0.0136 (12)	0.0136 (11)
C41	0.0549 (13)	0.0363 (12)	0.0594 (14)	-0.0140 (11)	0.0163 (12)	0.0188 (11)
C42	0.0425 (13)	0.0271 (11)	0.0641 (15)	-0.0055 (11)	0.0141 (12)	0.0184 (11)
C43	0.0350 (13)	0.0198 (11)	0.0596 (15)	-0.0010 (10)	0.0105 (12)	0.0088 (12)
C44	0.0293 (12)	0.0187 (10)	0.0510 (14)	-0.0003 (9)	0.0112 (11)	0.0098 (10)
C39′	0.0400 (15)	0.0239 (14)	0.0525 (16)	-0.0055 (13)	0.0152 (14)	0.0101 (13)
C40′	0.0490 (16)	0.0297 (14)	0.0531 (16)	-0.0082 (14)	0.0167 (15)	0.0139 (14)
C41′	0.0541 (17)	0.0339 (16)	0.0570 (17)	-0.0093 (16)	0.0170 (16)	0.0154 (15)
C42′	0.0477 (17)	0.0308 (16)	0.0609 (18)	-0.0076 (15)	0.0172 (16)	0.0169 (15)
C43′	0.0413 (15)	0.0258 (13)	0.0603 (16)	-0.0052 (12)	0.0136 (14)	0.0156 (14)
C44′	0.0388 (13)	0.0240 (12)	0.0568 (15)	-0.0051 (12)	0.0115 (13)	0.0133 (12)
C45	0.0204 (9)	0.0237 (10)	0.0246 (10)	-0.0008 (8)	0.0037 (8)	0.0093 (8)
C46	0.0225 (10)	0.0301 (11)	0.0282 (10)	-0.0010 (8)	0.0022 (8)	0.0146 (9)
C47	0.0214 (10)	0.0231 (10)	0.0303 (11)	0.0012 (8)	0.0059 (8)	0.0116 (9)
C48	0.0293 (11)	0.0315 (12)	0.0242 (10)	-0.0047 (9)	0.0036 (9)	0.0042 (9)

supplementary materials

C49	0.0302 (11)	0.0294 (11)	0.0261 (10)	-0.0020 (9)	-0.0002 (9)	0.0043 (9)
C50	0.0375 (13)	0.0360 (13)	0.0301 (11)	-0.0008 (10)	-0.0006 (10)	0.0117 (10)
C51	0.0398 (14)	0.0577 (17)	0.0471 (15)	-0.0045 (13)	-0.0084 (12)	0.0275 (14)
C52	0.0325 (14)	0.0608 (19)	0.0584 (18)	-0.0022 (13)	-0.0091 (12)	0.0238 (15)
C53	0.0361 (14)	0.0482 (16)	0.0430 (14)	-0.0152 (12)	-0.0041 (11)	0.0108 (12)
C54	0.0352 (12)	0.0334 (13)	0.0340 (12)	-0.0082 (10)	0.0006 (10)	0.0077 (10)
C55	0.0421 (14)	0.0446 (15)	0.0370 (13)	-0.0018 (11)	-0.0013 (11)	0.0220 (11)

Geometric parameters (Å, °)

Fe1—N7	1.8406 (18)	С27—С32	1.383 (3)
Fe1—N1	1.9992 (17)	C27—C28	1.398 (3)
Fe1—N4	2.0030 (17)	C28—C29	1.400 (3)
Fe1—N2	2.0105 (16)	C28—H28	0.9500
Fe1—N3	2.0159 (16)	C29—C30	1.392 (3)
Fe1—N5	2.0651 (17)	С29—Н29	0.9500
O1—N7	1.257 (2)	C30—C31	1.378 (3)
N1—C1	1.376 (2)	С30—Н30	0.9500
N1—C4	1.378 (3)	C31—C32	1.396 (3)
N2—C6	1.376 (2)	C31—H31	0.9500
