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NETISCE: a network-based tool for cell fate reprogramming
Lauren Marazzi1, Milan Shah1, Shreedula Balakrishnan1, Ananya Patil1 and Paola Vera-Licona 1,2,3,4✉

The search for effective therapeutic targets in fields like regenerative medicine and cancer research has generated interest in cell
fate reprogramming. This cellular reprogramming paradigm can drive cells to a desired target state from any initial state. However,
methods for identifying reprogramming targets remain limited for biological systems that lack large sets of experimental data or a
dynamical characterization. We present NETISCE, a novel computational tool for identifying cell fate reprogramming targets in static
networks. In combination with machine learning algorithms, NETISCE estimates the attractor landscape and predicts
reprogramming targets using signal flow analysis and feedback vertex set control, respectively. Through validations in studies of
cell fate reprogramming from developmental, stem cell, and cancer biology, we show that NETISCE can predict previously identified
cell fate reprogramming targets and identify potentially novel combinations of targets. NETISCE extends cell fate reprogramming
studies to larger-scale biological networks without the need for full model parameterization and can be implemented by
experimental and computational biologists to identify parts of a biological system relevant to the desired reprogramming task.
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INTRODUCTION
Cell reprogramming redefines a cell’s identity by altering its
epigenetic or transcriptional landscapes through the forced expres-
sion of transcription factors, small molecules, non-coding RNAs, or
microenvironment-mediated changes. One type of cellular repro-
gramming, cell fate reprogramming, aims to control the internal state
of a cell so that it is driven from a selected state to a target state or
phenotype1–7. Practical applications of cell reprogramming in stem
cell engineering8–10 and cancer biology11–13 have generated a great
interest in the task of cell-fate reprogramming. Identifying combina-
tions of reprogramming targets is especially useful for treating
complex diseases, regenerating tissue, or reversing acquired
resistance to canonical treatment regimens, where multi-drug
approaches may be more effective than single-drug therapy1,14–18.
Genome-wide and computational systems biology approaches

are being broadly adopted for cell fate reprogramming studies.
The majority of methods can be divided between those that take a
network-based approach19–24 and those that take a dynamical
systems-based approach25–30 to cell fate reprogramming30–37.
However, these methods either do not capture all the essential
information for cellular reprogramming38, or require mechanistic
details and kinetic parameters to build a mathematical model of
the system (for a brief overview of these approaches, please see
Supplementary Text 1 and Supplementary Fig. 1).
Although many network-based and dynamical systems-based

methods take a trial-and-error approach to identify reprogram-
ming targets, cell fate reprogramming can be viewed as a classical
attractor-based control theory problem. The goal is to system-
atically determine how to shift the cell’s system from one attractor
(stable state) to another with some degree of optimality. Previous
theoretical studies on the controllability of systems show that
even for large, non-linear biological systems, few targets need to
be controlled to guide a system toward a biologically admissible
target state3,5. This has been shown experimentally in cell fate
reprogramming studies, such as in the transition of embryonic
stem cells to somatic cells via knockdown of pluripotency-

associated transcription factors39, the reversion of tumorigenesis
by impairment of oncogenic signaling40, and fibroblast cell
reprogramming41. The use of control theory to identify cellular
reprogramming targets has been limited and is not directly
applicable to large cell signaling networks42,43. Among the reasons
for this limitation is the scarcity of available mechanistic details
and kinetic parameters to build a mathematical model of the
system, and, when the mechanistic rules are known, linear
functions are used to describe them; however, it is unclear how
the commonly observed switch-like behavior of biochemical
processes44,45, can influence the results1,27,46.
A new method for identifying attractor-based reprogramming

targets using only network topology extends from control theory
for non-linear dynamics. The feedback vertex set (FVS) control is a
structure-based, attractor-based control method suited to non-
linear dynamical systems5. A network’s minimal FVS is the minimal
set of nodes that intersects all cycles in a graph. FVS control states
that appropriate perturbations on an FVS, which we refer to herein
as FVS control nodes, can drive the system from any arbitrary
initial state to any of the attractors of that system (Fig. 1).
While the FVS control method provides a powerful cell fate

reprogramming framework, it does not identify the specific
perturbations needed on FVS control nodes (knockouts or
overexpressions) to drive the system toward a particular set of
attractors. By proceeding analogously to Boolean networks,
estimating the system’s attractor landscape can aid in the search
for the perturbations needed to be applied on FVS control nodes.
To that end, signal flow estimation algorithms aim to estimate
steady states without complete dynamical information of the
system. They can be helpful to evaluate the effect of node
perturbations in static networks47,48 and have been applied in
biochemical49 and disease networks50. The signal flow analysis
(SFA) method is especially suited to estimate system dynamics for
non-linear complex systems47, and its application to biology has
been recently explored47,51. SFA estimates a steady-state value for
each network node based on a signal propagation equation that
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considers the activity of its regulators, the type of regulatory
relationship (activation or inhibition), and the initial state of the
node (see the “Methods” section). The signal propagation
equation is solved for all network nodes synchronously until the
difference between x(t+ 1) and x(t) is less than a tolerance
threshold. Thus, for a sufficiently small tolerance threshold (by
default, this tolerance threshold is 10−6), a fixed-point attractor is
generated for every initial state provided to SFA. As a result, unlike
Boolean networks, where many initial states can arrive at one
attractor, the attractor landscape estimated by SFA lacks large
basins of attraction. In NETSICE, we use machine learning
clustering algorithms to systematically partition the estimated
attractors52 and produce the SFA-estimated attractor landscape. A
phenotype is defined by the resultant set of attractors within a
cluster and associated with the experimental sample whose
attractor is contained in that cluster.
SFA has been used to successfully reproduce the steady-states

of signaling networks derived from ODE models and the changes
in expression for network elements under different perturbations
from perturbation biology experiments with up to 80% accuracy47.
Latterly, SFA was applied to an aging-related gene regulatory
network (GRN) to identify potential aging reversion targets51.
Although Lee and colleagues did not take a control theory-based
approach, aging reversion targets were predicted by evaluating
SFA-simulated single node perturbations that decreased the
estimated expression values of aging-related biomarker nodes
compared to an unperturbed simulation.
Previously, we introduced OCSANA+ (Optimal Control and

Simulation of Signaling Networks from Network Analysis). This
Cytoscape application implements an FVS-finding algorithm and
SFA to perform perturbation analyses on static networks53.
OCSANA+ can be used to observe the effect of perturbations on
FVS control nodes for biological networks in a user-friendly
graphical interface. However, the application cannot customize
the SFA algorithm to include gene expression data or perform
an attractor landscape estimation. In addition, the current
software requires the user to configure every perturbation
simulation manually.
In this work, we introduce NETISCE (NETwork-drIven analysiS of

CEllular reprogramming), a novel computational method for
identifying cell fate reprogramming targets. Specifically, in our
context, we define cell fate reprogramming as guiding the system
from an initial state to any of its attractors, which can be

associated to an observable cell fate43. Our approach can be
applied to any static network and only requires gene expression
data from the undesired phenotype for the initial state of the
system. NETISCE employs SFA and a machine learning clustering
method to estimate the attractor landscape. Then SFA computes
the attractor state reached by a given set of perturbations on an
FVS control set. Finally, NETISCE uses machine learning classifica-
tion methods to evaluate whether this newly computed attractor
drives the system to the region of the attractor landscape
associated with the desired cell fate.
To illustrate and validate our approach, we apply NETISCE to

three different examples of cell fate reprogramming in develop-
mental, stem cell, and cancer biology using GRNs and signaling
networks. We show that NETISCE can reproduce the results of
experimentally validated cell fate reprogramming studies and
identify new reprogramming targets and perturbations.
We conclude that NETISCE extends the usefulness of static

biological networks to analyses that currently require full
parameterization. This is implemented by approaching cell fate
reprogramming from the framework of control theory and
dynamical systems and applying these concepts to a network-
based analysis. Our method provides a practical and informative
step for researchers designing experimental or mathematical
modeling studies of cell fate reprogramming by identifying parts
of the system relevant to the desired reprogramming task.
NETISCE is a user-friendly tool implemented as a command-line
Nextflow pipeline and Galaxy Project workflow that non-experts
can use in modeling or computational approaches to analyze the
biological systems of their interest.

