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Abstract: In this review, we shed light on recent advances regarding the characterization of bio-
chemical pathways of cellular mechanosensing and mechanotransduction with particular attention
to their role in neurodegenerative disease pathogenesis. While the mechanistic components of
these pathways are mostly uncovered today, the crosstalk between mechanical forces and soluble
intracellular signaling is still not fully elucidated. Here, we recapitulate the general concepts of
mechanobiology and the mechanisms that govern the mechanosensing and mechanotransduction
processes, and we examine the crosstalk between mechanical stimuli and intracellular biochemical
response, highlighting their effect on cellular organelles’ homeostasis and dysfunction. In particu-
lar, we discuss the current knowledge about the translation of mechanosignaling into biochemical
signaling, focusing on those diseases that encompass metabolic accumulation of mutant proteins
and have as primary characteristics the formation of pathological intracellular aggregates, such as
Alzheimer’s Disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis and Parkinson’s Disease.
Overall, recent findings elucidate how mechanosensing and mechanotransduction pathways may
be crucial to understand the pathogenic mechanisms underlying neurodegenerative diseases and
emphasize the importance of these pathways for identifying potential therapeutic targets.

Keywords: mechanosensing; mechanotransduction; neurodegenerative diseases; mechanobiology;
Alzheimer’s Disease; Huntington’s Disease; Amyotrophic Lateral Sclerosis; Parkinson’s Disease

1. Introduction

In recent years, many works have explored the molecular basis of mechanobiology to
clarify how mechanosensing and mechanotransduction pathways guide cells to (i) sense
their microenvironment physicochemical properties and respond accordingly, and (ii)
modify their surroundings transmitting specific mechanical information extracellularly
via inside/outside signaling routes. While these pathways’ mechanistic components are
mostly uncovered today [1,2], the tight interconnection between mechanosignaling and
biochemical signaling of soluble molecules involved in crucial cellular pathways (i.e., cellu-
lar differentiation, proliferation, cell death) has been brought to light only in recent years.
Since then, many studies have focused on understanding the mechanisms underlying
these processes, with particular attention to diseased systems, to pave the way for new
frontiers in drug targeting and therapy development [3,4]. The development of in vitro
systems that could faithfully resemble the in vivo phenomena that occur when cells and
tissues are subjected to mechanical alteration is one of the fastest developing research areas,
with many new cell modeling strategies such as 3D stem cell cultures and biomaterials,
used for building fundamental tools for disease modeling [5]. It has been demonstrated
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that modulating the physical and chemical features of biomaterials, including surface
morphology, topography, wettability and architecture, allows to tune and understand
the biological response of cells [6]. Using biomaterials of different origins enables not
only eliciting specific cell differentiation programs for tissue engineering applications, but
also to study mechanotransduction and mechanosensing signaling occurring in response
to a specific altering of the external environment [7–12]. Parallell to the development
of more accurate in vitro disease models, efforts are being made for the in vivo study of
mechanics in healthy and diseased systems, but limited studies are available because of their
complexity [13–17]. The importance of tissue mechanics has already been established for
some diseases where the relationship between mechanical environment and disease patho-
genesis is more straightforward [18]. Cancer malignancy and invasive potential [19–23],
fibrosis [24–26], vascular-related diseases [27–30] and musculoskeletal disorders [31–35],
are the pathologies for which the association of pathological features and impairment of
the mechanical characteristics of diseased tissues/cells has been proven and quite well-
characterized. This association is, however, crucial for the development of malignancies
in every tissue, and the brain is one of them, as the regulation of its elastic properties is
fundamental for its functioning and homeostasis [36]. Among the events that participate
in neurodegeneration, alterations of the cerebral and CNS mechanical microenvironment
are now recognized as important contributing factors. Therefore, to better comprehend the
pathological molecular changes that take place through the progression of neurodegenera-
tive diseases, it is fundamental to understand the association between mechanical changes
and biochemical signaling occurring in their pathogenesis [37,38].

To this end, in this review we recapitulate the current knowledge of the molecular
mechanisms underlying mechanosensing and mechanotransduction, including recent ad-
vances about how these pathways establish crosstalk with intracellular organelles, actively
participating in their homeostasis and dysfunction. Hence, we discuss how all these mech-
anisms converge towards the identification of interconnections between soluble molecular
signaling and mechanical stimuli that contributes to the main neurodegenerative diseases,
i.e., Alzheimer’s Disease (AD), Huntington’s Disease (HD), Amyotrophic Lateral Sclerosis
(ALS) and Parkinson’s Disease (PD).

2. Mechanobiology—A Brief Overview

Mechanobiology defines how cells generate, perceive, decode and adjust to physical
cues at the molecular level, and describes how cellular components (often referred to as
mechanosensors) participate in the propagation of intracellular mechanical signals that
culminate in the activation of a biological response [39]. The propagation of mechanical
forces is considered to be one of the fastest signaling routes, faster than passive diffusion
and molecular transport, therefore enabling a fast translation of physical stimuli into a
metabolic response, which explains cells’ ability to quickly adjust to constantly evolving
surroundings [40]. Part of the explanation of these phenomena derives from the biological
application of the architectural concept of “Tensegrity” first introduced by Donald Ingber,
which describes the tensional integrity of cells in a state of prestress, which allows them
to instantly respond to mechanical stresses [41,42]. Indeed, it is now commonly accepted
that whole organs, tissues and cells behave as hierarchical tensegrities in which, when a
perturbation in the force occurs, all elements transmit the stress from the macro- to the
microscale across load-carrying components [43].

The maintenance of the cell’s mechanical homeostasis is a fine balance that relies
on the control of cellular density, and investigations of the rheological characteristics of
the cytoplasm have found that they differ depending on which cellular site is considered.
Typically, the nuclear and perinuclear areas are stiffer compared to the periphery of the cell
because of their difference in composition; cellular regions with a higher concentration of
cytoskeletal or soluble proteins are usually stiffer, as well as cells with reduced volume due
to the formation of intracellular crowding [44]. Although much research is being done to
characterize the role of mechanotransducers and discover new cellular elements involved
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in the sensing and propagation of mechanical signaling, it is important to remember that,
ultimately, the cell as a whole entity can be considered as a mechanosensor [43]. The type
of response to certain mechanical stimuli is influenced by a variety of factors, including
cell type, shape and the elaborate tuning of highly complex dynamic signaling networks
which can result in a range of cell fate decisions depending on the type and timing of
perturbation [43]. As a general principle, this response can be ascribed to the adjustment of
cellular viscoelasticity, primarily based on the dynamic interactions of the main cytoskeletal
components, Actin fibers, microtubules and intermediate filaments [45,46]. These three
components organize with each other thanks to cross-linking and motor proteins, resulting
in the formation of bundles and networks spanning from more rigid (rods) to flexible
(coils) structures that confer to cells characteristic mechanical properties; the adaptation to
different mechanical stimuli thus relies on the adjustment of these complex cytoskeletal
networks, rather than on the individual response of a single component [46]. Eventually,
forces are perceived by the cell, and the generated tension is propagated throughout the
cytoskeleton up to the nucleus, where mechanical stimuli are translated into changes in
gene expression programs to stimulate certain cell functions [47]. This response is the
result of two complex and interrelated signaling pathways known as “mechanosensing”
and “mechanotransduction”: mechanosensing refers to the ability to perceive changes in
the mechanical environment in which cells are, whereas the term mechanotransduction is
used to include all the molecular events that convert changes in extracellular forces into
soluble biochemical signaling that stimulates specific cell functions, as well as the events
that lead to the generation of cellular forces by which cells adjust their microenvironment’s
features [39]. These two processes operate concomitantly to gather all the extra- and
intra-cellular mechanical signals; the principal axes that mediate cellular response to
mechanical stimuli pass through (i) the extracellular matrix (ECM)-focal adhesions (FAs)
complexes and ECM-integrins, then to the cyto- and nucleo-skeleton, or (ii) adherens
junctions (AJs) complexes that mediate cell to cell contacts and transmit information
intercellularly, which then propagates across the cytoskeleton and arrives to the nucleus.
With these two mechanisms, cells are able to sense the surrounding environment and
remodel their microenvironment to affect adjacent cells and steer tissues and organs’
fates [5]. Although a detailed explanation of these phenomena would require an extensive
analysis that we have previously provided elsewhere [39], we will highlight the essential
characteristics of the mechanosensing and mechanotransduction pathways in the following
sections.

2.1. Mechanosensing

In the past decades, much research has been done to characterize the different me-
chanical environments existing in human tissues; however, no model has proven to be
sufficiently comprehensive to explain the complexity of forces balance required to maintain
cellular homeostasis [48].

