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A B S T R A C T   

Sphingolipid metabolism affects prognosis and resistance to immunotherapy in patients with 
cancer and is an emerging target in cancer therapy with promising diagnostic and prognostic 
value. Long noncoding ribonucleic acids (lncRNAs) broadly regulate tumour-associated metabolic 
reprogramming. However, the potential of sphingolipid metabolism-related lncRNAs in pancre-
atic adenocarcinoma (PAAD) is poorly understood. In this study, coexpression algorithms were 
employed to identify sphingolipid metabolism-related lncRNAs. The least absolute shrinkage and 
selection operator (LASSO) algorithm was used to develop a sphingolipid metabolism-related 
lncRNA signature (SMLs). The prognostic predictive stability of the SMLs was validated using 
Kaplan–Meier. Univariate and multivariate Cox, receiver operating characteristic (ROC) and 
clinical stratification analyses were used to comprehensively assess the SMLs. Gene set variation 
analysis (GSVE), gene ontology (GO) and tumor mutation burden (TMB) analysis explored the 
potential mechanisms. Additionally, single sample gene set enrichment analysis (ssGSEA), ES-
TIMATE, immune checkpoints and drug sensitivity analysis were used to investigate the potential 
predictive function of the SMLs. Finally, an SMLs-based consensus clustering algorithm was uti-
lized to differentiate patients and determine the suitable population for immunotherapy. The 
results showed that the SMLs consists of seven sphingolipid metabolism-related lncRNAs, which 
can well determine the clinical outcome of individuals with PAAD, with high stability and general 
applicability. In addition, the SMLs-based consensus clustering algorithm divided the TCGA- 
PAAD cohort into two clusters, with Cluster 1 showing better survival than Cluster 2. Addition-
ally, Cluster 1 had a higher level of immune cell infiltration than Cluster 2, which combined with 
the higher levels of immune checkpoints in Cluster 1 suggests that Cluster 1 is more consistent 
with an immune ‘hot tumor’ profile and may respond better to immune checkpoint inhibitors 
(ICIs). This study offers new insights regarding the potential role of sphingolipid metabolism- 
related lncRNAs as biomarkers in PAAD. The constructed SMLs and the SMLs-based clustering 
are valuable tools for predicting clinical outcomes in PAAD and provide a basis for clinical se-
lection of individualized treatments.   
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1. Introduction 

Pancreatic cancer is currently the seventh major cause of cancer-related deaths globally, and the mortality incidence rate and 5- 
year survival rate are similar at 9 %–11 %. Thus, pancreatic cancer significantly affects human life and health [1,2]. Pancreatic 
cancer is extremely malignant, and approximately 90 % of all pathological types are pancreatic adenocarcinoma (PAAD). A study 
covering multiple populations showed an increasing trend in the incidence and mortality of pancreatic cancer [3]. Similarly, another 
study comprising populations from European Union countries showed that by 2025, pancreatic cancer will be the third major cause of 
cancer-related death [4]. Additionally, owing to the insidious onset of PAAD and the atypical early symptoms, most patients have 
advanced or metastatic tumors at the time of diagnosis. Therefore, it is vital to identify excellent biomarkers that can accurately stratify 
individuals with PAAD and determine the prognosis and biological behavior of different patient subgroups. 

Sphingolipids are key structural components of cell membranes and have a critical function in maintaining the fluidity and barrier 
capacity of the cell membrane [5,6]. Sphingolipid metabolism is involved in cell proliferation, growth, apoptosis, lysosomal ho-
meostasis and other biological processes and plays an essential role in tumor cell invasion, metastasis and immune regulation [7–9]. 
Additionally, sphingolipid metabolism regulates the malignant biological behavior of tumors through complex cellular signaling 
pathways [10]. Recent studies have reported that sphingolipid metabolism can mediate the interaction between lysosomes and 
mitochondria, leading to significant cell death in pancreatic cancer cells and slowing tumor growth in vivo [11]. Moreover, 
ceramide-1-phosphate transfer protein has been demonstrated to promote the proliferation of pancreatic cancer cells via the sphin-
golipid metabolite ceramide and AKT signaling pathway [12]. Therefore, exploring the function of different signaling nodes in 
sphingolipid metabolism with respect to pancreatic cancer development is important for identifying and developing novel molecular 
targets and biomarkers. 

With advances in genome sequencing, elucidating the vital role of long noncoding ribonucleic acids (lncRNAs) in cancer is a hot 
topic in the study of tumor pathogenesis. lncRNAs do not directly encode proteins but act as major regulators of gene regulation, 
exerting their biological functions through epigenetic, transcriptional and posttranscriptional regulation. lncRNAs are engaged in a 
diverse range of biological processes and regulate tumorigenesis, angiogenesis and immunomodulation [13–16]. Moreover, abnormal 
lncRNA expression and mutations have been shown to be closely related to tumor prognosis and drug resistance, emphasizing their use 
as novel biomarkers and potential therapeutic targets for cancer [17,18]. Additionally, there is growing evidence that lncRNAs are 
engaged in the regulation of tumor-related metabolic reprogramming, such as glucose, glutamine and lipid metabolism [19–22]. 
However, the regulatory functions and applications of sphingolipid metabolism-associated lncRNAs in PAAD remain unexplored. 

Here, we aimed to construct a novel sphingolipid metabolism-related lncRNA signature (SMLs) that can predict the prognosis of 
individuals with PAAD, thereby providing a clinical basis for personalized treatment options. Furthermore, SMLs-based consensus 
clustering could aid in stratifying patients into different clusters, differentiating patients into distinct immune subsets and conse-
quently facilitating the selection process of the choice of immunotherapy. 