RESULTS
NETISCE identifies combinations of perturbations applied on a
GRN or signaling network to trigger a shift from an undesired to
the desired cell fate (Fig. 2a). The core of the pipeline is (1) the
application of the FVS control to identify reprogramming targets
and (2) an attractor landscape estimation coupled with machine
learning methods to predict the precise perturbations that drive
the system from an initial state (that would lead to an attractor
associated with an undesired phenotype) and toward an attractor
associated with the desired phenotype.

Method’s validation
We provide here three application examples of NETISCE in
experimentally validated studies of cell fate reprogramming. In
addition, we present a comparative study of NETISCE applied to
the Drosophila melanogaster patterning specification system
described in silico both as Boolean and Ordinary Differential
Equations Models (Supplementary Text 2, Supplementary Tables 1,
2, Supplementary Fig. 2).

Reproducing experimentally validated perturbations to FVS
control nodes for cell fate specification in ascidian embryos
Using a GRN of cell fate specification in ascidian embryos,
Kobayashi and colleagues experimentally verified that concerted
perturbations to the network’s FVS could induce embryonic cells
to the epithelial, mesenchymal, endodermal, notochord, brain,
and pan-neural, and muscle tissue fates54,55. We performed
simulations of the experimentally verified perturbations on FVS
control nodes for cell fate specification in ascidian embryos
using SFA.
The ascidian embryo GRN contained 92 nodes and 329 edges

(Fig. 3a). We identified all 26 FVSes within the ascidian embryo
GRN, including the set of six FVS control nodes experimentally
tested by Kobayashi et al.55: Foxa.A, Foxd, Erk Signaling, Neurog,
Tbx6-r.b, and Zic-r.b (Fig. 3b). Without available normalized
expression data, we simulated in silico unperturbed embryonic
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Fig. 1 Control theory view of cell fate reprogramming. The
feedback vertex set control is a structure-based control method that
can be applied to cell-fate reprogramming. By performing appro-
priate concerted perturbations to the minimal Feedback Vertex set
on an initial state of the system that leads to an undesired attractor
(green circle), the system can be shifted (yellow dashed lines) to a
trajectory that leads to a desired attractor (magenta circle).
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development by setting the initial activities of two genes
necessary for normal embryonic development, Gata.a and Zic-r.
a56, to 1 (the activated state) and all other nodes to 0 (inactivated
state). The attractors of the unperturbed state and the seven
experimentally validated combinations of perturbations (synchro-
nous overexpression and knockout simulations) on FVS control
nodes that induced the embryonic tissue fates were estimated
using SFA. To evaluate the perturbations, we analyzed the
attractors’ expression values of the seven internal-marker nodes
(one marker for each tissue) representing genes measured in the
experimental study (Fig. 3c, Supplementary Table 3). Attractors
estimated by SFA can be compared analogously to the logarithm
of the fold-change (log2FC) in differential gene expression
analysis47, where the difference between the expression value of
a node in attractors generated from different initial states or
perturbations indicates that the gene expression of the node is
upregulated if the difference is positive, or downregulated if the
difference is negative (see “Methods” for details).
We successfully reprogrammed the unperturbed embryo to six

of the seven tissue fates using the corresponding experimentally
verified perturbations on FVS control nodes, giving the SFA in our
pipeline an overall 85% accuracy (Fig. 4, Supplementary Table 4).
We could not reproduce reprogramming to the pan-neural tissue
fate. However, the internal-marker node for the pan-neural cell
fate (Celf3.a) was upregulated when we simulated the perturba-
tion on FVS control nodes that experimentally induced the brain
+pan-neural tissue fates.

Identification of perturbations on FVS control nodes for
induced pluripotent stem cell reprogramming from primed to
naive pluripotency
The mechanisms that maintain stem cells’ pluripotency or signal
development are complex. Yachie-Kinoshita and colleagues
constructed a Boolean Model to study pluripotent cell fate
transitions under the constraint of signaling inputs57. The system
was simulated under a stochastic asynchronous updating scheme.
They simulated perturbations to every network node and
identified targets to reverse primed pluripotency to naive
pluripotency. Yachie-Kinoshita et al. experimentally validated that
the predicted targets reprogrammed primed pluripotency epiblast
stem cells (EpiSCs) toward a naive pluripotency embryonic stem
cell (ESC) state. We used NETISCE to identify combinations of
perturbations on FVS control nodes that reprogram EpiSCs toward
the ESC state (Fig. 5a).
The pluripotency signaling network contained 36 nodes and

143 edges (Fig. 5b). Using NETISCE, we estimated the six attractors
from EpiSC and ESC gene expression data and attractors from
100,000 randomly generated initial states for a total of 100,006
attractors. On these 100,006 attractors, we performed k-means
clustering. The optimal number of clusters identified by the elbow
and silhouette metrics was k= 2. One cluster contained the
attractors generated from the initial state values of the EpiSC cells’
gene expression. The second cluster included the attractors
generated from the ESC cell gene expression initialization.
NETISCE identified only one FVS in the network, comprising six

nodes: Nanog, Oct4, Klf4, Sox2, Gata6, and Tbx3 (Fig. 5c). Then, we

Fig. 2 NETISCE pipeline and method overview. a Researchers can collect data from cells exhibiting desired and undesired phenotypes and
construct the signaling and regulatory networks governing cell reprogramming processes. The outputs of NETISCE are the combinations of
network perturbations that shift the system from an undesired to a desired phenotype. bWith the signal flow analysis (SFA) algorithm47, in the
first step, attractors are estimated by simulating the network with the initial states from normalized expression data and randomly generated
initial states. The attractors are clustered via k-means, and the clusters are associated with desired (purple) and undesired (green) phenotypes.
c In the second step, FVS control nodes are identified using an FVS-finding algorithm84. Perturbations on FVS control nodes are performed by
setting the initial states of the system to the gene expression value of the undesired phenotype and overriding the states of FVS control
nodes. In the third step, the sets of perturbations on FVS control nodes that achieve the desired reprogramming are identified using two
filtering criteria. In the first criterion, the attractors generated from the perturbations on FVS control nodes are filtered using machine learning
classification algorithms to obtain a set of perturbations whose attractors shifted from the cluster associated with the undesired phenotype to
the cluster associated with the desired phenotype. In the second criterion, for user-defined internal-marker nodes, the expression values in the
attractors produced by the perturbations that passed the first filtering criterion (light purple) are evaluated to determine if their values have
shifted to the expression range of the attractors associated with the desired phenotype.
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simulated the 729 combinations of perturbations on the FVS
control nodes. Of the 729 perturbations, 375 passed the machine
learning classification filtering criterion. We identified each
machine learning classification algorithm’s top 10 percent ranked
features through feature importance analysis. Two out of the three
top SVM features were FVS nodes. The top features across all three
classification algorithms were mutually exclusive, alluding to their
complementary nature (Supplementary Text 3, Supplementary
Table 6). We used the same four internal-marker nodes as Yachie-
Kinoshita et al.: Oct4, Sox2, and Nanog as markers of naive
pluripotency, and EpiTFs as the marker of enriched transcription
factors in EpiSCs. The expression values of the internal-marker
nodes in 132 of the 375 attractors calculated from the
perturbations on FVS control nodes were in the range of gene
expression values of the ESC-associated attractors and thus passed
criterion 2 for all replicates. Notably, one perturbation on FVS
control nodes that passed both filtering criteria—overexpression
of Nanog (pert_Nanog_ovr)—was also identified and experimen-
tally validated by Yachie-Kinoshita et al. (Fig. 6). In the Boolean
simulations and experimental validation by Yachie-Kinoshita et al.,
Klf4 overexpression induced the ESC fate. Although Klf4 was an
FVS control node in the network and its overexpression passed
the machine learning filtering criterion, the perturbation (pert_Kl-
f4_ovr) did not pass the internal-marker node filtering criterion
(Fig. 6). In this case, the attractor expression values of Nanog, Sox2,
and Oct4 (when considered as internal-marker nodes) did not
reach the gene expression levels of the ESC state (Fig. 6). Overall,
we show that overexpression of the FVS control node Nanog
results in cell fate reprogramming to naive pluripotency, in
agreement with the results from the Boolean Model simulations
and experimental validations.
We explored the ability to further filter the perturbations on FVS