N2—C9	1.382 (2)	С32—Н32	0.9500
N3—C14	1.377 (2)	C33—C34	1.395 (3)
N3—C11	1.383 (2)	C33—C38	1.398 (3)
N4—C16	1.379 (3)	C34—C35	1.401 (3)
N4—C19	1.380 (3)	C34—H34	0.9500
N5—C45	1.330 (3)	C35—C36	1.380 (3)
N5—C47	1.381 (3)	С35—Н35	0.9500
N6—C45	1.348 (3)	C36—C37	1.385 (3)
N6—C46	1.372 (3)	С36—Н36	0.9500
N6—C48	1.463 (3)	C37—C38	1.399 (3)
N7—C49	1.464 (3)	С37—Н37	0.9500
C1—C20	1.396 (3)	C38—H38	0.9500
C1—C2	1.448 (3)	C39—C40	1.383 (3)
C2—C3	1.346 (3)	C39—C44	1.387 (3)
C2—H2	0.9500	C40—C41	1.387 (3)
C3—C4	1.447 (3)	C40—H40	0.9500
С3—Н3	0.9500	C41—C42	1.378 (3)
C4—C5	1.393 (3)	C41—H41	0.9500
C5—C6	1.399 (3)	C42—C43	1.382 (3)
C5—C21	1.505 (3)	C42—H42	0.9500
C6—C7	1.441 (3)	C43—C44	1.386 (3)
C7—C8	1.361 (3)	C43—H43	0.9500
С7—Н7	0.9500	C44—H44	0.9500
C8—C9	1.448 (3)	C39'—C44'	1.387 (3)
C8—H8	0.9500	C39′—C40′	1.389 (3)
C9—C10	1.394 (3)	C40'—C41'	1.385 (3)
C10—C11	1.395 (3)	C40'—H40'	0.9500
C10—C27	1.505 (3)	C41'—C42'	1.383 (3)
C11—C12	1.437 (3)	C41'—H41'	0.9500
C12—C13	1.356 (3)	C42'—C43'	1.385 (3)

C12—H12	0.9500	C42'—H42'	0.9500
C13—C14	1.441 (3)	C43′—C44′	1.386 (3)
C13—H13	0.9500	C43'—H43'	0.9500
C14—C15	1.396 (3)	C44′—H44′	0.9500
C15—C16	1.393 (3)	C45—H45	0.9500
C15—C33	1.502 (3)	C46—C47	1.366 (3)
C16—C17	1.444 (3)	C46—H46	0.9500
C17—C18	1.353 (3)	C47—H47	0.9500
C17—H17	0.9500	C48—H48A	0.9800
C18—C19	1.450 (3)	C48—H48B	0.9800
C18—H18	0.9500	C48—H48C	0.9800
C19—C20	1.390 (3)	C49—C50	1.398 (3)
C20—C39	1.517 (3)	C49—C54	1.400 (3)
C20—C39′	1.534 (4)	C50—C51	1.392 (3)
C21—C22	1.391 (3)	C50—C55	1.516 (3)
C21—C26	1.396 (3)	C51—C52	1.398 (4)
C22—C23	1.394 (3)	C51—H51	0.9500
C22—H22	0.9500	C52—C53	1.387 (4)
C23—C24	1.388 (3)	С52—Н52	0.9500
С23—Н23	0.9500	C53—C54	1.392 (4)
C24—C25	1.392 (3)	С53—Н53	0.9500
C24—H24	0.9500	С54—Н54	0.9500
C25—C26	1.391 (3)	С55—Н55А	0.9800
C25—H25	0.9500	С55—Н55В	0.9800
C26—H26	0.9500	С55—Н55С	0.9800
N7—Fe1—N1	88.22 (7)	C25—C26—H26	119.7
N7—Fe1—N4	92.86 (7)	C21—C26—H26	119.7
N1—Fe1—N4	90.81 (7)	C32—C27—C28	118.70 (18)
N7—Fe1—N2	90.38 (7)	C32—C27—C10	120.36 (18)
N1—Fe1—N2	89.75 (7)	C28—C27—C10	120.94 (17)