2. Materials and METHODS 

2.1. Dataset selection 

Transcriptome profiling, simple nucleotide variation (SNV) and clinicopathological parameters of individuals with PAAD were 
collected from the TCGA-PAAD cohort in the Cancer Genome Atlas (TCGA) repository (https://portal.gdc.cancer.gov/repository). 
Cases with both transcriptomic data and survival data were included in subsequent analyses. The Strawberry Perl programming 
language (version 5.32.1.1) was used to differentiate between lncRNAs and mRNAs in the TCGA-PAAD cohort and obtain a matrix of 
corresponding expression data for further profiling [23]. The 97 sphingolipid metabolism-related genes (Table S1) included in the 
present research were acquired from the InnateDB portal (http://www.innatedb.com) [24,25]. 

2.2. Determination of sphingolipid metabolism-related lncRNAs 

The R package ‘limma’ was utilized to obtain the mRNA data matrix of 97 sphingolipid metabolism-related genes in the TCGA- 
PAAD cohort [26]. The lncRNAs associated with sphingolipid metabolism-related mRNAs were derived using a coexpression algo-
rithm (Pearson coefficient >0.4, p < 0.001) and determined to be sphingolipid metabolism-related lncRNAs [27]. The package ‘igraph’ 
was employed to map the relationship network of sphingolipid metabolism-related genes and lncRNAs. 

2.3. Construction of SMLs in PAAD 

First, the TCGA-PAAD cohort was randomly divided into a training set and a testing set at a 1:1 ratio. Subsequently, univariate Cox 
(uni-Cox) regression algorithms were utilized to identify sphingolipid metabolism-related lncRNAs associated with survival in the 
training set (p < 0.05), and prognostic forest maps and expression heatmaps were drawn using the ‘survival’ and ‘pheatmap’ packages. 
To avoid overfitting, the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm determined the optimal sphingolipid 
metabolism-associated lncRNAs that can be used in the development of the SMLs [28]. The ‘caret’ and ‘glmnet’ packages were utilized 
in the construction of the SMLs. The correlations between lncRNAs and sphingolipid metabolism-related genes were analyzed, and 
correlation heatmaps were plotted via the ‘ggplot2’, ‘ggExtra’ and ‘tidyverse’ packages. Finally, the risk score for each PAAD individual 
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was derived using the following equation: SMLs (Risk score) =
∑n

i+1β(i)∗χ (i), where β represents the risk correlation coefficient of a 
lncRNA in the SMLs, and χ represents the expression of the corresponding lncRNA. Based on the median score of the training set, all 
individuals in the TCGA-PAAD cohort were classified into high- and low-risk groups. 

2.4. Validation of the SMLs in PAAD 

To verify the predictive power of the developed SMLs in the clinical outcomes of PAAD, we first conducted separate survival 
analyses for the training, testing and TCGA-PAAD sets and visualized the results by plotting Kaplan–Meier (K‒M) curves, risk heatmaps 
and survival status maps using the ‘survminer’ and ‘survivor’ packages [29]. Additionally, uni-Cox and multivariate Cox (multi-Cox) 
analyses determined whether the SMLs-based risk score was an independent predictor of clinical prognosis. Finally, time-dependent 
receiver operating characteristic (ROC) curves were plotted to validate the accuracy of the SMLs in predicting patient survival, with 
different clinical phenotypes (age, sex, grade and stage) used as variables for comparison, using ‘timeROC’, ‘survminer’ and ‘survivor’ 
packages. 

2.5. Correlation of the SMLs with clinicopathological phenotypes in PAAD 

To verify the stability and adaptability of the SMLs in PAAD, we analyzed the survival differences between the two risk subgroups 
based on the clinicopathological subgroups (sex, age, grade and stage), and the ‘survminer’ and ‘survival’ packages were conducted to 
draw the K‒M curves. Finally, the ‘ComplexHeatmap’ package was utilized to draw the correlation bar chart of the different clinical 
phenotypes in the two groups [30]. 

2.6. Functional exploration based on the SMLs 

To explore differences in biological function between the two risk subgroups, the Gene Set Variance Analysis (GSVA) algorithm was 
initially used to obtain enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the risk subgroups [31]. The 
relationship between the KEGG pathway and lncRNA expression in the SMLs was further analyzed using the packages ‘GSVA’, 
‘GSEABase’, ‘reshape2’ and ‘limma’ and visualized using ‘pheatmap’ and ‘ggplot2’. Additionally, we explored the enrichment of 
differentially expressed genes (DEGs) between the risk subgroups in terms of cellular component, molecular function and biological 
processes via Gene Ontology (GO) analysis, which utilized the ‘DOSE’, ‘clusterProfiler’ and ‘org.Hs.eg.db’ packages. Furthermore, 
‘ggplot2’, ‘ComplexHeatmap’, ‘RColorBrewer’, ‘ggpubr’ and ‘circlize’ were used to visualize the enrichment results. 

2.7. Correlation analysis of the SMLs and tumor mutation burden (TMB) 

Numerous studies have demonstrated that TMB and mutation-associated neoantigens are closely related, and TMB is also 
considered a biomarker that predicts the efficiency of immunotherapy in some tumors [32]. The downloaded SNV data of the 
TCGA-PAAD cohort were transformed using Perl scripts to retrieve the TMB matrix for every sample and the mutation matrix for each 
gene. The 25 most frequently mutated genes in the TCGA-PAAD cohort were further extracted and the ‘maftools’ package was utilized 
to map the mutation waterfall plot for these 25 genes in the two risk groups. Additionally, TMB differences between the risk subgroups 
were further analyzed, and the ‘ggpubr’ package was utilized to visualize the violin plots of the differential results. Finally, survival 
differences between patients in different TMB subgroups combined with patients in different risk subgroups were analyzed and K‒M 
survival curves were plotted. 