control nodes by increasing the number of internal-marker nodes.
We identified three additional nodes from gene expression data
provided by Yachie-Kinoshita et al. These included Lefty1, Pitx2
(transcription factors active in EpiSCs), and Esrrb (a transcription

factor active in ESCs). This reduced the 132 perturbations that
passed filtering criterion 2 to 15 perturbations. Nanog upregula-
tion was present in all 15 perturbations (Supplementary Fig. 3).
Pert_Nanog_ovr and the combination of Nanog+Klf4 overexpres-
sion (pert_Nanog_ovr+Klf4_ovr) were two of the fifteen perturba-
tions that passed the internal-marker node criteria (Fig. 6,
Supplementary Table 5). Pert_Nanog_ovr+Klf4_ovr was not
previously identified by Yachie-Kinoshita et al. However, the
combination of Klf4 and Nanog overexpression may play an
essential role in maintaining pluripotency, as Klf4 links extra-
cellular signaling information to positively regulate downstream
Nanog transcription, and overexpression of Nanog was found to
rescue pluripotency in the case of Klf4 knockdown58. Finally, based
on the results of NETISCE, we identified a potential error in the
underlying network and performed revisions to the network
structure to improve simulation results (Supplementary Text 4).

Identification of perturbations on FVS control nodes to
overcome adaptive resistance to targeted MAPK inhibitor
therapy in colorectal cancers
BRAF inhibition (BRAFi) therapy is a form of MAPK inhibitor
(MAPKi) therapy used to treat cancer patients with mutant BRAF.
BRAFi inhibits the MAPK signaling pathway, suppressing prolifera-
tion and inducing apoptosis. In colorectal cancers (CRCs), adaptive
resistance emerges against BRAFi through the activation of MAPK
signaling by upstream regulator EGFR. Park et al. were interested
in identifying a gene that, when perturbed in combination with
BRAFi, could prevent the development of adaptive resistance to
BRAFi59. However, instead of inhibiting upstream molecules like in
the BRAFi+ EGRFi treatment, they searched for a target within the
MAPK signaling pathway that could sensitize HT29 CRC cells to
MAPKi therapy. By constructing a Boolean model of signaling
pathways in CRC and simulating perturbations to every node in
the model under an asynchronous updating scheme, Park et al.
showed that BRAFi combined with SRC inhibition (SRCi) prevented
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Fig. 3 Cell fate specification in ascidian embryo model. a Gene regulatory network of cell fate specification in the ascidian embryo Ciona
intestinalis from Kobayashi et al.55. The network contains 92 nodes and 329 edges. Nodes highlighted in blue are FVS control nodes. Nodes
colored in magenta are the internal-marker nodes used to evaluate if the perturbations on FVS control nodes successfully specified the
desired cell fate. b The six control nodes identified by Kobayashi et al. that comprise the network’s minimal feedback vertex set (FVS).
Uppercase or lowercase abbreviations for each node indicate up or downregulation of the FVS control node in a given combination of
perturbations (see Fig. 4). These nodes are used as the FVS control nodes in our simulations. c The seven internal-marker nodes and the
respective tissue fates where they are upregulated as identified by Kobayashi et al. experimental studies. These nodes were also used to
identify successful perturbations in our simulations.
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the development of adaptive resistance via inhibition of ERK
(MAPK1), a member of the MAPK signaling pathway. This result
was validated experimentally in HT29 CRC cells. Therefore, with
only the CRC signal pathway network structure, RNA-seq data
from untreated HT29 cells, and functionally annotated mutational
information as input to NETISCE, we sought to identify perturba-
tions on FVS control nodes in combination with BRAFi that
overcome adaptive resistance to MAPKi therapy (Fig. 7a).
Park and colleagues built a CRC signaling network containing 95

nodes and 337 edges (Fig. 7b). We adapted the PROFILE method60

to verify that the generic CRC network and our SFA simulations
preserved the phenotypic signatures of apoptosis and prolifera-
tion (see Supplementary Text 5 and Supplementary Fig. 4).
The normalized gene expression data from an untreated

HT29 sample was used for the initial activities for all SFA
simulations, as data for HT29 cells with BRAFi and BRAFi+EGFRi
treatment is unavailable. In HT29 cells, PIK3CA and BRAF have

gain-of-function mutations, while APC, SMAD4, and TP53 have
loss-of-function mutations. Therefore, states of nodes with gain-of-
function/loss-of-function mutations were overridden to the
appropriate overexpression or knockout state using our modified
SFA equation for perturbations (see “Methods”). Next, we
simulated the treatment of an untreated HT29 cell with BRAFi
(HT29_BRAFi) or BRAFi+EGFRi (HT29_BRAFi+EGFRi) to obtain
attractors related to the MAPKi therapy-resistant state and MAPKi
therapy-sensitive state, respectively. These simulations used the
normalized expression data of the untreated HT29 sample as
initial state values and included the appropriate mutational
overrides. To simulate BRAFi and EGFRi, the state of these nodes
was overridden to a knockout state using the modified SFA
equation for perturbations. The optimal k-means clustering of the
attractors obtained from the untreated HT29, HT29_BRAFi,
HT29_BRAFi+EGFRi treated initial conditions, and the attractors
from 100,000 randomly generated initial states was k= 3; as

Adentz
(experimentally induced 

endoderm cell fate)

aDentz 
(experimentally induced 

notochord cell fate)

adentZ
(experimentally induced 

brain + pan-neural 
cell fate)
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FVS 
Control Node