The sensing of forces applied from the extracellular environment is one of the earliest
events that occurs when cells respond to mechanical stimuli. Among these forces, the most
studied as key factors for stem cells differentiation and reinforcement of pathogenic states
(e.g., in cancer cells) are (i) hydrostatic pressure exerted omnidirectionally by fluids sur-
rounding the cells membrane [49]; (ii) shear stress generated when fluids act tangentially on
cells surfaces [39]; (iii) membrane tension, which is closely connected with mechanosensi-
tive channels opening and can be simplified as two opposing forces pulling cells to opposite
directions causing their elongation [49]; (iv) compression that leads to cellular contraction;
and, the two opposing mechanical properties describing the dynamic response of the cells to
different forces, (v) stiffness, expressing cellular resistance to deformation, and (vi) elasticity,
or cells’ ability to return to their original state after being subjected to a force [5]. All these
forces are sensed by cells in their entirety, as the process of mechanical sensing involves a
number of proteins denominated ‘mechanosensors’ for their characteristic conformational
change when subjected to force application, which results in the opening/activation of an
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active site mediating a certain biochemical function [50,51]. In other words, localized force
variations are applied to cell membranes’ proteins and these mechanical stimuli can directly
activate mechanosensitive ion channels that induce changes in intracellular signaling [47];
it has been shown that the activation of mechanically activated (MA)-ion channels repre-
sents the fundamental step for cellular mechanotransduction [50,52]. MA-ion channels
gating is responsive to both tension and shear stress occurring at the cell membrane, and
to direct cell–cell contact and intracellular cytoskeletal rearrangements [50]. Among the
MA-ion channels, the Piezo proteins play a key role in transmitting information from the
extracellular environment about the ECM’s variation in forces and topography. Since their
initial description in 2010, the significance of these proteins has become increasingly clear,
with particular attention to Piezo1 and Piezo2 as essential mediators of bone differentia-
tion, skeletal cells mechanotransduction, and mesenchymal stem cells differentiation [52].
Furthermore, Piezo proteins have been identified as key modulators of neurogenesis and
neural stem cells’ commitment [53,54], and their mutations have been linked to the onset
of various pathologies, such as lymphatic dysplasia and other diseases characterized by
dysfunctional mechanosensory neurons [55,56]. All this, along with the recent discovery
of Piezos’ role in CNS correct myelination [57], supports the idea that these channels are
important for the maintenance of neural homeostasis and suggests that they might have
a role in neurodegenerative disease pathogenesis; despite the fact that today there are
currently no conclusive links between Piezo gene mutations and the onset of a particular
neurodegenerative disorder, several studies have linked Piezo channel dysfunctions and
subsequent downstream activation signaling deregulation to diseases such as AD, Multiple
Sclerosis, Dementia and Type-2 Diabetes [58–60]. These channels can be gated by the cells in
response to mechanical cues enabling extracellular positively charged ions, mainly Calcium
ions, to pass through the cell membrane and stimulate intracellular responses by triggering
numerous pathways such as Yes-associated protein 1 (YAP1), Wnt/β-Catenin, and Akt
mediated signaling (Figure 1a,b) [50,52,61]. The tight relationship between Piezo channels
and their mechanical environment results in their modulation by interactions with the ECM
and the cytoskeletal components. For example, Collagen IV presence in the ECM sensitizes
Piezo channels (Figure 1c), while their interaction with Filamin A seems to be desensitizing,
as loss of Filamin A activates them (Figure 1e) [62–65]. Similarly, a recent study high-
lighted that Piezo1 intimately interacts with the E-Cadherin/β-Catenin/F-Actin complex
and that removal of either E-Cadherin or β-Catenin results in channels’ desensitization
(Figure 1d) [66].

Another family of channels that transform mechanical stress into electrochemical
signaling is the TREK family (also known as Potassium channel subfamily K member 2),
responsible for the entrance of potassium currents in cells, and which can be found in
both peripheral and central nervous systems [47]. In particular, three members of this
family (TREK-1, TREK-2 and TRAAK) are activated by mechanical stimuli such as cellular
deformation, swelling and membrane stretch [67]. Notably, TREK-1 currents may play a
role in mediating the cardiac mechanoelectrical balance; under pathological circumstances,
such as aberrant cardiac muscle stretch or cellular swelling caused by ischemia, these
currents could be involved in cardiac excitability deregulation [67].
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Figure 1. Schematic representation of mechanical regulation of Piezo channels: (a) When no stimuli
are present, Piezo channels are closed and inhibit the passage of ions; (b) Different mechanical
cues stimulate Piezo opening through forces that are conveyed by the stretching of the lipid bilayer
and allow the entering of positive ions such as Calcium inside the cell where it triggers pathways
such as Akt/mTOR, YAP/TAZ and Wnt/β-Catenin, allowing the transcription of target genes; (c)
Collagen IV presence in the ECM induces Piezo opening; (d) Piezo interacts with the E-Cadherin/β-
Catenin/F-Actin complex which generates intracellular forces that favor the channels’ opening;
(e) Piezo interaction with Filamin A is desensitizing and inhibits its opening. AKT, RAC-alpha
serine/threonine-protein kinase; Ca2+, Calcium ion; DSH, Dishevelled; ECM, extracellular matrix;
LRP5, LDL Receptor Related Protein; mTOR, Mammalian target of rapamycin; TAZ, transcriptional
co-activator with PDZ-binding motif; WNT, Wingless/Integrated; YAP, Yes-associated protein 1.

2.2. Mechanotransduction

Today it is widely accepted that mechanical signaling is a type of biological crosstalk
that goes hand in hand with the better-known biochemical signaling [68]. Despite recent
efforts to learn more about how mechanotransduction is used to fine-tune cell and tissue
functioning in a variety of conditions, the specific regulatory mechanisms are still mostly
unclear [69]. Nevertheless, the general mechanisms by which mechanical cues are translated
into biochemical signals are well-described and have the common feature of involving
proteins’ structural change and their shuttling from their original site to a new one where
they fulfill their signaling function [70]. The majority of these mechanisms regard the
outside–inside signaling axis, which encompasses the sensing of external mechanical
stimuli, their cytoskeletal propagation and the shuttling of membrane or cytoskeletal
proteins to the nucleus, where they activate the expression or inhibition of certain gene
patterns. For example, β-Catenin, the central protein of the Wnt pathway, can be found
in different cellular districts depending on its function: at the membrane level, it binds
E-Cadherin and contributes to cellular adhesion, while when the Wnt pathway is active, β-
Catenin is translocated to the nucleus where it acts as transcriptional co-activator for many
different genes regulating important cellular functions such as proliferation, migration,
apoptosis and differentiation (Figure 2a,b) [71–73]. One key aspect of this pathway is that
it can be regulated by mechanical inputs, in addition to Wnt ligands, as it was proposed
that mechanoactivation of Wnt/β-catenin signaling could be mediated by integrins, ECM
stiffness, membrane stretch, strain and shear stress (Figure 2b) [71,74].
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Figure 2. Schematic representation of the principal biochemical pathways that mediate mechanotrans-
duction: (a) β-Catenin at the membrane level binds E-Cadherin and contributes to cellular adhesion;
(b) Activation of the Wnt/ β-Catenin pathway: Wnt ligands and mechanical stimuli mediated by
integrins inhibit the β-Catenin destruction complex and induce β-Catenin translocation to the nucleus
where its leads to transcription of target genes involved in diverse cellular functions; (c) Activation of
YAP/TAZ nuclear translocation and transcriptional co-activator function is induced by ECM mechan-
ical properties and external mechanical stimuli, which are sensed by the cell through the integrins
and GPCRs signaling routes; with the mediation of the RHO GTPase pathway, F-Actin formation
and contractility through Myosin II induce YAP/TAZ nuclear translocation and inactivation of the
Hippo kinase core, allowing transcription of target genes; (d) Mechanical stimuli such as cellular
detachment, soft ECM, together with excessive formation of adherens junction due to cell crowding
and inhibition of FAK or F-Actin formation, cause YAP/TAZ inhibition due to phosphorylation of
the core Hippo kinases and of YAP/TAZ, leading to their cytoplasmatic degradation. Red arrow
down ↓ indicates downregulation. DSH, Dishevelled; FAK, Focal Adhesion Kinase; LATS1/2, large
tumor suppressor kinase 1 and 2; LRP5, LDL Receptor Related Protein; MOB, MOB kinase activator
1; MST1, Ste20-like kinase 1; RHO, Ras homologous; SAV1, Salvador homolog 1; TAZ, transcriptional
co-activator with PDZ-binding motif; WNT, Wingless/Integrated; YAP, Yes-associated protein 1.

Likewise, some FAs proteins show nuclear localization depending on the mechanical
environment, even though the explanation of this phenomenon is still not clearly under-
stood; recently, both Paxillin and Talin 1 have been described as interacting with the nucleus
with their specific domains, where they are thought to have a role in mRNA trafficking and
genome stabilization [75–77].