2.8. Analysis of the tumor immune microenvironment (TIME) and immunotherapy 

To explore the association between the TIME and SMLs in PAAD, we first extracted the tumor infiltrating immune cell file from the 
TIMER2.0 platform (http://timer.comp-genomics.org/), which contains the TCGA immune cell infiltration data calculated by the 
EPIC, TIMER, XCELL, CIBERSORT, QUANTISEQ, CIBERSORT-ABS and MCPCOUNTER platforms [33]. Spearman’s correlation algo-
rithm was subsequently performed to obtain correlation coefficients between risk scores and tumor-infiltrating immune cells. 
Following this, the ‘ggtext’, ‘ggpubr’, ‘ggplot2’, ‘scales’ and ‘tidyverse’ packages were utilized to plot correlation bubble plots. 

Gene set enrichment analysis (GSEA) enables the enrichment analysis of gene sets with physiological regulatory roles and bio-
logical effects [34,35]. Single sample GSEA (ssGSEA) was performed utilizing ‘GSEABase’ and ‘GSVA’ to quantify the degree of 
infiltration of different immune cells in the TCGA-PAAD cohort, consequently obtaining the corresponding scores of immune cells and 
immune functions. Then, the differences in immune cell score and function score in the high- and low-risk subgroups were analyzed 
utilizing the ‘GSEABase’ and ‘GSVA’ packages, and ‘reshape2’, ‘pheatmap’, and ‘ggpubr’ were employed to plot boxplots of the results. 

Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) analysis is an expression- 
based tumor purity determination algorithm [36]. Here, the ‘ESTIMATE’ algorithm was utilized to quantify the number of immune 
cells and stromal cells in the TCGA-PAAD samples, thereby obtaining the corresponding immune cell and stromal cell scores. The total 
of these two scores is the ESTIMATE score. Then, we analyzed the difference in the different types of scores between the two risk 
populations and drew difference boxplots using the ‘ggpubr’ package. 

Immune checkpoints are inhibitory regulatory molecules in the immune system. Their expression on immune cells will inhibit 
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immune cell function, preventing the body from producing an effective antitumour immune response and promoting tumor immune 
escape [37]. Here, we thus analyzed the differences in the mRNA expression of immune checkpoints in the different risk subgroups. 

2.9. Drug sensitivity analysis 

To evaluate the use of the SMLs in the individualized clinical management of PAAD, we utilized the ‘pRRophetic’ to compare the 
differences in the half-maximal inhibitory concentrations (IC50) of 138 chemotherapeutic agents and targeted drugs in the two risk 
populations [38]. The difference in IC50 was represented using boxplots (p < 0.001). 

2.10. Consensus clustering analysis 

It has been shown that molecular typing based on consensus clustering analysis can identify tumor subgroups with distinct TIME 
characteristics and may influence the efficacy of immunotherapy [39,40]. An SMLs-based consensus clustering analysis was conducted 
utilizing the ‘ConsensusClusterPlus’ package to classify all individuals into different clusters [41]. Principal component analysis (PCA) 
was conducted on the different clusters using the ‘ggplot2’ and ‘Rtsne’ packages. Additionally, survival differences between patients in 
different clusters were analyzed and visualized using K‒M curves. Finally, ssGSEA, ESTIMATE and immune checkpoints were also 
analyzed in the different clusters. 

Fig. 1. Flowchart of the study.  
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3. Results 

3.1. Acquisition of sphingolipid metabolism-related lncRNAs 

Fig. 1 presents the design of this study. The processing transcriptome data from the TCGA-PAAD cohort identified 16,876 lncRNAs. 
A total of 97 sphingolipid metabolism-related genes were extracted from the InnateDB database, and 454 lncRNAs were identified as 
sphingolipid metabolism-related lncRNAs based on the coexpression algorithm (Fig. 2A). 

3.2. Construction of the SMLs 

The TCGA-PAAD cohort was randomly divided into training and testing cohorts, and the clinicopathological parameters of the 
individuals in the two cohorts are shown in Table 1. Cox regression identified 57 sphingolipid metabolism-related lncRNAs associated 
with survival (p < 0.05) (Fig. 2B). Survival-related lncRNAs have different expression statuses in PAAD tumor and normal samples 
(Fig. 2C). To fit the generalized linear model while performing variable screening and complexity adjustment, LASSO regression was 
performed (Fig. 3A and B), identifying seven lncRNAs for use in the signature construction (Fig. 3C). Risk scores were generated for 
each sample based on the risk coefficients corresponding to the seven lncRNAs (Table 2). SMLs (Risk score) = (0.389010994 ×
AC068580.2) + (1.44362348 × LINC02528) + (− 0.843984595 × PTPRN2-AS1) + (− 0.879837045 × MEG9) + (− 1.230147692 ×
AC007292.2) + (0.964906878 × LINC00519) + (− 0.510010117 × CH17-340M24.3). The expression of the seven lncRNAs correlated 

Fig. 2. Identification of sphingolipid metabolism-related lncRNAs. (A) Network relationship map of the 454 sphingolipid metabolism- 
associated lncRNAs and sphingolipid metabolism-associated genes. (B) Forest plot of the 57 sphingolipid metabolism-related lncRNAs associated 
with survival. (C) Expression heat map of the 57 sphingolipid metabolism-related lncRNAs. 
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strongly with the expression of sphingolipid metabolism-related genes (Fig. 3D). 

3.3. Validation of the SMLs 

To validate the prognostic prediction power of the SMLs, we first performed a survival analysis. K‒M curves for overall survival 
(OS) and progression-free survival (PFS) revealed that high-risk groups in the training, testing and TCGA-PAAD sets had a worse 
prognosis than the low-risk groups (Fig. 4A–F). Survival status plots showed an increase in the number of patients with mortality status 
as their risk score increased (Fig. 4G–I). These findings highlight the stability and reliability of the SMLs. Additionally, the lncRNA 
expression heatmaps in the three cohorts showed that AC068580.2, LINC02528 and LINC00519 were highly expressed in the high-risk 
subgroup, while PTPRN2-AS1, MEG9, AC007292.2 and CH17-340M24.3 were highly expressed in the low-risk subgroup (Fig. 4J-L). 