Abbreviation 
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lowercase=knockout)
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Fig. 4 SFA simulations of perturbations on FVS control nodes for cell fate specification in ascidian embryos. Kobayashi et al.55 performed
experimental combinations of perturbations on FVS control nodes to induce seven tissue fates in ascidian embryos. We aimed to reproduce
these results in silico by simulating the combinations of perturbations on FVS control nodes using SFA. The results of each combination of
perturbations are displayed in the radar plot. Each axis on the radar plot displays the expression value for an internal-marker node, with the
tissue each internal-marker node represents in parentheses. The teal polygon shows the expression values of the internal-marker nodes in the
attractor associated with the unperturbed state. The yellow polygon displays the internal-marker node attractor state expression values
produced by applying one combination of perturbations on FVS control nodes to the unperturbed initial state. Note that the precise steady-
state values have been scaled for plotting, and the raw data can be found in Supplementary Table 3. The outer colored ring denotes the
combination of perturbations on FVS control nodes performed with the respective results displayed at that axis. The tissue fate that was
induced experimentally by a perturbation is denoted in parentheses. Each letter and capitalization stand for a separate FVS control node and
its perturbed state, as described in the table at the bottom. For a simulation of the perturbations on FVS control nodes to be considered
successful, the expression value of the internal-marker node must be greater in the attractor produced by the perturbation on the FVS control
nodes than the expression value in the attractor associated with the unperturbed state (the yellow polygon extends out past the teal polygon
on the radar plot). We reproduced the cell fate specification results for 6/7 cell fates, excluding adentZ inducing the pan-neural cell fate.
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desired, the untreated-state, MAPKi therapy-resistant state and
MAPKi therapy-sensitive state associated attractors were found in
separate clusters.
NETISCE exhaustively identified 68 FVSes in the CRC static

signaling network; the union of all FVSes contained 25 nodes, and
each FVS had a combination of 14 out of the 25 nodes. All FVSes
contained SRC. In addition, each FVS included TP53, a loss-of-
function mutant gene in HT29 cells whose state was already
overridden to a knockout state in our simulations; therefore,
additional perturbations to TP53 were not performed, reducing
the number of FVS control nodes that could be perturbed to 13
(Supplementary Data 1).
We present the results of using one FVS, referred to as Set 1 (Fig.

7c), to identify combinations of perturbations that shift the system
from the MAPKi therapy-resistant phenotype to the MAPKi
therapy-sensitive phenotype. We simulated 1,594,323 combina-
tions of perturbations to the 13 FVS control nodes in Set 1 to
identify their corresponding attractors. First, 232,114 of the
1,594,323 attractors generated from the perturbations on FVS
control nodes were classified to the MAPKi therapy-sensitivity
associated cluster by at least two out of three machine learning
classification algorithms. FVS control nodes or internal-marker
nodes were part of the top 10 percent of ranked features revealed
by the feature importance analysis on the three machine learning
classification algorithms (Supplementary Text 6, Supplementary
Table 7). Then, the 232,114 perturbations that produced the
attractors that passed criterion 1 were filtered by the three
internal-marker nodes that were used as output readout nodes in
Park et al. (Fig. 7c): CASP3 (apoptosis marker), Cyclin E (prolifera-
tion marker), and MAPK1/ERK (MAPK signaling activity marker).
The internal-marker nodes in the attractors produced by 52,703 of
the 232,114 perturbations on FVS control nodes had expression
values in the range of gene expression values of the MAPKi
therapy sensitivity associated attractors. Notably, the combination
of BRAFi+ SRCi (pert_BRAFi+SRCi) was the smallest perturbation
set that passed both filtering criteria (Fig. 8).

We noted that the expression values of Cyclin E and MAPK1 in
the attractors produced from the HT29_BRAFi and HT29_BRAFi
+EGFRi treated initial conditions were very similar. Although the
difference between these values of Cyclin E and MAPK1 had the
correct relationship as expected from the literature (the attractor-
state values in the HT29_BRAFi+EGFRi-associated attractor were
lower than the values in the HT29_BRAFi-associated attractor), we
considered an additional ten internal-marker nodes related to
apoptosis, proliferation, and MAPK signaling (Fig. 7c) to filter and
gain confidence on our predicted perturbations on FVS control
nodes. Of the 52,703 perturbations on FVS control nodes, 2085
met the filtering threshold of 90% for the apoptosis, proliferation,
and MAPK internal-marker node steady-state values. The combi-
nation of BRAFi+ SRCi alone did not pass the filtering criteria, as
the value of MLK3, a member of the MAPK signaling pathway
whose reactivation is linked to BRAFi resistance61, did not shift
into the range of MAPKi sensitive attractors’ gene expression.
However, SCRi was present in all the combinations of control
nodes that passed two filtering criteria (Supplementary Fig. 5).
The smallest sets of perturbations were three pairs of control

nodes. The first reprogramming pair consisted of SRCi and TSC1
overexpression (pert_SRCi+TSC1ovr), the second reprogramming
pair was comprised of SRCi and GRB2i (pert_SRCi+GRB2i), and the
third pair contained SRCi and MAPK8i (pert_SRCi+MAPK8i) (Fig. 8).
TSC1 overexpression has been studied in the context of adaptive
resistance to MAPKi. TSC1 promotes cell death by inhibiting mTOR
activity, and mTOR inhibition in combination with BRAFi has been
shown to overcome adaptive resistance in BRAF-mutant mela-
noma62. However, a complex of TSC1 and TSC2 can be inactivated
by ERK phosphorylation, leading to increased mTOR signaling63. In
the context of CRC, GRB2 is an important protein for transmitting
oncogenic signaling and promoting tumorigenesis and metasta-
sis64. Interestingly, the protein Gab2, a binding partner of GRB2,
was directly upregulated by BRAFi in BRAF mutated cancers65.
Impairing the interaction between GRB2 and Gab2 sensitized cells
to BRAFi therapy and prevented additional oncogenic signaling
and metastasis in HT29 cells65,66. Finally, MAPK8 is a member of
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the MAPK signaling pathway and an important regulator of
apoptosis and autophagy67. In addition, inhibition of MAPK8 was
found to increase sensitivity to BRAFi in MAPKi-resistant mela-
noma cell lines68.

Evaluating the robustness to noise of NETISCE
Commonly, gene expression data can be infiltrated with
extrinsic noise from experimental methods or biological
variability. We evaluated the robustness to noise of NETISCE to
predict perturbations on FVS control nodes with noisy experi-
mental gene expression data. Our approach uses COPASI69 to
simulate two differential equation models of cell reprogram-
ming and add different noise levels into some initial states. We
use these generated initial states to simulate 1000 triplicates of
the desired and undesired phenotype normalized gene expres-
sion data per noise level varying from 0 to 50% (see “Methods”).
Overall, applying this analysis in the ODE model of Drosophila
Segment Polarity genes70 and a stochastic DE (SDE) model of
cell fate differentiation in pancreatic cells35, we found that
NETISCE is strongly robust to up to 50% of noise for which more
than 75% of the perturbations on FVS control nodes were still
correctly identified.
The ODE model of the Drosophila segment polarity GRN was

used in FVS control studies. The authors identified a perturbation
on the FVS that shifted the system from the unpatterned to the
wild-type trajectory (Supplementary Text 2). In this model,
NETISCE correctly predicts the specified perturbations on FVS
control nodes that shift the system from the unpatterned to the
wild-type phenotype in over 92% of the simulations for the 1000
triplicates with 30% noise and 75% of simulations for the
triplicates with 50% noise (Supplementary Table 8).
The Zhou et al. SDE model of pancreatic cell fate differentiation

was used to simulate the reprogramming of pancreatic exocrine
cells to beta-cells35. We identified 31 combinations of perturba-
tions on FVS control nodes that could reprogram exocrine cells to
beta-cells (Supplementary Fig. 7, Supplementary Text 7). For more
than 89% of the simulations of 1000 triplicates with up to 20% of
noise, NETISCE correctly predicted the 31 combinations of
perturbations on FVS control nodes (Supplementary Table 9).

At 50% noise in the initial states, 84.1% of the simulations for the
1000 triplicates correctly predict the 31 combinations of
perturbations on FVS control nodes.