N4—Fe1—N2	176.73 (6)	C27—C28—C29	120.2 (2)
N7—Fe1—N3	93.95 (7)	C27—C28—H28	119.9
N1—Fe1—N3	177.80 (7)	C29—C28—H28	119.9
N4—Fe1—N3	89.48 (7)	C30—C29—C28	120.3 (2)
N2—Fe1—N3	89.84 (7)	С30—С29—Н29	119.9
N7—Fe1—N5	177.15 (7)	C28—C29—H29	119.9
N1—Fe1—N5	89.01 (7)	C31—C30—C29	119.5 (2)
N4—Fe1—N5	86.52 (6)	C31—C30—H30	120.3
N2—Fe1—N5	90.27 (6)	С29—С30—Н30	120.3
N3—Fe1—N5	88.83 (7)	C30—C31—C32	120.3 (2)
C1—N1—C4	106.02 (16)	С30—С31—Н31	119.9
C1—N1—Fe1	126.48 (14)	С32—С31—Н31	119.9
C4—N1—Fe1	127.41 (13)	C27—C32—C31	121.0 (2)
C6—N2—C9	105.32 (16)	С27—С32—Н32	119.5
C6—N2—Fe1	127.36 (13)	С31—С32—Н32	119.5
C9—N2—Fe1	127.29 (13)	C34—C33—C38	118.70 (19)
C14—N3—C11	105.59 (16)	C34—C33—C15	120.68 (18)
C14—N3—Fe1	127.36(13)	C38—C33—C15	120.57 (18)

C11—N3—Fe1	127.05 (13)	C33—C34—C35	120.8 (2)
C16—N4—C19	105.71 (17)	C33—C34—H34	119.6
C16—N4—Fe1	127.68 (14)	C35—C34—H34	119.6
C19—N4—Fe1	126.55 (14)	C36—C35—C34	119.9 (2)
C45—N5—C47	105.31 (17)	С36—С35—Н35	120.1
C45—N5—Fe1	126.23 (14)	С34—С35—Н35	120.1
C47—N5—Fe1	128.22 (14)	C35—C36—C37	120.1 (2)
C45—N6—C46	107.23 (17)	С35—С36—Н36	119.9
C45—N6—C48	126.44 (18)	С37—С36—Н36	119.9
C46—N6—C48	126.20 (18)	C36—C37—C38	120.2 (2)
O1—N7—C49	111.42 (17)	С36—С37—Н37	119.9
O1—N7—Fe1	122.54 (14)	С38—С37—Н37	119.9
C49—N7—Fe1	126.03 (14)	C33—C38—C37	120.3 (2)
N1—C1—C20	125.95 (19)	С33—С38—Н38	119.9
N1—C1—C2	109.86 (18)	С37—С38—Н38	119.9
C20—C1—C2	124.18 (19)	C40—C39—C44	119.6 (2)
C3—C2—C1	107.11 (18)	C40—C39—C20	119.7 (2)
С3—С2—Н2	126.4	C44—C39—C20	120.6 (2)
С1—С2—Н2	126.4	C39—C40—C41	120.1 (2)
C2—C3—C4	107.19 (19)	C39—C40—H40	119.9
С2—С3—Н3	126.4	C41—C40—H40	119.9
С4—С3—Н3	126.4	C42—C41—C40	120.0 (2)
N1-C4-C5	126.01 (18)	C42-C41-H41	120.0
N1-C4-C3	109.82 (17)	C40-C41-H41	120.0
$C_{5}-C_{4}-C_{3}$	124.17 (19)	C41-C42-C43	120.2 (2)
C4-C5-C6	123 69 (18)	C41-C42-H42	119.9
C4-C5-C21	118 14 (17)	C43 - C42 - H42	119.9
C6-C5-C21	118.17(17)	C_{42} C_{43} C_{44}	119.8 (2)
N_{2} C6 C5	125.63 (18)	C42 - C43 - H43	120.1
$N_2 - C_6 - C_7$	111.00(16)	C44-C43-H43	120.1
C_{5}	123 34 (18)	C_{43} C_{44} C_{39}	120.1 120.2(2)