3.4. Assessment of the SMLs 

Cox regression analysis revealed that the SMLs was an independent variable affecting the clinical outcomes of patients with PAAD. 
The hazard ratios for the risk scores in Uni- and multi-Cox regression were 1.153 and 1.149 (p < 0.001), respectively (Fig. 5A and B). 
Additionally, the ROC curves showed that the SMLs had area under the curve (AUC) values of 0.774, 0.800 and 0.848 at 1-, 3- and 5- 
year, respectively (Fig. 5C). The AUC values for the SMLs were greater than those for other clinicopathological features (age, sex, grade 
and stage) (Fig. 5D), indicating the predictive reliability of the SMLs. Finally, we also assessed the predictive power of the SMLs across 
different clinicopathological characteristics, including patient sex, age, stage and grade. K‒M curves showed that survival was 
significantly worse in high-risk patients across age, gender and tumour grade subgroups (Fig. 6A–D). Although there was no significant 
difference in survival between the risk groups in individuals with stage III-IV (p = 0.055), a trend towards separate K-M curves was 
observed, which could be attributed to the smaller number of cases with stage III-IV (only three patients in stage III and four patients in 
stage IV). Thus, the above results suggest that the constructed SMLs has high stability and adaptability. Finally, the status of the clinical 
parameters of patients in the different risk groups is shown by heatmaps (Fig. 6E). 

3.5. GSVA and GO analysis 

To investigate the characteristics of biological behavior in populations stratified by risk using the SMLs, GSVA was performed to 
analyze the enrichment of the KEGG pathway between the risk groups. The outcomes showed that pancreatic cancer, DNA replication, 
mismatch repair, nucleotide excision repair, steroid biosynthesis, pyrimidine metabolism, glutathione metabolism, porphyrin and 
chlorophyll metabolism, fructose and mannose metabolism, pentose phosphate pathway and glycolytic gluconeogenesis were enriched 
in the high-risk population. In contrast, in the low-risk population, the enriched pathways included primary bile acid biosynthesis, 
glycolipid biosynthesis and neuroactive ligand-receptor interactions (Fig. 7A). Additionally, further analysis revealed strong corre-
lations between the expression of the seven lncRNAs in the SMLs and multiple signaling pathways including those of WNT, VEGF, 
mTOR, MAPK, JAK-STAT and TGF-β (Fig. 7B). 

Table 1 
The clinicopathological features in different cohorts.  

Clinicopathological Features Stratification Total set (n = 178) Training set (n = 89) Testing set (n = 89) p-value 

Age ≤65 94 (52.81 %) 48 (53.93 %) 46 (51.69 %) 0.8807 
>65 84 (47.19 %) 41 (46.07 %) 43 (48.31 %)  

Gender Female 80 (44.94 %) 35 (39.33 %) 45 (50.56 %) 0.1751 
Male 98 (55.06 %) 54 (60.67 %) 44 (49.44 %)  

Grade G1 31 (17.42 %) 13 (14.61 %) 18 (20.22 %) 0.126 
G2 95 (53.37 %) 43 (48.31 %) 52 (58.43 %)  
G3 48 (26.97 %) 29 (32.58 %) 19 (21.35 %)  
G4 2 (1.12 %) 2 (2.25 %) 0 (0 %)  
Unknown 2 (1.12 %) 2 (2.25 %) 0 (0 %)  

TNM Stage Stage I 21 (11.8 %) 11 (12.36 %) 10 (11.24 %) 0.9439 
Stage II 147 (82.58 %) 73 (82.02 %) 74 (83.15 %)  
Stage III 3 (1.69 %) 1 (1.12 %) 2 (2.25 %)  
Stage IV 4 (2.25 %) 2 (2.25 %) 2 (2.25 %)  
Unknown 3 (1.69 %) 2 (2.25 %) 1 (1.12 %)  

T Stage T1 7 (3.93 %) 3 (3.37 %) 4 (4.49 %) 0.8853 
T2 24 (13.48 %) 11 (12.36 %) 13 (14.61 %)  
T3 142 (79.78 %) 72 (80.9 %) 70 (78.65 %)  
T4 3 (1.69 %) 1 (1.12 %) 2 (2.25 %)  
Unknown 2 (1.12 %) 2 (2.25 %) 0 (0 %)  

N Stage N0 49 (27.53 %) 28 (31.46 %) 21 (23.6 %) 0.2477 
N1 124 (69.66 %) 57 (64.04 %) 67 (75.28 %)  
Unknown 5 (2.81 %) 4 (4.49 %) 1 (1.12 %)  

M Stage M0 80 (44.94 %) 41 (46.07 %) 39 (43.82 %) 1 
M1 4 (2.25 %) 2 (2.25 %) 2 (2.25 %)  
Unknown 94 (52.81 %) 46 (51.69 %) 48 (53.93 %)   
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Table 2 
| Risk coefficients for sphingolipid metabolism-related lncRNAs in the SMLs.  

lncRNA Coefficient Hazard ratio Hazard ratio (95%CI) p-value 

AC068580.2 0.389010994 1.501 1.196–1.884 <0.001 
LINC02528 1.44362348 2.408 1.082–5.359 0.031 
PTPRN2-AS1 − 0.843984595 0.544 0.331–0.893 0.016 
MEG9 − 0.879837045 0.369 0.171–0.798 0.011 
AC007292.2 − 1.230147692 0.158 0.033–0.76 0.021 
LINC00519 0.964906878 1.996 1.247–3.194 0.004 
CH17-340M24.3 − 0.510010117 0.522 0.312–0.874 0.013  

Fig. 3. Development of a sphingolipid metabolism-related signature. (A) LASSO coefficient curves for prognostic sphingolipid metabolism- 
related lncRNAs. (B) The vertical black line in the figure denotes the ideal log λ value. (C) Forest plot of the sphingolipid metabolism-related 
lncRNAs in the signature. (D) Heatmap showing the coexpression relationship between the sphingolipid metabolism-related signature and sphin-
golipid metabolism-related genes. 