DISCUSSION
With the rise in availability of multi-omics datasets and tools for
constructing gene regulatory and intracellular signaling net-
works from these data71–73, there is a growing need for cell
reprogramming methods that are data-driven and amenable for
larger-scale biological networks where parameters to model all
the system components may not be available or be challenging
to estimate. We have developed NETISCE, a tool that identifies
cell fate reprogramming targets using the FVS control, attractor
landscape estimation, and machine learning methods. By
reproducing experimental and mathematical model results, we
show that NETISCE can identify cell fate reprogramming targets
and their perturbations using the system’s static network, gene
expression data from the undesired cell phenotype, and a set of
nodes used as internal-marker nodes for the desired and
undesired phenotypes.
NETISCE offers a unique approach to identifying cell fate

reprogramming targets through its application of control theory
and a dynamical systems-based framework. First, by employing
the structure-based FVS control, we consider feedback loops that
commonly regulate biological functions essential for identifying
reprogramming targets. Since our target search focuses on FVS
control nodes, we guarantee that the identified nodes are
sufficient for cell fate reprogramming. Applying the FVS control
to the problem of identifying cell fate reprogramming targets has
distinct advantages. In comparison to network-based approaches,
we do not need to compare the structure of multiple networks to
identify cell fate reprogramming targets; in contrast to dynamical
systems-based methods that do not apply control theory, full
dynamical information for all network components is not required,
nor is there a need to screen all network elements.
The FVS control contrasts with other control theory approaches

for identifying targets like Data Guided Control, which may fail to
capture cell reprogramming dynamics due to its linear assumption
of regulatory dynamics41. It is important to note that FVS control
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simulations of perturbations on FVS control nodes in the pluripotent stem cell model. Each plot contains the expression values of one
internal-marker node at the attractor states generated from the initial conditions: EpiSC and ESC from the available gene expression data, in
addition to the specified perturbations on FVS control nodes (pert_Nanog_ovr, pert_Klf4_ovr, pert_Nanog_ovr+Klf4_ovr). Shaded regions of
the plots indicate the ranges of either ESC (blue) or EpiSC (gold) expression values. A perturbation is considered successful if 90% of the
internal-marker nodes have expression values within the gene expression range of the ESC-associated attractor. In other words, the colored
dot for a specified perturbation should be within the blue-shaded ESC region of at least 90% of the internal-marker nodes to pass the second
filtering criterion. Plots using the four internal-marker nodes used in Yachie-Kinoshita et al. are above the dotted line. Plots using the
additional three internal-marker nodes identified are below the dotted line. We note that the Klf4 overexpression (pert_Klf4_ovr) suggested by
Yachie-Kinoshita et al., does not pass the internal-marker node filtering criterion because the expression values of Oct4, Sox2, and Nanog have
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for identifying reprogramming targets requires a high-fidelity
static network. As Mochizuki and colleagues observed5 and later,
Kobayashi and colleagues showed experimentally54,55, if a cell
state cannot be reached by perturbations to the FVS control
nodes, then the FVS was not correctly identified, and network
revision should be performed.
Second, the SFA algorithm and machine learning methods

allow us to identify the specific perturbations on FVS control
nodes required for cell fate reprogramming by estimating system
dynamics and the attractor landscape. In our approach, by
associating phenotypes to the attractor landscape via k-means
clustering and classifying the attractors produced by perturbations
on FVS control nodes via machine learning classification methods,
we observe when the system has shifted toward the attractor
associated with the desired phenotype. Last, we have modified
the original SFA algorithm47 to apply FVS control-based perturba-
tions. Unlike the SFA control method introduced by Lee and
Cho74, where edge modifications (removals or additions) were
implemented to perform perturbations, our method of perturba-
tions to a node’s state maintains the FVS of the network. In
addition, we have implemented permanent overrides on FVS
control nodes rather than the original form of SFA perturbations
that are transiently applied by changing only the initial states of
nodes. Transient perturbations are not applicable in the context of
FVS control. First, as defined by Fielder et al.6 and Mochizuki et al.5,
overrides to the states of the FVS control nodes guarantee that the
system will arrive at any desired attractor. Second, our imple-
mentation mimics the experimental perturbations in Kobayashi
et al.55, where FVS genes were permanently overexpressed or
knocked out in the ascidian embryo. While transient perturbations
could be used to simulate some types of single-drug treatments,
their use in the context of the FVS control may not produce the
desired reprogramming. In mathematical models, perturbations
on FVS control nodes can drive the system to fixed-point
attractors or cycles. However, the SFA algorithm currently
identifies only fixed-point attractors due to its tolerance threshold.

A future update could modify the tolerance threshold to identify
limit cycles.
NETISCE reproduced the simulated and experimentally vali-

dated results in different applications of cell fate reprogramming.
We have shown that NETISCE reproduced the results of in silico
simulations of the FVS control in both Boolean and ODE models
and that it is highly robust to noise. Finally, although NETISCE
performs synchronous, deterministic simulations, we reproduced
results from asynchronous and stochastic mathematical models.
Importantly, we have shown that NETISCE can be used to

personalize simulations on a network when provided with
expression (and, if available, mutational profiles) data for a
specified sample. We use PROFILE60 to verify the network structure
and SFA simulations using patient tumor data on the CRC
signaling network. PROFILE can be applied in analogous cancer
studies and when the signatures of interest are specific genes
related to a biological function or phenotype, such as those in
Molecular Signatures Database75. However, there is not an
established model verification method for problems outside of
cancer. In these problems, such as the iPSC example, NETISCE
simulations and feature importance analysis can evaluate the
correctness of the network and potentially correct errors if
literature information or data exists (see Supplementary Text 4).
In the example of cell fate specification in ascidian embryos, our

SFA simulations succeeded in reproducing 85% of the experi-
mentally validated perturbations. This accuracy may be a
limitation of the SFA estimation algorithm. The biological process
of pan-neural tissue specification may explain the inability to
induce the pan-neural tissue fate by Neurog overexpression.
Otx—a gene downstream of Neurog involved in pan-neural
cell fate specification—is inactive in the ascidian embryo until the
32-cell stage of development56. Since overexpression of Neurog
was performed at the start of the simulation, we may not be
accurately simulating the timing of its pan-neural inducing
effect. A future update to the SFA algorithm could perform
asynchronous stochastic simulations, allowing for time-delayed
perturbations and potentially producing information regarding
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the specific timings of perturbations for successful cellular
reprogramming41,76.
Our FVS control-guided method reduces the number of

simulations needed to be performed to identify targets for cell
fate reprogramming. In the reprogramming tasks for the
pluripotent stem cells and CRC problems, some of the perturba-
tions to the FVS control nodes that NETISCE identified as

successful were a subset of the perturbations found in Boolean
models, where reprogramming targets were identified by
simulating perturbations to every node in the system. In addition,
NETISCE revealed combinatorial strategies for cell fate reprogram-
ming in both models. In the case of the pluripotent stem cell
model, Nanog is essential to maintain pluripotency, and additional
overexpression of Klf4 could make the reprogrammed cell