$C_{8} - C_{7} - C_{6}$	106 51 (17)	C43 - C44 - H44	119.9
C8-C7-H7	126.7	C_{39} C_{44} H_{44}	119.9
C6 C7 H7	126.7	C_{44} C_{39} C_{40}	119.9 118.7(3)
C_{7} C_{8} C_{9}	120.7	$C_{44} = C_{39} = C_{40}$	115.7(3)
C7 C8 H8	100.94 (17)	$C_{44} = C_{39} = C_{20}$	115.9(4) 125.4(4)
$C_{1} = C_{2} = H_{2}$	126.5	$C_{40} = C_{33} = C_{20}$	123.4(4) 120.8(3)
$N_{2} = C_{0} = C_{10}$	120.3 125.99(17)	C41' - C40' - C39'	120.8 (3)
$N_2 = C_9 = C_{10}$	123.00(17) 110.22(16)	C41 - C40 - H40	119.0
$N_2 - C_9 - C_8$	110.22(10) 122.00(17)	$C_{39} = C_{40} = H_{40}$	119.0
$C_{10} - C_{9} - C_{8}$	123.90(17) 124.00(18)	C42 - C41 - C40	119.7 (5)
$C_{9} = C_{10} = C_{11}$	124.00(18)	$C_{42} = C_{41} = H_{41}$	120.1
$C_{9} = C_{10} = C_{27}$	11/.8/(17)	C40 - C41 - H41	120.1
$V_{11} - V_{10} - V_{2}$	110.0/(17)	C41 - C42' - C43'	120.2 (3)
$N_{2} = C_{11} = C_{12}$	125.90 (17)	$C41^{-}-C42^{-}-H42^{-}$	119.9
$1N_{3} - C_{11} - C_{12}$	110.10 (17)	C43' - C42' - H42'	119.9
C10-C11-C12	123.95 (18)	(42'-(43'-(44')))	119.6 (3)
C13-C12-C11	107.15 (18)	(42'-(43'-H43'))	120.2
C13—C12—H12	126.4	C44' - C43' - H43'	120.2
C11—C12—H12	126.4	C43'—C44'—C39'	120.9 (3)

C12—C13—C14	106.88 (18)	C43'—C44'—H44'	119.5
С12—С13—Н13	126.6	C39'—C44'—H44'	119.5
C14—C13—H13	126.6	N5-C45-N6	111.56 (18)
N3—C14—C15	125.67 (18)	N5—C45—H45	124.2
N3—C14—C13	110.25 (17)	N6—C45—H45	124.2
C15—C14—C13	123.99 (18)	C47—C46—N6	106.35 (18)
C16—C15—C14	123.85 (18)	C47—C46—H46	126.8
C16—C15—C33	118.98 (18)	N6—C46—H46	126.8
C14—C15—C33	117.14 (18)	C46—C47—N5	109.54 (18)
N4—C16—C15	125.80 (18)	C46—C47—H47	125.2
N4—C16—C17	110.35 (18)	N5—C47—H47	125.2
C15—C16—C17	123.81 (19)	N6—C48—H48A	109.5
C18—C17—C16	106.94 (19)	N6—C48—H48B	109.5
C18—C17—H17	126.5	H48A—C48—H48B	109.5
C16—C17—H17	126.5	N6—C48—H48C	109.5
C17—C18—C19	107.05 (19)	H48A—C48—H48C	109.5
C17—C18—H18	126.5	H48B—C48—H48C	109.5
С19—С18—Н18	126.5	C50—C49—C54	121.5 (2)
N4—C19—C20	125.71 (19)	C50—C49—N7	119.3 (2)
N4—C19—C18	109.94 (19)	C54—C49—N7	119.0 (2)
C20—C19—C18	124.31 (19)	C51—C50—C49	117.2 (2)
C19—C20—C1	124.37 (19)	C51—C50—C55	121.6 (2)