Fig. 4. Validation of the sphingolipid metabolism-related signature. (A–C) Kaplan–Meier curves of OS. (D–F) Kaplan–Meier curves of PFS. 
(G–I) Survival status of the individuals with PAAD in the three cohorts. (J–L) Heatmaps of the expression of the seven sphingolipid metabolism- 
related lncRNAs in the three sets. 
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We further explored the molecular functions of the DEGs between different risk groups, their cellular environment and the bio-
logical processes in which they are involved. GO analysis indicated that the DEGs were enriched in biological processes such as the 
regulation of transsynaptic signaling, regulation of chemical synaptic transmission, signal release and regulation of ion transport. In 
terms of the cellular component, the enrichment sites included a transport vessel, distal axon, exogenic vessel and synaptic vessel. 
Finally, in terms of the molecular function, the enriched functions included passive transmission transmitter activity, channel activity, 
ion channel activity and metal transmission transmitter activity (Fig. 7C and D). 

3.6. Correlation of the SMLs with TMB 

Mutation waterfall plots revealed that the frequency of mutations in the high- and low-risk groups was 93.33 % and 69.44 %, 
respectively (Fig. 8A and B). Additionally, higher TMB levels were observed in the high-risk population (p = 0.002) (Fig. 8C). 
Furthermore, survival analysis of the high- and low-risk subgroups and the combination of high- and low-TMB subgroups showed 
significant differences in survival between the different subgroup combinations (p < 0.001). The worst OS was observed in the high- 
TMB/high-risk subgroup and the best OS was observed in the low-TMB/low-risk subgroup (Fig. 8D). Therefore, the signature com-
bined with TMB levels could better predict the clinical outcomes of individuals with PAAD. 

3.7. Correlation of the SMLs with TIME 

Bubble plots from Spearman’s correlation analysis showed that CD8+ T cells were negatively correlated with risk scores in the 
XCELL and QUANTISEQ platforms. CD4+ T cells were negatively correlated with risk scores in the EPIC and TIMER platforms. 
Additionally, M1 macrophages were positively correlated with risk scores in QUANTISEQ and XCELL platforms. However, the cor-
relation of cancer-associated fibroblast with risk scores in XCELL and EPIC showed opposite results with coefficients of − 0.21 and 0.15, 
respectively (Fig. 9A). However, ssGSEA revealed that only mast cells differed between the risk groups (Fig. 9B). Furthermore, ssGSEA 
outcomes also revealed no significant differences in most immune-related functions between the two risk subgroups, except for IFN 
response and MHC class I (Fig. 9C). This suggests that the SMLs-based risk stratification does not distinguish between the different 
TIME subtypes of PAAD. This was further validated by ESTIMATE analysis, wherein no significant differences in ESTIMATE, immune 

Fig. 5. Predictive performance of the sphingolipid metabolism-related signature. (A–B) Forest plot for univariate (A) and multivariate (B) Cox 
regression. (C) Time-independent ROC curves of the sphingolipid metabolism-related signature in the TCGA-PAAD cohort. (D) ROC curves for the 
risk score and clinicopathological parameters in the TCGA-PAAD cohort. 
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and stromal scores were observed between the different risk groups (Fig. 9D–F). Furthermore, while some of the immune detection 
sites such as CD276, CD244, CD44 and LGALS9 differed between the two risk subgroups (Fig. 9G), the key targets of immune 
checkpoint inhibitors (ICIs), namely PD-1, PD-L1 and CTLA-4, were not differentially expressed in the risk groups. 

3.8. Predicting drug sensitivity using the SMLs 

Drug sensitivity analysis based on the pRRophetic algorithm revealed that the IC50 of some clinical chemotherapeutic agents and 
targeted therapeutics differed between the risk subgroups (p < 0.001) (Fig. 10A–J). Thapsigargin, paclitaxel, methotrexate, gemci-
tabine, gefitinib, epothilone B, doxorubicin and 5-fluorouracil had lower IC50s in the high-risk population while those of navitoclax 
and axitinib were higher. 

3.9. Consensus clustering analysis based on the SMLs 

Consensus clustering analysis based on the SMLs was performed to explore the characteristics of individuals with different mo-
lecular subtypes of PAAD. According to the cumulative distribution function (CDF) values, we divided the TCGA-PAAD cohort into two 
clusters (k = 2, Fig. 11A–D). PCA and tSNE significantly distinguished between the distribution characteristics of Cluster 1 and Cluster 
2 (Fig. 11E and F). The K‒M curve showed that survival was better in Cluster 1 than in Cluster 2 (p < 0.001) (Fig. 11G). The Sankey 
diagram showed that the majority of individuals in Cluster 1 were in the low-risk population, while the majority in Cluster 2 were in 
the high-risk population (Fig. 11H). 

We further analyzed the TIME characteristics of the different clusters. The ssGSEA results revealed significantly higher infiltration 
levels of B cells, CD8+ T cells, mast cells, neutrophils, natural killer cells, plasmacytoid dendritic cells, helper T cells, follicular helper T 
cells, Th1 cells, tumor-infiltrating lymphocytes and regulatory T cells in Cluster 1 (Fig. 12A). In terms of immune function, the 
pathways of cytokine‒cytokine receptor, immune checkpoint, cytolytic activity, inflammation-promoting, T cell co-inhibition, T cell 
co-stimulation and Type II IFN response were significantly stronger in Cluster 1 (Fig. 12B). The ESTIMATE analysis similarly validated 
this finding, with Cluster 1 showing significantly higher ESTIMATE, immune and stromal scores than Cluster 2 (Fig. 12C–E). The 
heatmap of immune cell infiltration status revealed that the majority of immune cells had higher levels of infiltration in Cluster 1 
(Fig. 12F). Furthermore, the differential analysis of immune checkpoints indicated that most of the immune checkpoints, including PD- 
1, LAG3, CD27 and CD48, were highly expressed in Cluster 1 compared to Cluster 2, which corroborated the outcomes of ssGSEA 

Fig. 6. Stratified Kaplan–Meier validation of clinicopathological parameters. (A–D) Kaplan–Meier curves stratified by sex (A), age (B), stage 
(C) and grade (D). (E) Heatmap of the distribution of clinicopathological variables in subgroups. 
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Fig. 7. Functional and pathway enrichment. (A) GSVA shows the enrichment of pathways for DEGs between the high- and low-risk subgroups. 
(B) Heatmap of the relationship between the KEGG pathways and the expression of signature-associated lncRNAs. (C–D) GO enrichment analysis 
of DEGs. 
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(Fig. 12G). 