Fig. 8 Results of simulations of perturbations on FVS control nodes for overcoming adaptive resistance in colorectal cancer. Plots of
internal-marker nodes’ expression values at the attractors reached from the perturbations on FVS control nodes in HT29 cells in the colorectal
cancer signaling network. The thirteen internal-marker nodes are divided by their associated phenotype—apoptosis (top), proliferation
(middle), and MAPK signaling (bottom). Each plot contains, for one internal-marker node, the expression values at the attractors reached from
the HT29_untreated, the HT29_BRAFi (MAPKi therapy-resistant), and the HT29_BRAFi+EGFRi (MAPKi therapy-sensitive), and the specified
perturbations on FVS control nodes (HT29_BRAFi+SRCi, HT29_BRAFi+SRCi_TSC1ovr, HT29_BRAFi+SRCi+GRB2i, and HT29_BRAFi+SRCi
+MAPK8i) initial conditions. Shaded regions of the plots indicate the MAPKi therapy-sensitive (blue) or MAPKi therapy-resistant (gold) samples
expression ranges. In each panel, plots above the dotted lines are the original internal-marker nodes used by Park et al. Plots below the dotted
lines are the additional internal-marker nodes. A perturbation is considered successful if 90% of the internal-marker nodes’ expression values
are within the expression ranges of the HT29_BRAFi+EGFRi-associated attractor (within the blue-shaded regions on the plots). We note that
while the attractor state expression values of CCNE1 and MAPK1 are very similar, the difference between the values in the HT29_BRAFi+EGFRi-
associated and HT29_BRAFi-associated attractors are in agreement with prior literature findings. The four attractors generated by the specified
combinations of perturbations on FVS control nodes pass the second filtering criterion when using only three internal-marker nodes from
Park et al., CASP3, CCNE1, and MAPK1. However, the attractor generated by Park and colleagues’s perturbation of BRAFi+SRCi does not pass
the second filtering criterion when considering the expanded set of internal-marker nodes, as the value of MLK3 is not within the MAPKi
therapy-sensitive expression range (bottom panel, pink box).
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unreceptive to extracellular signaling that may signal to exit from
pluripotency, preserving high levels of Nanog activity58. However,
unlike in the Boolean model simulations, we could not identify
that Klf4 overexpression alone could reprogram cells to the ESC
cell fate. This result may be because SFA does not capture
cooperative activity in the same manner as Boolean logic; as in
SFA, the initial activity of a node can influence the state of a node
at each time step.
In the model of adaptive resistance to MAPKi therapy in CRC,

the combination of BRAFi+SRCi+TSC1ovr could further increase
sensitivity to treatment and the rate of apoptosis by MAPK and
mTOR signaling inhibition63. Alternatively, BRAFi+SRCi+GRB2i
can increase sensitivity to MAPKi therapy and prevent the
metastatic spread of CRC tumors65. Finally, BRAFi+SRCi+MAPK8i
may also increase sensitivity to MAPKi therapy68 and drive cells
toward apoptosis67.
With the potential to identify hundreds of thousands of

perturbations that satisfy NETISCE’s filtering criteria, a method
for prioritizing perturbations on FVS control nodes is essential. A
simple method employed in NETISCE is generating a secondary
set of internal-marker nodes to filter perturbations. The number of
necessary internal-marker nodes is dependent on the user’s goals
and the specific application. For example, a minimal set of marker
nodes may generate thousands of successful perturbations on FVS
control nodes, allowing the user to understand patterns of
perturbations and potentially focus on specific network modules.
However, a larger set of internal-marker nodes may allow users to
gain confidence in the predicted sets and reduce the number of
successful perturbations on FVS control nodes, which could help
prioritize the predicted targets to be verified experimentally. This
is especially true in the model of adaptive resistance to MAPKi
therapy in CRC, where gene expression data for the MAPKi-
resistant and MAPKi-sensitive cells was unavailable. In addition,
the expanded internal-marker nodes revealed that the combina-
tion of BRAFi+SRCi may not provide the most satisfactory
reprogramming, as the expression value of MAPK signaling
pathway member MLK3 did not shift into the expression range
of the MAPKi sensitive attractor.
Depending on the system, it may also be beneficial to prioritize

the smallest combinations of perturbations on FVS control nodes
to ease experiments or prevent off-target effects. Another
prioritization approach could score perturbations based on the
strength of their effect on the target phenotypes while minimizing
side effects, similar to the method implemented by Park et al. in
the CRC Boolean model simulations59. A node received a high
score if, when the probability of its activity in the results of the
asynchronous stochastic simulations indicated inhibition, it would
prevent adaptive resistance via ERK reactivation, promote the
therapeutic side-effect of increased apoptosis, and prevent the
adverse side-effect of increased proliferation. This scoring could
be modified for NETISCE. Majorly, NETISCE would need to perform
stochastic asynchronous simulations like the Boolean Model
simulation framework used by Park and colleagues59. The scoring
also needs to consider overexpression, knockout, and combina-
tions of perturbations on FVS control nodes. Next, the processing
of internal-marker nodes could be modified to consider nodes
related to side effects. Finally, an algorithm for path-finding and
determining the effect of a perturbation on FVS control nodes on
off-target nodes would need to be implemented.
In stem-cell reprogramming, where changes to the epigenetic

profile are a significant factor in reprogramming efficiency77,
implementing a scoring of combinations of perturbations on FVS
control nodes that considers epigenetic information could be
highly effective to rank reprogramming targets. This information,
which is incorporated into the tool, IRENE for both GRN
construction and scoring of potential transcription factor-
reprogramming targets, increased reprogramming protocol effi-
ciencies in some cases by more than 900%37. Similar to the

method of Park et al., this would also require implementing a
stochastic simulation framework and could only be considered if
the epigenetic information was available for both the undesired
and desired states.
In addition, if applicable, such as in a disease model,

information like druggability or drug synergies could be
incorporated into prioritizing combinations of perturbations on
FVS control nodes78,79. For example, PHAROS79, a meta-database
of drug-target information, can be used to assess the druggability
of SRC, GRB2, TSC1, and MAPK8. Currently, six drugs are approved
SRC inhibitors. However, there are no approved drugs for GRB2 or
MAPK8 inhibition nor known drugs or molecules that bind to TSC1
and promote its overexpression. Therefore, SRCi would be a likely
first candidate for preventing adaptive resistance in combination
with BRAFi.
Our dynamical systems-based analysis using static biological

networks and experimental data to estimate the attractor land-
scape and perform combinations of perturbations to control
nodes provides a valuable tool for intracellular signaling analysis.
Because NETISCE can be applied to biological networks of a larger
scale that are not fully parameterized, we envision it as a primary
tool for cell fate reprogramming studies. Experimentalists can use
the results generated from NETISCE to prioritize wet-lab perturba-
tion experiments. At the same time, mathematical modelers can
focus model construction toward regions that appear to be more
relevant to the desired reprogramming task and fine-tune
reprogramming target predictions by exactly solving for attractors
rather than estimating steady states. Finally, our method produces
useful and potentially novel combinations of perturbations for cell
fate reprogramming that could eventually be applied for
treatments in disease models to recover healthy cell phenotypes
in biological systems.

METHODS
NETISCE overview
Input. There are three required inputs for NETISCE: (1) a static network
representing a biological system, (2) a set of normalized gene expression
data from cells with an undesired phenotype, and (3) a set of internal-
marker nodes—user-defined nodes within the network that can be used
as a point of reference to verify that their gene expression levels match
the expected values in desired and undesired phenotypes. Normalized
gene expression data for cells with the desired phenotype can also be
provided (see the Pluripotent stem cell example) but is not required for
all use cases, such as simulating adaptive resistance to treatment
(see the Colorectal cancer example). Optionally, the input can include
mutational data to specify the rules for the simulations involving the
network’s mutated genes.

Step 1. Estimation of the attractor landscape. The goal of the first step of
NETISCE is to estimate the region of the attractor landscape containing
steady-states associated with the desired and undesired phenotype
(Fig. 2b). The network is simulated using an adapted version of SFA46.
SFA estimates signal flow, the information conveyed by a series of reactions
as represented in a signaling network or GRN, based only on topological
information in the network and an initial state of the network nodes. The
output of SFA is the logarithm of the attractor’s expression value for each
network node. The initial states of the network nodes are based on the
normalized gene expression levels. We simulate the system using SFA for
each provided experimental sample until reaching the attractor.
We generate randomly sampled initial states whose values fall in the

ranges of the normalized expression values for each of the supplied
phenotypes in the experimental data and apply SFA to compute a
sufficiently large number of attractor states34. All the computed attractors
are then clustered via k-means clustering. The elbow and silhouette metrics
are calculated to determine an optimal k51,52. The clusters are also
evaluated using the internal-marker node values.