A more well-described pathway tightly interrelated with the transduction of mechani-
cal stimuli is the Hippo pathway and the activity of its transcriptional co-activators YAP
and TAZ (Transcriptional co-activator with PDZ-binding motif). The Hippo pathway ki-
nase core is composed of Ste20-like kinase 1 (MST1) associated with the cofactor Salvador
homolog 1 (SAV1), and of large tumor suppressor kinase 1 and 2 (LATS1/2) and MOB
kinase activator 1 (MOB1). When this core is active, YAP/TAZ are phosphorylated, their
transcriptional co-activator role is inhibited, and they are exported from the nucleus to
the cytoplasm, where they are degraded (Figure 2d). When the Hippo core is inactivated,
YAP/TAZ is dephosphorylated and translocate from the cytoplasm to the nucleus, where
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they interact with DNA-binding proteins of the TEAD family and contribute to the ex-
pression of genetic programs involved in cell migration, survival, proliferation, and stem
cells renewal or differentiation (Figure 2c,d) [78,79]. Among the stimuli that regulate this
pathway, different mechanical cues have the ability to activate/inhibit YAP/TAZ nuclear
translocation, including changes in the environmental biophysical properties (ECM stiffen-
ing and micropatterns), flow disturbance and shear stress, cell crowding, cell detachment
as well as cell spreading or, more generally, changes in the expression of mechanosens-
ing/mechanotransduction proteins (Figure 2c) [69,80]. For example, Focal Adhesion Kinase
(FAK) or F-Actin formation inhibition has been shown to cause YAP/TAZ inactivation,
therefore the monitoring of this pathway is central to understanding the role of mechanical
impairments in diseased systems (Figure 2c,d) [80]. Moreover, YAP/TAZ responds to
the Ras homolog family member A (RhoA) GTPase signaling pathway, another signaling
pathway essential in mechanotransduction. Rho proteins regulate F-Actin organization
and contractility through regulation of Myosin II activity, as well as intracellular force
generation, cell proliferation and differentiation [81]. It has been shown that mechanical
tension and compressive force are able to activate Rho activity and transduce these forces
to mediate cellular response (Figure 2c) [80–83], and it was suggested that YAP/TAZ reg-
ulation of autophagy is a type of checkpoint that ensures the fulfillment of cytoplasmic
remodeling and could be seen as a sort of epigenetic memory mechanism for maintaining
cell differentiation [84].

3. Intracellular Transmission of Mechanosensing and Mechanotransduction Pathways:
The Involvement of Organelles’ Homeostasis and Dysfunction

Although much research has been done to characterize how the external mechanical
microenvironment influences cells’ homeostasis, the events occurring when mechanical
stress originates intracellularly are less clear. That is the case of many neurodegenerative
disorders in which misfolded proteins tend to self-assemble into pathological inclusions that
lead to the liquid–liquid phase separation phenomenon that influences cells’ mechanical
properties [85–89]. The association between aggregates and cytoskeletal proteins is a
vicious cycle in which protein aggregation induces cytoskeletal destabilization, and in
turn, the cytoskeleton’s alteration favors the progressive accumulation of pathological
inclusions. For instance, the intermediate filaments protein Vimentin has a central role in
spatially regulating the aggresome (containing misfolded/damaged proteins) to interact
with proteasomes and favor proteostasis, fundamental in protein quality control and cells’
correct cell cycle progression [90].

The mechanical signaling occurring in the cytoskeleton ultimately leads to the regula-
tion of the organization and functioning of cytoplasmatic components, especially cellular
organelles. Cellular organelles in the cytoplasm are organized in a dynamical and elabo-
rate manner that is not just the consequence of arbitrary interaction; through cytoskeletal
transport via F-Actin filaments and microtubules, organelles migrate to specific locations
inside cells to maintain cell homeostasis, but when mechanical alterations exceed a phys-
iological limit, these balanced mechanisms are impaired [91]. Additionally, cytoskeletal
elements can impose mechanical stress on organelles during their dynamic polymerization–
depolymerization activities. As a result, organelles are continually subjected to tension and
compression forces and therefore have to respond accordingly to maintain their correct
functioning. However, the type of responses that organelles enact is still mostly unclear,
particularly regarding the Endoplasmatic Reticulum (ER) and the Golgi Apparatus, for
which only a few studies are available, whereas more information has been gathered on
mitochondria and lysosomes, together with the autophagic and endo-lysosomal system, as
they have a central role in cellular metabolic homeostasis [92–94]. Recent findings on the
crosstalk between mechanical stimuli and the biochemical response of cellular organelles
in homeostasis and dysfunction are presented in Table 1.
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Table 1. Intracellular transmission of mechanosensing and mechanotransduction pathways: the
involvement of organelles’ homeostasis and dysfunction.

Organelle
Mechanosensing and Mechanotransduction

Pathways Involved in Organelles’ Homeostasis
and Dysfunction

Ref.

Endoplasmic
Reticulum (ER)
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overexpression of ERBB2, an oncogene  

[100] 

• Spheroids from mammary epithelial cells en-

hance proline metabolism in order to maintain ATP 

synthesis and intensify the antioxidant activity of 

mitochondria 

[101] 

• Cell detachment in cancer cells stimulates mi-

tophagy, a particular type of autophagy targeted to 

mitochondria, that was proposed to be regulated 

by the serine/threonine kinase 1 RIPK1, which in-

creases ROS generation and drives non-apoptotic 

cell death 
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• Mechanical perturbation of cells with intra-

cellular pathogens or extracellular stimulation with 

AFM compression engages the fission complex via 

the mitochondrial fission factor mitochondrial 

membrane 
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tubules depolymerization and Myosin II inhibition 
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• FAs Kindlins mitochondrial accumulation in 
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dria-ER contact point induces mitochondrial con-

striction and fission 

[100] 

• Prolonged mechanical stress causes an in-

crease in glycolysis and glucose oxidation in CMs 
[105,106] 

• Expression of the mechanosensitive channel
PANX1 and response to ultrasound stimuli by
releasing the signaling molecule Ca2+

[95]

• ER localization of Piezo1 in response to ER
membrane tension mediates Ca2+ release [96]
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• Suspension culture of epithelial cells induces a
reduced usage of glucose for the TCA cycle, which
leads to lower ATP production restored by
overexpression of ERBB2, an oncogene

[100]

• Spheroids from mammary epithelial cells
enhance proline metabolism in order to maintain
ATP synthesis and intensify the antioxidant activity
of mitochondria

[101]

• Cell detachment in cancer cells stimulates
mitophagy, a particular type of autophagy targeted
to mitochondria, that was proposed to be regulated
by the serine/threonine kinase 1 RIPK1, which
increases ROS generation and drives non-apoptotic
cell death

[100–102]

• Mechanical perturbation of cells with
intracellular pathogens or extracellular stimulation
with AFM compression engages the fission complex
via the mitochondrial fission factor mitochondrial
membrane

[103]

• Decreasing mitochondrial tension by
microtubules depolymerization and Myosin II
inhibition reduces the probability of mitochondrial
fission

[104]

• FAs Kindlins mitochondrial accumulation in
response to ECM stiffening
• F-Actin polymerization around mitochondria-ER
contact point induces mitochondrial constriction and
fission

[100]

• Prolonged mechanical stress causes an increase
in glycolysis and glucose oxidation in CMs leading
to impairment of mitochondria functioning and
compromised ETC

[105,106]
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Table 1. Cont.

Organelle
Mechanosensing and Mechanotransduction

Pathways Involved in Organelles’ Homeostasis
and Dysfunction

Ref.

• CMs integrins respond to excessive mechanical
load with the involvement of the MAPK and RhoA
pathway, which results in ETC dysfunction and
insufficient ATP synthesis

[107–109]

• YAP activation with Melatonin favors
mitochondrial fusion [109]

Lysosomes,
Autophagy

Endo-lysosomal system
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• YAP/TAZ activation simulates autophagy by
inducing the expression of a RAB7 inhibiting
protein, Armus, necessary for the activation of the
autophagy flux

[84]

• Contact inhibition of cells cultured at high
density on soft matrices showed to induce
autophagy impairment through inhibition of
YAP/TAZ activity axis with consequent loss of stress
fibers and MyosinII that maintain the kinases
LATS1/2 active

[110]

• Intracellular stress caused by aggregates is
implicated in lysosomal functioning and autophagy
defects through BAG3 expression

[111–115]

• Mutations leading to misfolded FLNC induce its
intracellular accumulation, leading to autophagy
activation and increasing lysosomes’ expression in
human cardiomyocytes

[116]

• Soft ECM impairs autophagosomes formation [100]

• Membrane tension regulates the CLIC/GEEC
(CG) endocytic pathway through membrane-bound
Vinculin that mediates its activation (with high
membrane tension) or inhibition (with low tension)

[117]

• Defects in internalization, recycling and
lysosomal degradation through the endo-lysosomal
compartment of integrins are correlated to
pathologic conditions such as cancer and
inflammation

[118]

• Extracellular vesicles deriving from arthritic
chondrocytes transport miR-221 and act as
mediators of mechanical signaling and inhibiting
in vitro bone development

[119]

• Accumulation of substrates impose a
perturbation in the homeostatic rheology of the cell
that causes inhibition of lysosomal trafficking;
following microtubules disassembly, enlarged
lysosomes with prolonged ER-contact sites are
retained in the cytoplasm of fibroblasts from MPS-1
and -3B patients

[120]

• Lysosomal trafficking is regulated by substrate
stiffness via different molecular adaptors; LRRK1
induces retrograde transport and perinuclear
accumulation in soft matrices while VARP mediates
exocytosis in rigid substrates

[121]
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Table 1. Cont.

Organelle
Mechanosensing and Mechanotransduction

Pathways Involved in Organelles’ Homeostasis
and Dysfunction

Ref.