4. Discussion 

As a major component of the cell membrane, altered levels of sphingolipid metabolism can directly affect the composition of the 
cell membrane through the capture of sphingolipids and their metabolites in the lysosome. Abnormalities in sphingolipid metabolism 
can lead to alterations in lipid homeostasis and are closely associated with various diseases [42,43]. Recently, the relationship between 
sphingolipid metabolism and tumors has gained traction. As biological effectors, sphingolipids not only regulate malignant biological 
behaviors such as apoptosis, proliferation and migration of tumor cells but are also associated with tumor immunity and tumor drug 
resistance [10,44,45]. A previous mass spectrometry-based lipidomics study quantified the changes in sphingolipid-like lipids in 
pancreatic tumors and plasma specimens and reported that sphingolipid metabolism was altered in human pancreatic cancer and 
correlated with the advanced stage of the tumor [46]. A recently reported study systematically analyzed glycosphingolipids isolated 
from pancreatic cancer tissues, which revealed differences in the profiles and relative amounts of neutral glycosphingolipids between 
normal and tumor tissues [47]. Additionally, it has been demonstrated that sphingolipids are engaged in the regulation of tumori-
genesis and metastasis in pancreatic cancer [12,48]. Therefore, the interaction between sphingolipid metabolism and pancreatic 
cancer along with the potential value of sphingolipid metabolism in predicting the clinical outcomes and therapeutic efficacy of 
patients with pancreatic cancer are worth exploring. 

Recent studies report that lncRNAs are potential targets for tumor therapy and can broadly regulate the progression, metastasis, 

Fig. 8. Correlation of the sphingolipid metabolism-related signature with somatic mutation analysis. (A–B) Mutation waterfall plot of the 25 
most frequently mutated genes in the high- and low-risk groups. (C) Violin plot of TMB status in the high- and low-risk subgroups. (D) Kaplan–Meier 
curves for TMB subgroups and risk subgroups combined with each other. 
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Fig. 9. Correlation of the sphingolipid metabolism-related signature with the immune microenvironment. (A) Bubble plots reveal the 
relationship between risk scores and immune cell infiltration. (B) Box plots show the differences in the degree of different immune cell infiltration 
based on ssGSEA between risk subgroups. (C) Box plots show the differences in different immune functions between the risk subgroups based on 
ssGSEA. (D–F) Box plot showing the relationship between ESTIMATE, immune and stromal scores across the risk subgroups. (G) Box plot showing 
immune checkpoints with significant differences in expression between the risk subgroups. 
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drug resistance and other malignant biological behavior of pancreatic cancer [49–51]. Although the value of lncRNAs as prognostic 
and efficacy determinants is currently not widely used in practical clinical settings, several studies have demonstrated that circulating 
lncRNAs are stably present in plasma, serum, and urine, and can be used as noninvasive biomarkers for a variety of tumors [52,53]. A 
group of lncRNAs with procancer effects have been identified as novel markers and potential targets for intervention in pancreatic 
cancer [54]. Additionally, lncRNAs also play a regulatory role in a variety of metabolic processes [55,56]. However, the role of 
sphingolipid metabolism-related lncRNAs in pancreatic cancer is unclear. Therefore, identifying sphingolipid metabolism-related 
lncRNAs and exploring their potential roles in pancreatic cancer could provide innovative ideas for the advancement of diagnostic 
and therapeutic strategies. 

In the current study, we developed a signature (SMLs) based on sphingolipid metabolism-associated lncRNAs to predict clinical 
outcomes in individuals with PAAD. Patients in the TCGA-PAAD cohort were divided into high- and low-risk groups according to the 
risk scores of the SMLs, and the predictive stability of the SMLs was validated in the training and testing sets. The predictive efficacy of 
the SMLs was also assessed using uni- and multi-Cox regression, ROC curves and clinical subtype stratification analysis, which revealed 
high stability and excellent prognostic predictive capability. Among the seven lncRNAs comprising the SMLs, MEG9 was speculated to 
be associated with m6A and affect the clinical outcomes of individuals with PAAD [57]. Moreover, LINC00519 was speculated to be a 
pyroptosis-associated lncRNA in PAAD and a risk factor for patient survival [58]. However, AC068580.2, LINC02528, PTPRN2-AS1, 
AC007292.2 and CH17-340M24.3 remain unreported in PAAD. Given the prognostic value of the SMLs in PAAD, the regulatory 
mechanisms of these lncRNAs in PAAD deserve further exploration. 