Step 2. Virtual screenings on FVS control nodes. In this step, NETISCE
identifies FVS control nodes and simulates combinations of perturbations
to their activity (Fig. 2c). First, the FVS control nodes are identified via a
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simulated annealing algorithm to determine the FVS of the network53. This
step can be performed exhaustively to identify all FVSes in a network.
Then, virtual screenings of combinations of perturbations on the FVS
control nodes are performed using the SFA algorithm. In these simulations,
the initial states of the network nodes are set to the normalized expression
values of the cells with an undesired phenotype. We have modified the
SFA pipeline to implement overrides to control nodes to simulate
overexpression, knockout, or no change to a node’s activity.

Step 3. Filtering sets of perturbations on the FVS control nodes. The final
step of the pipeline aims to identify the combinations of perturbations on
the FVS control nodes that result in the desired cell fate reprogramming
(Fig. 2c). We employ two filtering criteria to evaluate the combinations of
perturbations on FVS control nodes. The first criterion uses Random Forest,
Support Vector Machine, and Naive Bayes machine learning classification
algorithms to classify the attractors generated by perturbations on FVS
control nodes. In this classification step, using the previously clustered
attractors by the k-means analysis, the attractors generated by perturba-
tions on FVS control nodes are classified either in the cluster(s) associated
with the undesired or desired phenotype54–56. To pass this filtering
criterion, an attractor generated from the perturbation on FVS control
nodes must be classified to the cluster associated with the desired
phenotype by at least 2 out of 3 classification algorithms. After passing
the first criterion, perturbations on FVS control nodes are evaluated by the
second filtering criterion, which focuses on the expression values of the
internal-marker nodes in the attractors. Perturbations on FVS control nodes
where at least 90% of the internal-marker node expression values are
within the expression ranges of the attractors associated with the desired
phenotype pass this filtering step. These criteria produce a final set of
perturbations on FVS control nodes that are considered capable of
reprogramming from an undesired cell fate toward the desired cell fate.

Estimation of steady-states using signal flow analysis
Signal flow analysis (SFA) is based on the Signal Propagation algorithm
developed by Lee and Cho47. The algorithm is a linear difference equation
that computes the activity of a network node at a given time in terms of
the state of the network node at the previous time step, the effect
(activating or inhibiting), and the weight of the influence of its m incoming
edges, and the initial state of the node. Precisely, the logarithm (log2) of
the steady-state activity xi(t+ 1) of a node i at time t+ 1 is estimated by
the initial state of the node and the activities of its regulators at time t
using the following equation:

xi t þ 1ð Þ ¼ α
Xm
j¼1

Wijxj tð Þ
� �þ 1� αð Þbi (1)

where xj (t) is the logarithm of the activity of j, a node connected to i by an
incoming edge, at time t. The Wij is the weight of the edge between node j
and node i, which represents how much influence node j exerts on node i
through the edge. Wij is defined as:

Wij ¼ sign ijð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Doutð Þj Dinð Þi

q (2)

where sign(ij) is the value of the edge between i and j (1 for activating
edges, −1 for inhibiting edges), Dout is the out-degree of j, and Din is the in-
degree of i. Finally, b is the logarithm of the initial state of node i and α is a
hyperparameter used to weigh the influence of the network structure and
initial node state on the Signal Flow. By default, in our pipeline, the
hyperparameter α is set to 0.9 to provide greater weight to the network
topology rather than the initial activity based on the parameter settings
used in previous control studies using SFA74.
To identify an attractor of the system, the signal propagation equation is

solved for all network nodes synchronously until the difference between x
(t+ 1) and x(t) is less than a tolerance threshold (by default, this tolerance
threshold is 10−6).
The network nodes’ expression values of two attractors under different

simulation inputs can be compared by computing the difference between
two logarithms of the expression values produced from SFA, analogously
to a logarithm of the fold-change (log2FC) in differential gene expression
analysis47. Although the actual numerical value cannot be used to measure
the magnitude of the change in expression, positive difference values
indicate that the specified perturbation led to a shift in signal flow that
increases the gene’s activity at the steady state. In contrast, negative values
predict decreased activity at the steady state due to the perturbation.

When estimating the attractor landscape, we begin by solving the
signal propagation equation for the system using the experimental data
for each sample; the initial activity of network nodes is set to the
normalized expression values. In most cases, the number of experi-
mental samples is insufficient for landscape estimation. Therefore,
NETISCE can generate randomly sampled initial states (100,000 by
default), whose initial state values are calculated from the ranges of the
normalized expression values for each of the supplied phenotypes in the
experimental data.

Association of the attractor landscape clusters to
experimental phenotypes
We employ k-means clustering to partition the attractors estimated from
the normalized expression data and the randomly generated initial states.
We confirm that the attractors computed from the undesired and desired
experimental samples are different. We use two metrics to determine the
optimal number of k clusters. The first is the elbow metric, which
determines the optimal k by finding the minimal intra-cluster variation80.
The second is the silhouette metric, which aims to identify the optimal k as
the number of clusters with minimal intra-cluster variation and maximal
inter-cluster variations81. When the two metrics disagree on the optimal k,
the smallest of the potential optimal k-values is chosen where the
attractors estimated from the undesired and desired phenotype experi-
mental samples do not appear within the same cluster(s).
Finally, we use the internal-marker nodes to confirm that the

expression values of these nodes agree with experimental data or
literature. NETISCE checks that the expression value of each internal-
marker node in the attractors associated with the undesired phenotype
and desired phenotype matches the expected differential gene
expression patterns. In the scenario where only the experimental data
for the undesired phenotype was provided for the initial states, NETISCE
verifies that the cluster(s) containing the attractors generated from the
experimental data only have attractors where the internal-marker node
expression values are within the range of expression values of the
undesired phenotype. If experimental data for both the undesired and
desired phenotype is supplied for initial states, then NETISCE confirms
that the attractors generated from the two phenotypes do not appear in
the same cluster and that their internal-marker node expression values
are within the appropriate expression value ranges. For example,
consider a gene with a higher expression in cells in the desired
phenotype than the undesired phenotype. NETISCE will verify that the
expression value in the attractor associated with the desired phenotype
is greater than the value in the attractor associated with the undesired
phenotype (i.e., that the difference between the expression value for the
internal-marker node in the attractor associated with the desired
phenotype and the undesired phenotype is positive). Also, when
multiple samples are given for each phenotype, NETISCE verifies that
the expression values of the internal-marker nodes in the attractors of
the undesired phenotype do not overlap with the values in the attractors
of the desired phenotypes. If an overlap occurs, the internal-marker node
is unreliable for analysis to separate the attractors in the different
phenotypes. Thus, if the values of the internal-marker nodes do not
match the literature or do not separate well between the attractors of
the undesired and desired phenotype clusters, the user may elect to
revise network structure, remove specific internal-marker nodes, or
adjust simulation settings.