C19—C20—C39	115.73 (15)	C49—C50—C55	121.2 (2)
C1—C20—C39	119.39 (15)	C50—C51—C52	121.8 (2)
C19—C20—C39′	120.97 (16)	С50—С51—Н51	119.1
C1—C20—C39′	113.99 (16)	С52—С51—Н51	119.1
C22—C21—C26	119.05 (19)	C53—C52—C51	120.2 (2)
C22—C21—C5	120.38 (18)	С53—С52—Н52	119.9
C26—C21—C5	120.57 (18)	С51—С52—Н52	119.9
C21—C22—C23	120.4 (2)	C52—C53—C54	119.1 (2)
С21—С22—Н22	119.8	С52—С53—Н53	120.5
С23—С22—Н22	119.8	С54—С53—Н53	120.5
C24—C23—C22	120.3 (2)	C53—C54—C49	120.1 (2)
C24—C23—H23	119.8	С53—С54—Н54	119.9
С22—С23—Н23	119.8	С49—С54—Н54	119.9
C23—C24—C25	119.6 (2)	С50—С55—Н55А	109.5
С23—С24—Н24	120.2	С50—С55—Н55В	109.5
C25—C24—H24	120.2	H55A—C55—H55B	109.5
C26—C25—C24	120.1 (2)	С50—С55—Н55С	109.5
С26—С25—Н25	120.0	Н55А—С55—Н55С	109.5
С24—С25—Н25	120.0	H55B—C55—H55C	109.5
C25—C26—C21	120.6 (2)		
N1—Fe1—N7—O1	-50.99 (16)	N1—C1—C20—C39	169.7 (2)
N4—Fe1—N7—O1	-141.71 (16)	C2—C1—C20—C39	-9.6 (3)
N2—Fe1—N7—O1	38.74 (16)	N1—C1—C20—C39′	-172.4 (3)
N3—Fe1—N7—O1	128.61 (16)	C2—C1—C20—C39′	8.3 (4)
N1—Fe1—N7—C49	127.69 (17)	C4—C5—C21—C22	-76.4 (2)
N4—Fe1—N7—C49	36.97 (17)	C6—C5—C21—C22	104.5 (2)
	× /		~ /

N2 E-1 N7 C40	14257(17)	CA C5 C21 C2(1020(2)
$N_2 = re1 = N_1 = C49$ N3 Fe1 N7 C40	-142.37(17) -52.70(17)	C4 - C3 - C21 - C20	102.9(2)
N_{3} Γe_{1} N_{1} C_{4} C_{4}	52.70(17) -178.8(2)	$C_{0} = C_{2} = C_{2} = C_{2}$	-0.2(2)
C4 NI $C1$ $C20$	-1/0.0(2)	$C_{20} = C_{21} = C_{22} = C_{23}$	-0.3(3)
$\mathbf{FeI} = \mathbf{NI} = \mathbf{CI} = \mathbf{C20}$	-1.9(3)	$C_{2} = C_{2} = C_{2} = C_{2}$	1/8.95 (19)
C4-NI-CI-C2	0.0(2)	$C_{21} = C_{22} = C_{23} = C_{24}$	-0.1(3)
FeI = NI = CI = C2	1/7.43 (14)	$C_{22} = C_{23} = C_{24} = C_{25}$	0.2(3)
NI = CI = C2 = C3	-0.2(2)	C_{23} — C_{24} — C_{25} — C_{26}	0.1 (3)
C20—C1—C2—C3	179.2 (2)	C24—C25—C26—C21	-0.5 (3)
C1—C2—C3—C4	-0.3 (2)	C22—C21—C26—C25	0.6 (3)
C1—N1—C4—C5	178.72 (19)	C5—C21—C26—C25	-178.62 (19)
Fe1—N1—C4—C5	1.9 (3)	C9—C10—C27—C32	71.9 (2)
C1—N1—C4—C3	-0.8(2)	C11—C10—C27—C32	-105.4 (2)
Fe1—N1—C4—C3	-177.57 (13)	C9—C10—C27—C28	-107.7 (2)
C2—C3—C4—N1	0.7 (2)	C11—C10—C27—C28	75.1 (2)