Somatic mutations in the KRAS, TP53, SMAD4 and CDKN2A genes are considered molecular genetic characteristics and primary 
drivers of the vast majority of patients with PAAD [59]. Among them, mutations in KRAS, the most frequently mutated gene in PAAD, 
affect the ability of T cells to recognize tumor cells and inhibit tumor killing by effector immune cells [60]. Furthermore, TP53 is an 
oncogene with the highest relevance to human tumorigenesis to date. It has the second highest mutation frequency in PAAD and 
promotes immune evasion by inhibiting T-cell recruitment [61]. In the present study, KRAS and TP53 were mutated much more 
frequently in the high-risk population, which partly explains the poorer prognosis in the high-risk population compared to the low-risk 
population. Furthermore, our findings also revealed that the TMB was higher in the high-risk population. Notably, the combination of 

Fig. 10. Drug sensitivity analysis of the risk subgroups. (A) Thapsigargin. (B) Paclitaxel. (C) Navitoclax. (D) Methotrexate. (E) Gemcitabine. (F) 
Gefitinib. (G) Epothilone B. (H) Doxorubicin. (I) Axitinib. (J) 5-Fluorouracil. 
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TMB levels and risk status allows for a more precise prognostic stratification of patients with PAAD. 
The early stage of pancreatic cancer is not clinically obvious. Additionally, most patients are already at an advanced stage by the 

time they are diagnosed, so the opportunity for surgery is missed [62]. Moreover, the remarkable metastatic capacity and drug 
resistance of PAAD also lead to a poor prognosis for patients [63,64]. Therefore, it is essential to identify biomarkers that predict the 
efficacy of PAAD treatment and can contribute to the personalization of treatment regimens for patients, thereby improving clinical 
outcomes. Currently, the treatment of clinically advanced pancreatic cancer mainly consists of chemotherapy, with gemcitabine and 
5-fluorouracil being the cornerstone drugs. Both of these drugs are used as first and second lines treatments to each other. In the 
present study, the IC50 values for both gemcitabine and 5-fluorouracil were significantly lower in the high-risk population, suggesting 
that the high-risk population is more likely to benefit from them. Notably, the same results were observed with certain 

Fig. 11. Consensus clustering analysis of patients with PAAD using the sphingolipid metabolism-related signature. (A–C) Consensus 
clustering modules with cumulative distribution features by k from 2 to 9. (D) The TCGA-PAAD cohort was classified into two clusters based on the 
consensus clustering matrix. (E–F) PCA and tSNE show the distribution characteristics of the two clusters. (G) K–M curve showing the difference in 
survival between the two clusters. (H) Sankey diagram showing the relationship between the two clusters and risk subgroups. 
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Fig. 12. Consensus clustering analysis to characterize the immune microenvironment. (A) Box plots show the differences in the degree of 
different immune cell infiltration based on ssGSEA between the two clusters. (B) Box plots showing differences in different immune functions in the 
two clusters based on ssGSEA. (C–E) Box plot showing the relationship among ESTIMATE, immune and stromal scores across the different clusters. 
(F) Heatmap showing differences in immune cell infiltration between the different clusters. (G) Box plot showing immune checkpoints with sig-
nificant differences in expression between the different clusters. 
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chemotherapeutic agents, namely paclitaxel, methotrexate, epothilone B and doxorubicin, suggesting that high-risk individuals have 
superior response rates to chemotherapeutic agents. Additionally, the Bcl-2/Bcl-xL inhibitor navitoclax induced apoptosis in 
pancreatic cancer cells, thereby enhancing the antitumour efficacy of checkpoint kinase 1 inhibitors [65]. Nonetheless, the low-risk 
groups were found to be more likely to benefit from navitoclax. Moreover, these results were also observed with axitinib, a selec-
tive vascular endothelial growth factor receptor-targeting drug. Overall, the findings suggest that risk stratification based on the SMLs 
could provide a basis for individualized clinical planning of chemotherapeutic agents and targeted drugs. 

Although risk stratification based on the SMLs can better predict the survival and clinical outcomes of patients with PAAD, it cannot 
distinguish populations with different TIME characteristics. Studies have shown that tumor subgroups derived from consensus clus-
tering analysis have different TIME characteristics and impact immunotherapy response [66–68]. Accordingly, we performed a 
consensus clustering analysis based on the constructed SMLs, dividing the TCGA-PAAD cohort into two clusters to further explore the 
differences in clinical outcomes and the TIME of patients in different subtypes. The results showed significantly better survival in 
Cluster 1 than in Cluster 2. Furthermore, ssGSEA also revealed significantly higher levels of infiltration of most immune cells, including 
CD8+ T cells, neutrophils and natural killer cells, in Cluster 1 than in Cluster 2, which was also validated by ssGSEA immune function 
analysis, TIMER2.0 platform analysis and ESTIMATE analysis. Thus, these results suggest a high immune infiltration status in Cluster 1, 
which could partly explain the better prognosis of Cluster 1. Overall, cluster analysis based on the SMLs not only predicts the clinical 
outcomes of patients with PAAD but also better differentiates between populations with different TIME characteristics. 

Over the past decade, ICIs have received increasing attention for their significant antitumour effects, which offer new hope for 
patients with cancer. ICIs reactivate the antitumour activity of T lymphocytes by inhibiting the interaction between immune check-
points, thereby achieving antitumour effects [69]. However, identifying the population that will benefit from ICIs is a challenging 
aspect of clinical treatment. Previous research has confirmed that tumors defined by high infiltration of effector immune cells such as 
CD8+ T cells and immune checkpoint activation are immune ‘hot tumors’, which may respond better to treatment with ICIs [69,70]. In 
this study, in Cluster 1, most immune checkpoints, including PD-1, LAG3, CD27 and CD48, were highly expressed and also exhibited a 
high immune infiltration status. Thus, Cluster 1 is more consistent with the immune ‘hot tumor’ subgroup, suggesting that Cluster 1 
may respond better to ICI treatment. Therefore, the SMLs-based consensus clustering analysis not only predicts patient prognosis and 
TIME profiles but also helps to identify the population that will benefit from treatment with ICIs. 

Although the SLMs developed in this study were validated and evaluated by different methodologies, there are still some limita-
tions. First, it was not possible to assess the bias of the data in a retrospective study. Additionally, the application of lncRNAs as 
biomarkers in the clinical real world has not yet been popularized, and their potential predictive value and applicability still need to be 
further confirmed in future clinical studies with large sample sizes. Thus, this is also an important direction for our future research 
extension. 