• VAMP7 vesicles are important for the regulation
of the plasma membrane composition in terms of
glyco- and sphingolipids, correlating the sensing of
environmental mechanical characteristics and the
cellular biochemical response that leads to changes
in adhesion and integrin dynamic

[121]

• LAMP1 positive extracellular vesicles release is
regulated by increased calcium influx induced by
excessive mechanical stress

[122]

AFM, atomic force microscopy; Arf1, ADP-ribosylation factor 1; ATP, Adenosine Triphosphate; BAG3, BCL-2-
associated athanogene 3; CMs, cardiomyocytes; ECM, extracellular matrix; ERBB2, Erb-B2 Receptor Tyrosine
Kinase 2; ETC, electron transport chain; FAs, focal adhesions; FLNC, Filamin C ; GEF-H1, Rho guanine nucleotide
exchange factor 2; LAMP1, Lysosomal-associated membrane protein 1; LATS1/2, large tumor suppressor kinase 1
and 2; LRRK1, Leucine Rich Repeat Kinase 1; MAPK, Mitogen-activated protein kinase; MPS-1, Mucopolysaccha-
ridosis type 1; MPS-3B, Mucopolysaccharidosis type 3B; PANX1, Pannexin 1; RAB7, Ras-related protein Rab-7;
RhoA, Ras homolog family member A; RIPK1, receptor interacting serine/threonine kinase 1; TAZ, transcriptional
co-activator with PDZ-binding motif; TCA, the tricar-boxylic acid cycle; VAMP7, vesicle-associated membrane
protein 7; VARP, VPS9 domain and ankyrin repeat-containing protein; YAP, Yes-associated protein 1.

Mitochondria are fundamental cellular organelles for many metabolic cellular pro-
cesses and their dysregulation is becoming a more prominent interesting mechanism in
the study of degenerative disorders development [123]. Mechanotransduction signaling
can alter the mitochondria ability to provide energy to cells with Adenosine Triphosphate
(ATP), regulate apoptosis and participate in Ca balancing and ROS formation (Table 1) [100].
That is because, in order to fulfill these functions, mitochondria organize in a network that
moves across microtubules and associates with F-Actin filaments through the intervention
of motor proteins [124]. For example, the dynamic nature of mitochondria relies on the
balance of fission and fusion, two processes at the basis of mitochondria remodeling that,
at the biochemical level, are regulated by the activity of cytoskeletal related proteins such
as Dynamin-1 like protein (Drp1), which uses its GTPase activity to achieve mitochondrial
tubules constriction and dynamin 2 that finalize the fission process [91]. Other studies
have correlated mechanical stress and mitochondria homeostasis in cardiac systems, and it
was suggested that mitochondria have a role in mechanosensing and regulation of calcium
homeostasis, which is fundamental to the contraction process [105–109,125–127].

Lysosomes are placed at the endpoint of three main pathways, namely endo-/phago-
cytosis and autophagy and, as such, lysosomes receive a variety of biological components
from which they gather information on their microenvironment and adapt their response
to accomplish homeostatic control of cell functioning [128]. In fact, the protein aggregates
breakdown process is primarily targeted to the autolysosomal compartment, and this is
particularly relevant in neurodegenerative diseases where the autophagic system is often
affected by mutations in key effectors such as autophagy-related (Atg) proteins [129,130].
Lysosomes impairment has been linked to a number of neurodegenerative disorders such
as ALS, PD, AD and HD [131–136]. Moreover, Lysosomal Storage Disorders (LSD), which
are caused by mutations in lysosomal hydrolytic enzymes and accompanied by lysoso-
mal accumulation of undegraded substrates [137–142], are associated with neurological
impairments and suppression of lysosomes–autophagosomes fusion or accumulation of
malfunctioning autophagosomes [143,144]. This is because, at a baseline level, the au-
tophagic system removes cellular waste, defective organelles and pathological protein
aggregates. Under specific stress circumstances, cells should be able to enhance this process.
However, aggregates clearance in neurodegenerative diseases is impaired, implying that in
pathological conditions (e.g., when aggregates accumulation exceeds a certain threshold)
this mechanism is inhibited at some level. It is widely accepted that various cellular stresses
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can cause autophagy [92] and, in this regard, the role of the Hippo pathway has been
studied as a key mediator between mechanical stimuli and autophagy response (Table 1).

Recent works proposed a new molecular key player that could link aggregates accu-
mulation and autophagic defects: Bcl-2-associated athanogene 3 (BAG3) has been shown to
regulate selective macroautophagy for aggregated protein clearance and, by this, govern
cellular protein quality control [111]. Several studies demonstrated that BAG3 overexpres-
sion is correlated with mutant aggregation-prone proteins such as mutant SOD1 in ALS,
mutant Huntingtin in HD, and Tau in AD, suggesting that intracellular stress caused by
aggregates is directly implicated in lysosomal functioning and homeostasis [112–115].

Cell mechanics control not only autophagy but also the endocytic system, which is
closely related to lysosome homeostasis. In fact, the dysfunction of the endo-lysosomal
system is known to be related to LSD and neurodegenerative disorders pathogenesis [118,
145]. As the process of endo/exocytosis and lysosome secretion entails the modification and
remodeling of the cellular membrane, it is not surprising that it is affected by mechanical
alteration of stiffness, tension, physical characteristics of the cargo (e.g., size, shape, density)
and the extracellular environment (Table 1). Furthermore, with this mechanism, cells are
able to respond to mechanical stimuli and, in this way, overcome significant perturbations
of their mechano-homeostasis [146].

Overall, the studies presented in this section support the importance of mechanosens-
ing and mechanotransduction pathways in maintaining cellular organelle homeostasis,
especially in the context of brain development and neurodegeneration.

4. Mechanosensing and Mechanotransduction in Neurodegenerative Diseases

The role of forces in driving neuronal development, axonal growth and injury repair
has been extensively studied over the years [37,147–153]. The distinctiveness of the Central
Nervous System (CNS) is that it is formed by a peculiar combination of different types
of cells and ECM whose mechanical behavior is essential for its biological activity; for
example, white and grey matter have different stiffness as a result of cell type inherent
stiffness variability (myelinated axons and cellular bodies, respectively) [37,149]. The
biomechanical properties of the brain have been studied using different approaches, such as
Atomic Force Microscopy (AFM), which allows measuring forces at a nanoscale level with
a simultaneous mapping of tissue mechanics at high resolution. Importantly, AFM could
offer the possibility of describing physiological conditions and discriminating pathological
variations in neurodegenerative diseases [154]. Tissue engineering approaches have been
used to elucidate neural development and brain mechanical characteristics [155–158],
together with machine learning methods that are able to build constitutive artificial neural
networks (CANNs) that can account for viscoelastic effects of the brain [159] or predict
mechanical brain response to traumatic injury [160,161].

Alterations in the neural microenvironment are associated with disease development,
but it is unclear how these changes in cellular, biophysical and biochemical components
contribute to either healing or ongoing degeneration. Studies using magnetic resonance
elastography (MRE) that can be used for in vivo measurement of brain tissue viscoelasticity
have revealed stiffness differences in the aging brain; analyzing the brains of adults ranging
from 20 to 89, three independent studies observed a stiffness reduction of 15 Pa [162], 11
Pa [163] and 8 Pa [164] per year (with differences for different brain regions), reinforcing the
concept that structural changes occur in the healthy brain during aging and that these are as-
sociated with physiological loss of cognitive functions due to tissue deterioration [165–168].
These premises allow us to understand that, in neurodegenerative illnesses, the alteration
of tissues’ biomechanics plays a crucial role and is becoming increasingly important for
the clarification of the pathophysiology of these diseases [168,169]. Nevertheless, whereas
brain mechanical alterations correlate with aging and pathological states, it is unknown
to what degree they influence the pathology. New findings in the role of mechanosensing
channels such as Piezo1 and the Hippo pathway opened the road for the investigation of
mechanobiology alteration in peripheral tissues that could help clarify pathological events
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happening in neurodegenerative diseases [58,170]. For example, the maintenance of the
nervous system’s functionality relies on the correct organization of cytoskeletal proteins;
neurons are constantly subjected to many different biological, chemical and physical factors
that can cause cytoskeletal proteins’ instability, to the extent that some hereditary neurode-
generative diseases are linked to mutations in cytoskeletal genes that can be regarded as
a main cause of the diseases. Furthermore, mutations in different genes and alteration
of proteins involved in mechanosensing and mechanotransduction lead to cytoskeleton
instability which contributes to the disease’s pathogenesis (Table 2) [171].

Table 2. Mechanosensing/mechanotransduction related genes and proteins altered in neurodegener-
ative diseases.

Genes/Proteins Function in Homeostasis Type of Alteration Neurodegenerative
Pathology Ref.