C2—C3—C4—C5	-178.82 (19)	C32—C27—C28—C29	-2.1 (3)
N1-C4-C5-C6	0.8 (3)	C10-C27-C28-C29	177.46 (19)
C3—C4—C5—C6	-179.79 (19)	C27—C28—C29—C30	0.7 (3)
N1-C4-C5-C21	-178.29 (18)	C28—C29—C30—C31	0.7 (3)
C3—C4—C5—C21	1.1 (3)	C29—C30—C31—C32	-0.6(3)
C9—N2—C6—C5	178.61 (18)	C28—C27—C32—C31	2.3 (3)
Fe1—N2—C6—C5	-2.9 (3)	C10-C27-C32-C31	-177.3(2)
C9—N2—C6—C7	0.4 (2)	C30-C31-C32-C27	-0.9(3)
Fe1-N2-C6-C7	178 86 (13)	$C_{16} - C_{15} - C_{33} - C_{34}$	77 4 (3)
C4-C5-C6-N2	-0.3(3)	C_{14} C_{15} C_{33} C_{34}	-100.5(2)
$C_{1} = C_{2} = C_{2} = C_{2} = C_{2}$	$178\ 81\ (17)$	$C_{16} - C_{15} - C_{33} - C_{38}$	-105.0(2)
C_{4} C_{5} C_{6} C_{7}	177.76(18)	C_{14} C_{15} C_{33} C_{38}	771(3)
$C_{1}^{2} = C_{2}^{2} = C_{2}^{2} = C_{1}^{2}$	-31(3)	$C_{14}^{28} = C_{13}^{23} = C_{33}^{24} = C_{35}^{25}$	-1.2(3)
$C_2 = C_3 = C_0 = C_7$	-0.2(2)	$C_{36} - C_{35} - C_{34} - C_{35}$	1.5(3)
$N_2 = C_0 = C_7 = C_8$	-0.2(2)	$C_{13} = C_{23} = C_{34} = C_{35}$	1/0.3(2)
$C_{3} = C_{0} = C_{1} = C_{8}$	-1/8.33(18)	$C_{33} - C_{34} - C_{33} - C_{30}$	-0.1(3)
$C_{0} - C_{1} - C_{0} - C_{1}$	0.0(2)	$C_{34} = C_{35} = C_{30} = C_{37}$	1.4(3)
$C_{0} N_{2} C_{0} C_{10}$	-1/9./5(18)	$C_{35} - C_{36} - C_{37} - C_{38}$	-1.3(3)
Fel—N2—C9—C10	1.8 (3)	$C_{34} = C_{33} = C_{38} = C_{37}$	1.5 (3)
C6—N2—C9—C8	-0.4 (2)	C15—C33—C38—C37	-176.1 (2)
Fe1—N2—C9—C8	-178.86 (12)	C36—C37—C38—C33	-0.2 (3)
C7—C8—C9—N2	0.2 (2)	C19—C20—C39—C40	-70.3 (2)
C7—C8—C9—C10	179.63 (18)	C1—C20—C39—C40	117.5 (2)
N2—C9—C10—C11	-2.7 (3)	C39′—C20—C39—C40	42.0 (5)
C8—C9—C10—C11	177.99 (18)	C19—C20—C39—C44	109.7 (2)
N2—C9—C10—C27	-179.73 (17)	C1—C20—C39—C44	-62.4 (2)
C8—C9—C10—C27	1.0 (3)	C39′—C20—C39—C44	-137.9 (5)
C14—N3—C11—C10	-179.38 (18)	C44—C39—C40—C41	-0.1 (2)
Fe1—N3—C11—C10	0.4 (3)	C20-C39-C40-C41	179.96 (18)
C14—N3—C11—C12	-1.8(2)	C39—C40—C41—C42	0.3 (4)
Fe1—N3—C11—C12	178.00 (13)	C40—C41—C42—C43	-0.7 (4)
C9—C10—C11—N3	1.6 (3)	C41—C42—C43—C44	0.8 (4)
C27—C10—C11—N3	178.59 (17)	C42—C43—C44—C39	-0.5 (4)
C9—C10—C11—C12	-175.72 (19)	C40—C39—C44—C43	0.2 (3)
C27—C10—C11—C12	1.3 (3)	C20—C39—C44—C43	-179.88 (17)