5. Conclusion 

To the best of our knowledge, this is the first signature in PAAD that was constructed based on sphingolipid metabolism-related 
lncRNAs. The SMLs effectively predicts clinical outcomes in patients with PAAD and serves as a basis for personalized therapeutic 
regimen selection for certain clinical chemotherapeutic agents and targeted drugs. Furthermore, SMLs-based cluster differentiation not 
only predicts patient prognosis but also helps to differentiate patients with different TIME profiles, identify immune ‘hot tumors’ and 
determine the potential beneficiary population for treatment with ICIs. 
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P. Wang, A.I. Nesvizhskii, D.R. Mani, G.S. Omenn, E.S. Boja, M. Mesri, A.I. Robles, H. Rodriguez, O.F. Bathe, D.W. Chan, R.H. Hruban, L. Ding, B. Zhang, 
H. Zhang, Proteogenomic characterization of pancreatic ductal adenocarcinoma, Cell 184 (2021), e5026, 5031-5052. 

[60] J. Cullis, S. Das, D. Bar-Sagi, Kras and tumor immunity: friend or foe? Cold Spring Harbor perspectives in medicine 8 (2018). 
[61] J. Blagih, M.D. Buck, K.H. Vousden, p53, cancer and the immune response, J. Cell Sci. 133 (2020). 
[62] J. Kleeff, M. Korc, M. Apte, C. La Vecchia, C.D. Johnson, A.V. Biankin, R.E. Neale, M. Tempero, D.A. Tuveson, R.H. Hruban, J.P. Neoptolemos, Pancreatic cancer, 

Nature reviews, Disease primers 2 (2016), 16022. 
[63] K. Masuo, R. Chen, A. Yogo, A. Sugiyama, A. Fukuda, T. Masui, S. Uemoto, H. Seno, S. Takaishi, SNAIL2 contributes to tumorigenicity and chemotherapy 

resistance in pancreatic cancer by regulating IGFBP2, Cancer Sci. 112 (2021) 4987–4999. 
[64] X. Xin, V. Kumar, F. Lin, V. Kumar, R. Bhattarai, V.R. Bhatt, C. Tan, R.I. Mahato, Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for 

pancreatic cancer therapy, Sci. Adv. 6 (2020). 
[65] Y. Morimoto, K. Takada, O. Takeuchi, K. Watanabe, M. Hirohara, T. Hamamoto, Y. Masuda, Bcl-2/Bcl-xL inhibitor navitoclax increases the antitumor effect of 

Chk1 inhibitor prexasertib by inducing apoptosis in pancreatic cancer cells via inhibition of Bcl-xL but not Bcl-2, Mol. Cell. Biochem. 472 (2020) 187–198. 
[66] X. Wang, L. Chen, H. Cao, J. Huang, Identification of gene signature-related oxidative stress for predicting prognosis of colorectal cancer, Oxid. Med. Cell. 

Longev. 2023 (2023), 5385742. 
[67] J. Li, C. Yang, Y. Zheng, Identification of a tissue resident memory CD8 T cell-related risk score signature for colorectal cancer, the association with TME 

landscapes and therapeutic responses, Front. Genet. 13 (2022), 1088230. 
[68] J. Tang, X. Wu, B. Cheng, Y. Lu, Identification of a polyamine-related signature and six novel prognostic biomarkers in oral squamous cell carcinoma, Front. Mol. 

Biosci. 10 (2023), 1073770. 
[69] J. Galon, D. Bruni, Approaches to treat immune hot, altered and cold tumours with combination immunotherapies, Nature reviews, Drug discovery 18 (2019) 

197–218. 
[70] Y.T. Liu, Z.J. Sun, Turning cold tumors into hot tumors by improving T-cell infiltration, Theranostics 11 (2021) 5365–5386. 

X. He et al.                                                                                                                                                                                                              

http://refhub.elsevier.com/S2405-8440(23)10867-X/sref40
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref40
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref41
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref42
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref43
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref44
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref44
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref44
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref45
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref45
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref45
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref46
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref46
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref47
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref47
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref48
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref48
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref49
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref49
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref50
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref50
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref51
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref51
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref52
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref52
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref53
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref54
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref54
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref54
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref54
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref55
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref55
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref56
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref56
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref57
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref57
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref58
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref58
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref59
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref59
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref59
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref59
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref59
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref60
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref61
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref62
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref62
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref63
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref63
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref64
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref64
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref65
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref65
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref66
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref66
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref67
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref67
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref68
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref68
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref69
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref69
http://refhub.elsevier.com/S2405-8440(23)10867-X/sref70

	A novel sphingolipid metabolism-related long noncoding RNA signature predicts the prognosis, immune landscape and therapeut ...
	1 Introduction
	2 Materials and METHODS
	2.1 Dataset selection
	2.2 Determination of sphingolipid metabolism-related lncRNAs
	2.3 Construction of SMLs in PAAD
	2.4 Validation of the SMLs in PAAD
	2.5 Correlation of the SMLs with clinicopathological phenotypes in PAAD
	2.6 Functional exploration based on the SMLs
	2.7 Correlation analysis of the SMLs and tumor mutation burden (TMB)
	2.8 Analysis of the tumor immune microenvironment (TIME) and immunotherapy
	2.9 Drug sensitivity analysis
	2.10 Consensus clustering analysis

	3 Results
	3.1 Acquisition of sphingolipid metabolism-related lncRNAs
	3.2 Construction of the SMLs
	3.3 Validation of the SMLs
	3.4 Assessment of the SMLs
	3.5 GSVA and GO analysis
	3.6 Correlation of the SMLs with TMB
	3.7 Correlation of the SMLs with TIME
	3.8 Predicting drug sensitivity using the SMLs
	3.9 Consensus clustering analysis based on the SMLs

	4 Discussion
	5 Conclusion
	Data availability statement
	Funding sources
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References