α-Actinin Scaffolding protein involved in
Actin crosslinking Protein delocalization HD [172]

Alsin Rho Guanine
Nucleotide Exchange Factor

Guanine-nucleotide exchange
factor, regulates GTPase activity

Gene mutations
(loss of function) ALS [173]

Cofilin
When dephosphorylated

mediates
F-Actin disassembly

Increase/decrease in
protein activity AD [174–177]

Increase protein
activity HD [178]

Decrease in protein
activity PD [179]

DynActin Subunit 1
Mediates vesicles retrograde
transport by interacting with

Dynein

Gene mutations
ALS [173]

Perry
Syndrome [180]

Filamin A Scaffold protein required for
F-Actin cross-linking Altered conformation AD [181]

Histone-lysine
N-methyltransferase SETD2 Actin methylation Protein activity

inhibition HD [182]

Kindlin-2

Required for FAs assembly and
involved in ECM adhesion,

Actin stabilization, and
integrin-mediated signaling

Gene downregulation AD [183,184]

Kinesin 5A Motor protein involved in
spindle formation

Loss-of-function
mutations ALS [185]

KN motif and ankyrin repeat
domain-containing protein Actin polymerization regulation Gene mutations ALS [186]

Lamin A Structural protein of the nuclear
envelope Protein upregulation AD [187]

Lamin B
Structural protein of the nuclear

envelope
Protein upregulation HD [188]

Protein
downregulation PD [189]

Microtubule-associated
protein 2

Essential for microtubule (MTs)
assembly through crosslinking

with intermediate filaments

Protein
hyperphosphorylation AD [190,191]

Splicing Alteration HD [191,192]

Increased protein levels
in CSF ALS [193]

Myosin heavy chain Motor protein fundamental for
cellular contractility

Decreased protein
expression ALS [194]
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Table 2. Cont.

Genes/Proteins Function in Homeostasis Type of Alteration Neurodegenerative
Pathology Ref.

Myosin IIb Motor protein involved in Actin
organization

Co-localization with
TDP-25 ALS [195]

Neural cell adhesion
molecule L1

Axonal growth, neuronal
migration and differentiation

Protein
downregulation AD [196]

Neurofilament light and
heavy chains Neural intermediate filaments Gene mutations ALS [173]

Nucleoporins Mediate nucleocytoplasmatic
transport Protein sequestration ALS [197,198]

Piezo 1 Mechanosensitive ion channel,
mediates Ca2+ cellular influx Protein upregulation AD [199,200]

Profilin 1 Promotes Actin polymerization Gene mutations ALS [173]

Spectrin Structural protein of the cell
membrane

Protein binding by
α-Synuclein PD [201]

Tubulin Alpha 4A Microtubules component Gene mutations ALS [173]

Tubulin Microtubules constituent Protein acetylation PD [202]

AD, Alzheimer’s Disease; ALS, Amyotrophic Lateral Sclerosis; HD, Huntington’s Disease; PD, Parkinson’s
Disease.

Various genetic disorders caused by mutations in genes involved in mechanosens-
ing/mechanotransduction present neurological abnormalities, supporting their role in
neurodegeneration. For example, Filamin A mutations cause a range of diseases that
translate into different pathological phenotypes, including cognitive disability, neural mi-
gration abnormalities, and, more in general, neurological symptoms [203,204]; Myosin VA
mutations are correlated to Griscelli Syndrome Type 1, an autosomal recessive disease
that, among other symptoms, encompasses a series of neurological deficits [205,206]; ge-
netic variants of Actin β or Actin γ genes cause the Baraitser–Winter syndrome, which is
associated to neuronal migration impairment, brain malformations and developmental
delay [207,208].

In the following sections, we will look at the current understanding and recent studies
regarding brain and peripheral mechanotransduction and mechanosensing dysfunction in
some major neurodegenerative diseases, such as AD, HD, ALS and PD, with the aim of
understanding how these mechanisms influence the diseases’ development.

5. Mechanosensing and Mechanotransduction Pathways in Alzheimer’s Disease

AD is a non-curable neurodegenerative disease with the majority of cases (85–90%)
being sporadic and just 10–15% familial and caused by mutations in key genes such as
Amyloid Precursor Protein (APP), Presenilin 1 (PSEN1), and Presenilin 2 (PSEN2), involved
in the metabolic pathway of APP. Even though the key hallmarks of the disease are the
extracellular accumulation of β-Amyloid peptides (Aβ-42) and intracellular accumulation
of hyperphosphorylated Tau neurofibrillary tangles, evidence showed that AD pathogene-
sis has a significant molecular complexity that also affects peripheral tissues and suggests
that there are key molecular events that still need to be elucidated [209]. Among these,
mechanobiology alterations have recently been described at different levels in AD, thus
raising the interest in these pathways as potential new targets for AD research.

MRE analysis of AD patients’ brains revealed viscoelasticity abnormalities compared
to healthy controls, such as decreased hippocampal stiffness and viscosity [210] or more, in
general, softening of specific regions involved in the progression of the disease [211]. These
changes might be associated with molecular mechanisms that cause ECM degradation
and disruption of cytoskeletal architecture (amyloid deposition and neurofibrillary tangles
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formation) and, more significantly, could be used as a novel diagnostic tool [166]. Studies
have shown that brain ECM composition is altered in AD (Figure 3a). For example, an im-
portant role has been given to perineuronal nets (PNNs), specialized structures containing
important structural elements such as chondroitin sulfate proteoglycan (CSPG), Tenascin-R,
Hyaluronic Acid, Laminin and Elastin that surround neurons and are fundamental for
synaptic stability [212–214]. Different studies described the alteration of these structures
and observed that PNNs deteriorate following diverse pathological phenomena such as
AD-related microglia chronic inflammation state; the release of metalloproteinase causes
the cleavage of PNNs’ components and therefore leaves neurons without their protective
scaffold and more susceptible to neurotoxic agents such as Aβ plaques (Figure 3a) [214]. Fur-
thermore, changes in the sulfation pattern of PNNs’ chondroitin sulfate-glycosaminoglycan
(CS-GAG) have been linked to p-Tau accumulation and pathology progression in AD
patients, suggesting that this could be an early hallmark of the disease (Figure 3a) [213].
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Figure 3. Biochemical pathways of cellular mechanosensing and mechanotransduction involved
in Alzheimer’s Disease pathological mechanisms related to (a) The extracellular matrix (ECM);
(b) Mechanosensitive Piezo channels; (c) Cellular adhesion and YAP signaling; (d) Cytoskeletal
architecture; and (e) Nucleoskeletal organization (see main text for details). Red arrows up ↑
or down ↓ indicate up or downregulation. ACh, Acetylcholine; AD, Alzheimer’s Disease; APP,
Amyloid Precursor Protein; Aβ42, Amyloid Beta; Ca2+, Calcium ion; ECM, extracellular matrix;
FAs, focal adhesions; FERMT2, Fermitin family homolog 2; FLNA, Filamin A; MAP2, Microtubule-
associated protein 2; MIF, macrophage migration inhibitory factor; NFTs, neurofibrillary tangles;
PNNs, perineuronal nets; ROCK, Rho-associated protein kinase; TLR4, Toll-like receptor 4; YAP,
Yes-associated protein 1; α7nAChR, α7 nicotinic acetylcholine receptor.
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Neuroglia and microglia cells are influenced by the stiffening of the surrounding
environment caused by amyloid plaque deposition [215–217]. For example, studies have
proven that astrocytes respond to the mechanical stimuli of amyloid plaques deposition
by upregulating the mechanosensitive channel Piezo1, which seemed to cause the release
of intracellular Ca2+ ions and the inhibition of pro-inflammatory cytokine release in AD
rat models (TgF344-AD) (Figure 3b) [199,200]. Activation of Piezo1 has also been linked to
CNS demyelination, while its inhibition with GsMTx4 hampered this phenomenon [57].
Although the role of up/downregulation of Piezo1 in neurodegenerative diseases still has
to be fully elucidated, data suggest that this channel could be a new important therapeutic
target for AD and other neurodegenerative diseases [216–218]. Other evidence of the effect
of mechanical dysregulation in AD comes from the analysis of the Hippo pathway and,
in particular, from the activation of its effector YAP [216]. Recent studies highlighted
that expression of Hippo pathways components is downregulated in post-mortem human
AD brains [219], and YAP downregulation is thought to occur at the early stages of AD,
contributing to amyloid plaques formation and Tau hyperphosphorylation, suggesting
an upstream regulator role in the AD molecular pathogenic pathways (Figure 3c) [217].
In a recent study, YAP downregulation has been correlated to TEAD/YAP-transcription-
dependent-necrosis (TRIAD) in neurons of AD mice models after sequestration into intra-
cellular amyloid aggregates, providing new insight into the early molecular processes that
occur in AD (Figure 3c) [219,220].

Cellular mechanical homeostasis is impaired at several levels in AD. FAs have been
implicated in AD’s etiology. In particular, genome-wide association study (GWAS) ap-
proaches revealed that Fermitin family homolog 2 (FERMT2 or Kindlin-2) is a genetic AD
risk factor [183]. FERMT2 is required for FAs assembly and is involved in ECM adhesion,
Actin stabilization, and integrin-mediated signaling, and recently has been demonstrated
to interact with APP and participate in the regulation of axonal growth and synaptic func-
tion [184]. The FERMT2 allele linked with increased AD risk is downregulated by miRNAs
overexpressed in AD brains (such as miR-4504), and this could affect AD pathogenesis
(Figure 3c) [184].