$N_3 - C_{11} - C_{12} - C_{13}$	1.6 (2)	C19-C20-C39'-C44'	89.8 (4)
	~ (-)		~~ · · · / · /

G10 G11 G12 G12	150 20 (10)		00.1.(2)
C10—C11—C12—C13	179.29 (19)	C1—C20—C39′—C44′	-99.1 (3)
C11—C12—C13—C14	-0.8(2)	C39—C20—C39′—C44′	13.4 (5)
C11—N3—C14—C15	-175.27 (18)	C19—C20—C39'—C40'	-90.7 (3)
Fe1—N3—C14—C15	5.0 (3)	C1—C20—C39'—C40'	80.3 (3)
C11—N3—C14—C13	1.3 (2)	C39—C20—C39′—C40′	-167.1 (5)
Fe1—N3—C14—C13	-178.49 (13)	C44'—C39'—C40'—C41'	-0.4 (3)
C12—C13—C14—N3	-0.3 (2)	C20—C39'—C40'—C41'	-179.8 (2)
C12—C13—C14—C15	176.31 (19)	C39'—C40'—C41'—C42'	-1.2 (5)
N3—C14—C15—C16	-1.9 (3)	C40'—C41'—C42'—C43'	2.3 (6)
C13—C14—C15—C16	-178.01 (19)	C41'—C42'—C43'—C44'	-1.7 (6)
N3—C14—C15—C33	175.84 (18)	C42'—C43'—C44'—C39'	0.0 (6)
C13—C14—C15—C33	-0.3 (3)	C40'—C39'—C44'—C43'	1.0 (4)
C19—N4—C16—C15	-177.98 (19)	C20—C39'—C44'—C43'	-179.5 (3)
Fe1—N4—C16—C15	-0.8 (3)	C47—N5—C45—N6	0.9 (2)
C19—N4—C16—C17	-0.2 (2)	Fe1—N5—C45—N6	175.57 (12)
Fe1—N4—C16—C17	177.06 (14)	C46—N6—C45—N5	-0.7 (2)
C14—C15—C16—N4	-0.3 (3)	C48—N6—C45—N5	-176.69 (18)
C33—C15—C16—N4	-178.01 (18)	C45—N6—C46—C47	0.3 (2)
C14—C15—C16—C17	-177.84 (19)	C48—N6—C46—C47	176.25 (18)
C33—C15—C16—C17	4.5 (3)	N6-C46-C47-N5	0.3 (2)
N4—C16—C17—C18	0.0 (2)	C45—N5—C47—C46	-0.7 (2)
C15—C16—C17—C18	177.9 (2)	Fe1—N5—C47—C46	-175.24 (13)
C16—C17—C18—C19	0.1 (3)	O1—N7—C49—C50	-74.2 (2)
C16—N4—C19—C20	178.1 (2)	Fe1—N7—C49—C50	107.0 (2)
Fe1-N4-C19-C20	0.8 (3)	O1—N7—C49—C54	101.4 (2)
C16—N4—C19—C18	0.2 (2)	Fe1—N7—C49—C54	-77.4 (2)
Fe1—N4—C19—C18	-177.01 (14)	C54—C49—C50—C51	2.1 (4)
C17—C18—C19—N4	-0.2 (3)	N7—C49—C50—C51	177.6 (2)
C17—C18—C19—C20	-178.1 (2)	C54—C49—C50—C55	-175.3 (2)
N4—C19—C20—C1	2.3 (4)	N7—C49—C50—C55	0.2 (3)
C18—C19—C20—C1	179.9 (2)	C49—C50—C51—C52	0.0 (4)
N4—C19—C20—C39	-169.4 (2)	C55—C50—C51—C52	177.4 (3)
C18—C19—C20—C39	8.1 (3)	C50—C51—C52—C53	-1.4 (5)
N4—C19—C20—C39′	172.4 (3)	C51—C52—C53—C54	0.8 (4)
C18—C19—C20—C39'	-10.1 (4)	C52—C53—C54—C49	1.2 (4)
N1-C1-C20-C19	-1.7 (4)	C50—C49—C54—C53	-2.7 (4)
C2-C1-C20-C19	179.0 (2)	N7—C49—C54—C53	-178.3 (2)