According to multiple studies, cell adhesion molecules (CAMs) expression is altered
in AD, and this might be related to pathogenic processes such as neuroinflammation and
amyloid metabolism [221–223]. CAMs correct expression is fundamental for mediating
cells’ interaction with the surrounding microenvironment. Their activation is critical for
healthy intracellular signaling, and their precise control can decide the emergence of
pathogenic conditions [224]. A recent study highlighted the importance of the Neural
cell adhesion molecule L1 (L1CAM or CD171) in AD brains; L1CAM has been linked
with several key mechanisms in neural homeostasis, including axonal growth, neuronal
migration and differentiation, and has been shown to have a protecting function in AD
by binding to Aβ and favoring its clearance, most likely by inducing the expression of
the macrophage migration inhibitory factor (MIF) (Figure 3c) [196]. It is important to
consider that the cytoskeletal structure completely deteriorates as the pathology progresses.
The formation of NFTs caused by tau hyperphosphorylation is linked to microtubule
disassembly leading to loss of cytoskeletal integrity which promotes their clustering, thus
worsening the cells’ pathological phenotype (Figure 3d) [190]. Furthermore, other proteins
associated with microtubules have been associated with cytoskeletal disruption, such as
microtubule-associated protein 2 (MAP2), which can be abnormally phosphorylated and
mediate neural cell death in AD (Figure 3d) [190].

Another aspect proving the importance of mechanobiology alterations in AD patho-
genesis is the encouraging results from the Phase 1-2a-2b trials of Simufilam (PTI-125), a
small molecule targeting an altered form of Filamin A found in the AD brain [225,226].
Filamin A (FLNA) is a scaffold protein that binds to a variety of partners (including recep-
tors and channels) and is required for Actin filament cross-linking, making it an important
participant in cellular stiffness regulation and stress response [39]. It has been discovered
that a particular altered conformation of FLNA, deduced by its isoelectric focusing point
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(pI) shifting in transgenic mice AD models and post-mortem human AD brain, is correlated
to two major pathogenic pathways in AD mediated by its association with soluble Aβ42:
(1) α7 nicotinic acetylcholine receptor (α7nAChR) activation, which causes the activation
of kinases cascade resulting in tau hyperphosphorylation and NFTs formations (Figure 3d);
and (2) persistent activation of toll-like-receptor 4 (TLR4) that results in excessive release of
proinflammatory cytokines, thus contributing to neuroinflammation (Figure 3d) [181,227].
Of note, in November 2021, two Phase 3 trials were started with the aim of testing whether
targeting altered FLNA and inhibiting its binding with Aβ could improve cognitive perfor-
mance in AD patients (NCT04994483 and NCT05026177) [228,229].

As previously mentioned, cytoskeletal architecture loss is a crucial factor in AD patho-
genesis. Numerous cellular functions rely on the proper organization of microtubules,
intermediate filaments and microfilaments. The latter is defined by Actin dynamics and
the organization of its globular form (G-Actin) in filaments (F-Actin). The continuous
transition between these two forms is a process spatially and temporally regulated by
several stimuli, and appropriate oscillation of polymerization and depolymerization events
regulates key cellular processes such as migration, cellular division and intracellular traf-
ficking. Among the proteins that regulate this event, Cofilin is an Actin binding protein
that mediates (in its dephosphorylated state) Actin disassembly, thereby increasing in-
tracellular G-Actin available for the formation of new filaments and promoting Actin
filament turnover, and has been shown to play an important role in neural development
and neurodegeneration [230,231]. Studies have elucidated the role of Cofilin in AD. For
example, Rush et al. observed an increase in Cofilin phosphorylation in mice models and
AD patients, which led to synaptic plasticity loss and synaptotoxicity by inducing abnormal
Actin stabilization, demonstrating that this could be a result of Rho-associated protein
kinase (ROCK) pathway activation in concert with Aβ cellular exposure (Figure 3d) [174].
In recent years, many research groups have studied the relationship between AD hallmarks
and aberrant Cofilin activation/deactivation, and while some contradictory results have
been presented over the years, it is clear today that Cofilin regulation and Cofilin–Actin
rods formation are key molecular events occurring in AD at a cellular level [175–177].
Notably, cytoskeletal disruption can be mediated by the accumulation of the prion protein
observed in AD brains and by the prion-like propagation of Aβ [232–235].

Dysfunction of cell mechanics also extends to the nucleoskeleton. It is widely rec-
ognized that nucleoskeletal abnormalities and abnormal laminar protein expression are
linked to the development of neurodegenerative diseases such as AD [236]. The nuclear
structure is defined by an array of intermediate filament proteins known as lamins (Lamin
A, C, B1, and B2), which are expressed differently in each cell type and serve as a scaffold
for chromatin stabilization and thus are tightly linked to gene expression regulation, as
well as giving the nucleus shape and rigidity [237,238]. Many studies have investigated
nucleoskeletal changes occurring in AD that could be contributing factors to the devel-
opment of the disease or a result of pathogenic processes; either way, the involvement of
lamins dysregulation is now considered a well-defined disease hallmark that could serve
as an early biomarker (Figure 3e) [187,188,239–243]. In AD brains, for example, Lamin
A expression is increased, resulting in greater nuclear stiffness and decreased chromatin
mobility (Figure 3e) [187]. This has been proposed to have a pivotal role in cell cycle re-
entry [240], a phenomenon observed in AD that was previously thought to be a deleterious
event associated with neuronal death but has recently been proposed to have a protective
function against Aβ toxicity [244,245].

6. Mechanosensing and Mechanotransduction Pathways in Huntington’s Disease

HD is a neurodegenerative disorder caused by mutations in the Huntingtin (HTT)
gene; an aberrant expansion of the Cytosine/Adenine/Guanine (CAG) triplet in exon 1
produces HTT proteins with polyglutamine domains which become pathological when
exceeding 35 repeats. HTT mutation is dominantly inherited and has a different serious-
ness depending on the number of repeats; low penetrance, moderate phenotype, and
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late-onset are associated with 36–39 repetitions, complete penetrance and late-onset are
associated with 40 repeats, juvenile-onset is associated with 60 repeats, and pediatric-onset
is associated with >80 repeats [246]. HD manifests with the progressive development of
choreiform involuntary movements, dystonia, dementia, psychiatric disorders and brain
atrophy, which lead to death 10–30 years after the diagnosis, depending on the severity of
the disease. HTT is expressed ubiquitously in the human body, but its higher expression is
in the brain. Despite the lack of a specific definition of HTT function, it has been demon-
strated that HTT is involved in CNS development, synaptic activity, axonal trafficking and
cell survival, and hence its mutation is associated with neuronal death [247,248]. Because
HTT appears to have a scaffolding role for many proteins, a putative role of HTT might
be to coordinate many biological activities. As a result, its mutation disrupts physiologi-
cal protein–protein interactions causing HTT to accumulate intracellularly and affecting
essential biological processes (Figure 4a,b) [248,249].
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Figure 4. Biochemical pathways of cellular mechanosensing and mechanotransduction involved in
Huntington’s Disease pathological mechanisms: (a) Molecular mechanism of mutant Huntingtin
(mHTT) aggregates formation and their effect on cytoskeletal homeostasis and Actin dynamic, and
on (b) nuclear architecture and functioning (see main text for details). Red arrows up ↑ indicate
upregulation. Me, Methyl; mHTT, mutant Huntingtin; PolyQ, Polyglutamine; RHOA, Ras homolog
family member A; ROCK, Rho-associated protein kinase; SETD2, Histone-lysine N-methyltransferase
SETD2.

Cofilin–Actin rods formation has been reported in HD. The observation of nuclear
co-localization of mutant HTT and Cofilin–Actin rods in mice indicated that mutant HTT
could play a role in cytoskeletal reorganization after external stimuli such as heat or stress
(Figure 4b) [177]. Actin stabilization and remodeling appear to be crucial in HD. The sus-
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tained activation of the RhoA/ROCK signaling pathway has been linked to the formation
of HTT aggregates and the pathological regulation of its downstream cytoskeletal proteins,
such as Cofilin (Figure 4a) [178]. HTT intracellular accumulation has been demonstrated
to disrupt epigenetic pathways, particularly those involving Actin methylation. Actin
polymerization and cell migration have been shown to be dependent on correct Actin
methylation by Histone-lysine N-methyltransferase SETD2 (SETD2), which only occurs
when SETD2 interacts with HTT; mutant HTT appears to sequester SETD2 and inhibit its
function, exacerbating pathological mechanisms by interfering with key cellular mecha-
nisms like chromatin regulation and cell migration [182]. In another recent work, Actin
dynamic perturbation has been linked to HD. Primary fibroblasts from HD patients have
been shown to have a unique nuclear morphology that is linked to a lack of nuclear Actin
caps, which inhibit cell motility (Figure 4a,b) [172]. In particular, abnormal Actin cap
formation could be due to aberrant interaction between mutant HTT and α-Actinins, a
component of the perinuclear Actin cap [250]. In this model, HTT controls the distribution
of α-Actinins and integrates molecular growth pathways to Actin assembly and adhesion
dynamics (Figure 4a,b) [172]. Lamin B, engaged directly in Actin cap formation as an-
choring for F-Actin, plays a crucial role in HD nuclear homeostasis; neurons from the HD
mouse model showed an increase in Lamin B1 expression, which correlated with nuclear
morphology and transport alterations that were restored after Lamin B1 normalization
(Figure 4b) [188].

7. Mechanosensing and Mechanotransduction Pathways in Amyotrophic Lateral
Sclerosis

ALS is a neurodegenerative disease that usually has an adulthood onset and a rapid
progression, with 90% of cases considered sporadic while up to 10% are familial (fALS) and
caused by mutations in mutations in genes with a wide range of functions [251,252]. It is
characterized by loss of both upper and lower motor neurons due to degeneration of the
motor cortex; when neural signaling is impaired, muscle weakening leads to progressive
paralysis and results in death from respiratory failure around 3 to 5 years after symptoms
manifest. To date, there is not a resolutive therapeutic approach for ALS because its etiology
and pathogenic molecular mechanism are still unclear. Despite the fact that various studies
have identified pathways in neurons and systemic districts that are implicated in ALS
throughout the years, it is still unclear which pathways are a result of the disease and which
are a cause, but it is obvious that they impact a range of motor neuron activities [251–253].
Among the genes involved in fALS, the most common are mutant superoxide dismutase
1 (SOD1) chromosome 9 open reading frame 72 (C9orf72), TAR DNA binding proteins
(TDP43), and fused in sarcoma (FUS). In particular, mutant SOD1, TDP-43, and FUS proteins
have a strong propensity to form aggregates that consist of intracellular inclusions with a
tendency to form prion-like propagating fibrils, which disrupt cell homeostasis on multiple
levels [253,254]. It is known that aggregation of these protein cause oxidative stress, which
affects cellular organelles such as the ER, Golgi and mitochondria by interfering with their
homeostatic metabolic functions. SOD1 accumulation induces reactive oxidative species
(ROS) production via diverse mechanisms such as sequestration of key chaperones (i.e.,
Hsp70) and alteration of membranes interaction, leading to disruption of cell bioenergetics
and abnormal autophagy activation resulting in neurodegeneration [255–258]; as the ER
is involved in protein biosynthesis and many chaperones are present in this organelle, its
malfunctioning is directly linked to the propagation of protein aggregation and misfolding
(Figure 5a) [254]. Studies regarding Tar DNA-binding protein 43 (TDP-43), which accu-
mulates in certain neurodegenerative diseases such as ALS and Frontotemporal dementia
(FTD), showed that it was found in mitochondria where it led to aberrant morphology and
mitophagy mediated by Parkin, increased production of ROS, mitochondrial membrane
permeabilization and impaired oxidative phosphorylation [195,259]. It was proven that
the C-Terminal fragments (TDP-25) co-localized with Myosin IIb in mitochondria and that
Myosin IIb inhibition resulted in the buildup of insoluble TDP-25 in the mitochondria and
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decreased the survival of neuronal cells, which could be a possible therapeutic target [195].
Of note, the RhoA/ROCK signaling pathway has been shown to be overactive in animal
models and patients with ALS, contributing to motor neurons’ death (Figure 5b) [178].
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Figure 5. Biochemical pathways of cellular mechanosensing and mechanotransduction involved in
Amyotrophic Lateral Sclerosis (ALS) pathological mechanisms: (a) Pathogenic molecular mechanism
of mutant (*) Superoxide Dismutase 1 (Sod1*) and effects on cellular homeostasis; (b) Effect of
Sod1* and mutant C9orf72 dipeptides aggregation on cellular adhesion, RhoA/ROCK signaling and
cytoskeletal structure; (c) Biochemical mechanotransduction pathways affecting cytoskeletal and
nuclear homeostasis evidenced in ALS (see main text for details). Red arrows up ↑ or down ↓ indicate
up or downregulation. C9Oorf72, Chromosome 9 open reading frame 72; Ca2+, Calcium ion; DCTN1,
Dynactin Subunit 1; DSH, Dishevelled; FAs, focal adhesions; HSP70, Heat shock protein 70; KANK,
KN motif and ankyrin repeat domain-containing protein 1; KIF5A, cytoskeleton-related proteins such
as Kinesin; LRP5, LDL Receptor Related Protein; NCT, nucleocytoplasmic; PFN1, Profilin 1; SOD1*,
mutant Superoxide Dismutase 1; WNT, Wingless/Integrated.

As chaperone assisted proteostasis is critical for mechanosensing and mechanotrans-
duction mechanisms, protein aggregation is a key component in the study of the rela-
tionship between ALS and changes in cell mechanics [260]. For example, a recent study
correlated dipeptides produced by pathogenic C9orf72 mutation with changes in cytoskele-
tal architecture and FAs maturation, which led to increased cellular stiffness by increasing
intracellular calcium concentration (Figure 5b) [260]. The involvement of the cytoskele-
ton in the development of ALS has been supported by GWAS identification of muta-
tions on cytoskeleton-related proteins such as Kinesin 5A (KIF5A), required for axonal
transport, and the Actin polymerization regulating protein KN motif and ankyrin repeat
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domain-containing protein 1 (KANK1), which were shown to correlate with disease sever-
ity (Figure 5c) [185,186]. The preservation of correct synaptic functioning depends on
the dynamic cytoskeletal regulation of molecules and organelles’ movement through the
axon, which is fundamental for the motor neurons’ homeostasis. In this panorama, other
genes linked to both familial and sporadic ALS affecting cytoskeletal dynamics are: (i)
Alsin Rho Guanine Nucleotide Exchange Factor (ALS2), involved in the disruption of
endosomal dynamics and induction of neurite outgrowth [261]; (ii) DynActin Subunit 1
(DCTN1), which interacts with dynein and microtubules to regulate intracellular transport
and when mutated hinders synapsis formation of motor neurons (Figure 5c) [262]; (iii)
Profilin 1 (PFN1) that promotes Actin polymerization and when mutated interferes with the
autophagic pathway and forms intracellular aggregates (Figure 5c) [263]; (iv) intermediate
filament genes such as neurofilament light and heavy chains, mutated in patients with
ALS [264]; and (v) Tubulin Alpha 4A that was found to be less transcribed in the brain and
spinal cord of patients with both familial and sporadic ALS (Figure 5c) [173,265,266].

Tubulin acetylation is involved in the pathogenic mechanisms of ALS since its dysreg-
ulation perpetuates SOD1 aggregation and hinders axonal transport [267]. The importance
of cytoskeletal architecture also passes by the maintenance of proper actomyosin complexes,
which are especially important in ALS due to their function in the motor system; it has
been shown that primary myotubes from transgenic ALS mice have different mechanical
characteristics compared to WT with an increase in elastic modulus values that appear to
occur early in the disease pathogenesis, with an increase in Actin and a decrease in Myosin
gene expression (Figure 5c) [194].

Actin dynamic homeostasis has been associated with nucleocytoplasmic transport de-
fects and correlated with motor neurons dysfunction in ALS caused by mutations in PFN1
and C9orf72 (Figure 5c) [268]. Modulation of Actin polymerization disrupts the nuclear
pore complex (NPC), resulting in neuronal degeneration. This phenomenon might be par-
ticularly important to the disease’s etiology, bringing up novel treatment targets for various
forms of ALS [269]. Indeed, malfunctioning of NPC mediated transport was observed in
primary and iPSCs-derived neurons with mutant or aggregated TDP-43 protein where nu-
cleoporins and transport factors are sequestered, thus impairing RNAs import and export
and directly linking protein accumulation and nucleocytoplasmic transport [197,198,270].
Mutations in ALS may alter the nuclear structure at different levels, such as the nuclear
lamina, Nups and NPC, Ran and its regulators, all resulting in defective nucleocytoplasmic
transport (Figure 5c) [271].

Finally, among the soluble intermediates involved in mechanical stimuli transduction,
the WNT pathway, which among other functions is important in mediating cellular response
to external loading and strain, has been shown to be hyperactivated in the spinal cord of
the SOD1G93A mouse model, though the effect of this is not yet clear (Figure 5c) [74,267].

8. Mechanosensing and Mechanotransduction Pathways in Parkinson’s Disease

PD is one of the most prevalent neurodegenerative diseases, second only to AD,
the incidence of which has been rapidly increasing over the last decade [272,273]. The
main symptoms of PD are motor-related (e.g., tremor and bradykinesia), accompanied
by non-motor symptoms such as depression, and have an onset that increases with age
(5–10% before 50 years old, 25% under 65 years old). The etiology of the disease is highly
complex, encompassing abnormal accumulation of the α-Synuclein protein, mitochondrial,
lysosomal, and vesicle transport abnormalities, disruption of synaptic trafficking, and
neuroinflammation, all leading to the death of dopaminergic neurons, especially in the
substantia nigra (Figure 6a). Only 10–15% of PD cases have a genetic cause, with the
principal mutations involving monogenic causes such as Synuclein Alpha (SNCA), VPS35
Retromer Complex Component (VPS35), PTEN Induced Kinase 1 (PINK1), Parkinsonism
Associated Deglycase (PARK7), Parkin RBR E3 Ubiquitin Protein Ligase (PRKN) and
Leucine Rich Repeat Kinase 2 (LRRK2) and other genetic variants that contribute to the
development of the pathology [274]; SCNA, PRKN and LRRK2 are linked to microtubule
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destabilization, and in different studies, the co-localization of α-Synuclein and Tubulin has
been observed in pathological inclusions of α-Synuclein such as Lewy bodies [275–277]. In
this regard, α-Synuclein/Tubulin interaction has been discussed for several years now, but
the mechanisms underlying are still not completely understood; most likely, microtubule
alterations influence the development and storage of α-Synuclein aggregates, whereas, at
the same time, α-Synuclein overexpression causes cytoskeletal microtubule impairments
and neurodegeneration (Figure 6a) [277].
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Figure 6. Biochemical pathways of cellular mechanosensing and mechanotransduction involved in
Parkinson’s Disease pathological mechanisms: (a) Pathogenic molecular mechanism of α-Synuclein
aggregation and Lewy bodies formation and effects on cellular homeostasis, microtubules dynamic,
nucleoskeletal architecture, and on (b) cytoskeletal Actin dynamic and its involvement in mitochon-
dria homeostasis and α-Synuclein endocytosis (see main text for details). Red arrows up ↑ or down
↓ indicate up or downregulation. AC, Acetyl; Ca2+, Calcium ion; CAM, cell adhesion molecules;
DRP1, Dynamin-1 like protein; HSPGs, Heparan sulfate proteoglycans; LIMK1, LIM Domain Kinase
1; MyoVI, Myosin VI; Parkin RBR E3 Ubiquitin Protein Ligase; PIN K, PTEN Induced Kinase 1;
RHOA, Ras homolog family member A; ROCK, Rho-associated protein kinase; SIRT2, Sirtuin 2; UB,
Ubiquitin; PRKN, Parkin RBR E3 Ubiquitin Protein Ligase; α-Syn, α-Synuclein.
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In a recent study, the toxin 2,5-hexanedione (2,5-HD) was used to induce neurodegen-
eration in fibroblasts from PD donors with mutations in the PRKN gene and in mice models,
and alterations in the stability and architecture of microtubules were observed [278]. In
particular, microtubules were shown to accumulate as a consequence of network fragmen-
tation and to have a different pattern of post-translational modification (detyrosination and
acetylation), an index of impaired tubulin dynamic [278].

Tubulin acetylation has been recognized as a central regulator of cellular homeostasis
in neurodegenerative diseases as in vitro and in vivo PD models’ axonal transport was
demonstrated to be restored by increasing microtubule acetylation. Studies using Sirtuin
2 (a tubulin deacetylase) inhibitors confirmed that induction of microtubule acetylation
has a protective role from α-Synuclein toxicity, reducing astrocytes’ reactivity and favor-
ing dopaminergic neurons’ survival (Figure 6a) [202,275]. Together with Tubulin, other
cytoskeletal components have been proven to have a central role in PD pathogenesis.
For example, Spectrin binds α-Synuclein leading to Actin dynamic impairments and mi-
tochondria loss of function through delocalization of Drp1; in mice and post-mortem
human brains with α-Synucleinopathy, it was shown that Spectrin overexpression rescues
α-Synuclein toxicity and restores cytoskeletal architecture homeostasis, demonstrating
that α-Synuclein/Spectrin association causes Actin filaments’ pathogenic changes and
leads to consequent neurotoxicity, and offering a new potential therapeutic target (Fig-
ure 6b) [201]. Additionally, transgenic flies with α-Synuclein accumulation showed the
presence of Actin–Cofilin rods and increased Actin filaments in brains (Figure 6b) [201].
These rod-like structures were seen in some particular brain regions of PD animal models
harboring α-Synuclein mutations and in patients with Lewy–Bodies dementia, confirming
the fundamental role of cytoskeletal correct Actin architecture and Cofilin activity for
maintaining neural correct functioning [179]. Moreover, mutations in the DCTN1 gene
cause a particular form of PD called Perry Syndrome, a disease characterized by levodopa
resistance, weight reduction, mental confusion and central respiratory distress, in which
DCTN1 loses its affinity to microtubules and results in impaired neuronal transport [180].

The role of cytoskeletal homeostasis in PD pathogenesis is not limited to Actin’s orga-
nization but also relates to other important cellular architectural components. For instance,
a recent study indicated a relationship between Myosin VI and impaired mitochondria
activity, which is particularly significant considering that mitochondria are extremely dy-
namic structures that are associated with several cellular activities and that mitochondrial
failure has gained an increasingly important role in the pathogenesis of neurodegenerative
disorders [123,279]. Mitochondrial homeostasis is fundamental for preserving cellular
homeostasis, which is accomplished by eliminating ubiquitinated, damaged mitochondria
by PRKN-mediated mitophagy. Myosin VI associates with the negative end of Actin fil-
aments, binds to PRKN to create a complex, and is then specifically drawn to defective
mitochondria through its ubiquitin-binding domain; in order to surround these mito-
chondria with diminished respiratory capacity and oxidative phosphorylation potential,
Myosin VI triggers the formation of F-Actin enclosures that create a physical barrier with
the rest of the cytoplasmatic content and inhibit their fusion with healthy mitochondria
(Figure 6b) [279–281]. Of note, Myosin VI deficiency causes mitophagosomes accumulation
and mitochondrial volume increase (Figure 6b) [279]. Mitochondrial dysfunction has been
observed in α-Synucleinopathy animal models and post-mortem human brains consequent
to a-Synuclein accumulation and Actin reorganization through Spectrin and altered Drp1
localization; Drp1 overexpression in animal models was sufficient to rescue motor deficit
and mitochondrial homeostasis (Figure 6b) [201].

In another study, Myosin-VIIB was proposed to be fundamental in the endocytosis of
α-Synuclein fibrils. It was shown that Myosin-VIIB binds Actin and stimulates its assembly
and stabilization within membranes’ heparan sulfate proteoglycans (HSPGs), allowing the
formation of protrusions that ultimately surround cargos forming clathrin-coated pits; with
the intervention of dynamin, these protrusions are cut and vesicles are released inside the
cytoplasm mediating the entrance of α-Synuclein fibrils fibers (Figure 6b) [282].
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Mechanobiology alterations that contribute to the pathogenesis of PD have been
described at the nuclear level. Considering the established assumption that senescent
cells exhibit nuclear lamina alterations which lead to morphological and gene expression
changes [283,284], studies investigated laminar dysfunctions in PD and suggested a corre-
lation with its pathophysiology. Reduction of Lamin B1 was observed in PD astrocytes of
post-mortem human brain and toxin-treated mice but not in other surrounding cell types,
suggesting that senescence may be a contributing factor to PD (Figure 6a) [189,285].

Regarding soluble mechanical transducers involved in the pathogenesis of PD, several
works demonstrated that activation of the RhoA signaling pathway has an important role
in dopaminergic loss and axonal disruption in PD [178].

In the presence of an increased intracellular Calcium influx, the calcium-calmodulin
axis activates and starts a phosphorylation cascade that leads to activation of RhoA and its
effector ROCK that in turn activates the LIM Domain Kinase 1 (LIMK1), a Cofilin inhibitor;
when Cofilin activity is impaired, neurons undergo Actin dynamic deregulation and loss
of cytoskeletal architecture, which may contribute to axonal degeneration and loss of
dopaminergic neurons in PD (Figure 6b) [286]. Moreover, it was shown that in hIPSCs
harboring mutations in PARK2, the RhoA pathway was significantly increased and was
proposed to be linked to impaired migration and neuritogenesis, as its inhibition rescued
this pathogenic phenotype [287]. As a matter of fact, transient receptor potential channels
that are involved in ions’ transport, such as calcium, and that can be activated by a plethora
of mechanical stimuli, are today considered promising targets for PD treatments [288].

9. Concluding Remarks

In this review, we discussed recent evidence with the intent of clarifying how
mechanosensing and mechanotransduction mechanisms are involved in the pathogen-
esis of neurodegenerative diseases. In particular, our interest was to focus our attention
on those diseases that encompass metabolic accumulation of mutated proteins and have
as primary characteristics the formation of pathological intracellular aggregates. This is
because the presence of intracellular inclusion is believed to affect cells’ mechanical charac-
teristics which, in turn, deeply influence cellular biochemical signaling and, in this way,
participate in the pathogenic mechanism of neurodegenerative diseases.

We presented several important works that helped elucidate how cells’ homeostasis is
inextricably linked to the balance of their mechanical properties, which highlighted that the
study of cellular organelles’ homeostasis and dysfunction is important to understand the
mechanotransduction’s axes. Although part of the crosstalk mechanisms between soluble
signaling molecules and mechanical forces has been elucidated, much more research
still needs to be done to understand to what extent mechanobiology alterations can be
considered the cause or result of some pathological features. One of the hurdles that
make this question particularly hard to answer is the limitation of experimental methods
available to study in vitro single-cell responses to internal forces’ changes. Indeed, most
of the research has concentrated on mechanotransduction response related to alterations
of external environments through the use of biomaterials and novel 3D culture systems.
Thanks to these bio-hybrid systems and gene editing techniques, some pathways of the
outside–inside molecular signaling in response to mechanical stimuli have been described.
However, little is known about how cells respond to changes in internal mechanical
characteristics and how these influence cellular behavior and gene expression. Notably,
the clarification of these processes would be of great importance in the perspective of
identifying new molecular key players that could offer novel therapeutic targets for complex
neurodegenerative diseases for which there is still no effective treatment.

Together with the previously mentioned phase 3 clinical trials for AD involving the
targeting of altered FLNA and its binding with Aβ [228,229], several emerging and promis-
ing therapeutic strategies for neurodegenerative diseases are targeted to the prevention
or elimination of the aggregation events that occur extra- and intra-cellularly [289–294].
Nevertheless, the identification of disease-modifying agents is still not accomplished, which
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reinforces the necessity of a deeper comprehension of biochemical pathways of cellular
mechanosensing/mechanotransduction mechanisms and their role in neurodegenerative
disease pathogenesis.
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