Identification of the minimal feedback vertex set
Structure-based methods study the controllability of systems based solely
on the structure of the network5,82,83. In recent years, structure-based
control methods for systems with non-linear dynamics have been
proposed. One such structure-based control method for non-linear
dynamics is the feedback vertex set control introduced by Mochizuki
et al.5,6. Feedback vertex set control is a structure-based control method
focused on the controllability of the system by restricting the target states
to attractors. Mochizuki et al. mathematically proved that for a network
governed by non-linear dynamics like cell signaling, the control action of
overriding the state variables of the FVS into a targeted desired trajectory
ensures that the system will asymptotically approach the desired
trajectory. Consider a directed graph G= (V, E) comprised of node set V
and edge set E. The node states of G are described by the ODE

_xn ¼ Fn xn; xInð Þ; n ¼ 1; 2; ¼ ;N (3)
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where for the dynamics x of node n∈ V, In is the set of nodes that regulate
node n, such that self-regulatory loops (n∈ In) are only positive. In addition,
we assume Fn satisfies decay condition:

∂1 Fn xn; xInð Þð < 0 (4)

for all n where ∂1 is the partial derivative w.r.t. the first occurrence of
xn and not xIn .
Definition 1.1: In G, a subset I ⊆ V of nodes is feedback vertex set (FVS) if

and only if removal of set G \ I leaves a graph without directed cycles. An
FVS is minimal if it does not contain a proper subset that is an FVS itself.
For simplicity, in this paper, we will consider all the FVSes to be minimal.
Definition 1.2: In a dynamic system, a subset J ⊆ V of nodes is a set of

determining nodes if and only if two solutions satisfy lim
x!1

exJ tð Þ � xJ tð Þ ! 0
whenever lim

x!1
exn tð Þ � xn tð Þ ! 0 for all components n 2 J � V .

In Fielder et al. and Mochizuki et al., these two definitions were proven
to be equivalent for dynamics in a network5,6. Therefore, observation of
the long-term dynamics of the FVS is sufficient to identify all possible
attractors of an entire system. Controlling the dynamics of the FVS
x�I tð Þ � xI tð Þ ! 0
� �

is sufficient to drive the dynamics x(t) of a whole
system to converge on one of any attractors x*(t).
The minimal feedback vertex set problem is a well-known NP-hard

problem. Many algorithms have been developed to find the near-
minimum FVS. Based on the implementation in Zañudo et al.83, we use
a simulated annealing local search approach, SA-FVSP, originally described
in Galinier et al.84. SA-FVSP has been shown to outperform the greedy
adaptive search procedure85. A network may have multiple FVSes
depending on the size and structure, but each FVS has the same
capabilities for controlling cell fates.

Simulating perturbations on FVS control nodes
After identifying the FVS control nodes for virtual screenings, combinations
of perturbations (overexpression/upregulation, knockouts/downregulation,
or no change) to an FVS node’s activity are generated. NETISCE generates
3n combinations of control nodes perturbations, where n is the number of
FVS control nodes.
The initial state of a node not contained in the FVS or an FVS node

whose perturbation is “no change” is set to the normalized expression
value of the experimental sample(s) for the selected undesired phenotype.
To simulate the perturbations on FVS control nodes, we modified the

SFA algorithm to override the activity of perturbed control nodes.
Specifically, the values of the perturbed FVS control nodes are fixed and
unaffected by the incoming signal flow. The fixed state p of an upregulated
(downregulated) FVS control nodes i is defined as:

pupregulatedi ¼ max normexpið Þ þ 2:5 max normexpið Þð Þ (5)

pdownregulatedi ¼ min normexpið Þ � 2:5 min normexpið Þð Þ (6)

Where max(normexpi) and min(normexpi) are the maximum and minimum
normalized expression values of i across the experimental samples of the
undesired phenotype, respectively. These equations are also used when
gain-of or loss-of-function information from mutational data is supplied to
NETISCE. For example, the value of a node representing a gene with a gain-
of-function mutation is fixed to the corresponding pupregulatedi based on the
normalized gene expression data.

Classification of perturbations on FVS control nodes
To systematically identify which perturbations on the FVS control nodes
shifted the system away from the attractor associated with the undesired
phenotype and toward the desired phenotype, we filter the resultant
attractors with two criteria. Criterion 1 considers a combination of
perturbations on FVS control nodes successful if the perturbation’s
corresponding attractor is classified to the cluster associated with the
desired phenotype by at least two of three machine learning classification
algorithms. The three classification algorithms considered in NETISCE are
Naive Bayes, Support Vector Machines, and Random Forest classifiers. Naive
Bayes and Support Vector Machines are well suited for high dimensional
datasets86,87, while Random Forest Classifiers improve predictive accuracy
and reduce over-fitting88. For each algorithm, the training data is the set of
attractors generated from the provided normalized expression data and the
randomly generated initial states and their associated clusters identified in
the k-means clustering step. For each attractor, the entire vector of all
network nodes is supplied. Last, we perform a Feature Importance Analysis.
We examine the important features (network nodes and their associated

steady-state values) used by each algorithm to classify the combinations of
perturbations on FVS control nodes. We extract the top 10% of ranked
features for each algorithm89.
Criterion 2 focuses on the expression values of the internal-marker

nodes. In this second criterion, the attractor obtained after simulating the
system under the studied combination of perturbations on FVS control
nodes must have at least 90% of the expression values of its internal-
marker nodes within the expected expression value ranges of the desired
attractors. This ensures that beyond the machine learning classification
based on the entire attractor, the known biological internal-marker nodes
have the expected values of the desired phenotype. By default, NETISCE is
set to strict filtering criteria, where the expression values of the attractor
produced by the perturbations on FVS control nodes must shift into the
appropriate range of the desired phenotype expression values. For
example, consider an internal-marker node whose expression value in
the cluster of attractors associated with the desired phenotype is 2.0. The
expression values in the attractors associated with the undesired
phenotype are 1.0. The difference between the internal-marker node’s
expression values in the desired phenotype versus the undesired
phenotype would be positive, indicating that the gene’s activity is higher
in the desired phenotype. For a perturbation on the FVS control nodes to
pass the filtering criterion, the expression value of the internal-marker
node must be >2.0. Therefore, the difference between the internal-marker
node’s expression values in the attractor produced by the perturbation on
FVS control nodes would be positive when compared to either the desired
or undesired phenotype. Alternatively, the user can select a more relaxed
filtering threshold. In this case, for the example described above, a
perturbation on the FVS control nodes would pass the filtering criterion if
the attractor expression value of the internal-marker node is >1.0. All the
perturbations to the FVS control nodes that pass both filtering criteria are
considered to successfully shift the initial state to an attractor associated
with the desired phenotype. If NETISCE is run with replicates for the
undesired phenotype, then a perturbation on FVS nodes must pass the first
filtering criteria on all replicates. All replicates are individually analyzed in
the second filtering criterion, and NETISCE produces a separate list of
perturbations that pass the criterion for each replicate. In our pluripotent
stem cell example that contained three replicates, the perturbations on
FVS control nodes that passed both criteria in the replicates were identical.
However, users familiar with their data may be interested in perturbations
that only work for a subset of replicates.

Data for developmental, stem cell, and cancer biology
validations
Cell fate specification in the ascidian embryo. The network structure was
obtained from Kobayashi et al.55. Since the focus of this example was to
reproduce the experimental results of embryonic cell fate specification
using feedback vertex set control and SFA, we performed computations
separate from the NETISCE pipeline but using the essential scripts (see
GitHub repository and tutorial). Without available normalized gene
expression data for the unperturbed embryo, we performed in silico
simulations to reproduce the cell fate specification results with SFA. The
attractor for an unperturbed embryo was estimated by setting the initial
activities of two genes necessary for normal embryonic development, Gata.
a and Zic-r.a, to 1, representing an activated state56. All other nodes were
initialized to 0, representing an initial inactive activity. The attractor
estimation function simulated the seven perturbations to the FVS control
nodes that induced the seven tissue fates experimentally: (Foxa.A, Foxd, Erk
Signaling, Neurog, Tbx6-r.b, and Zic-r.b.). Specifically, in these simulations,
Gata.a and Zic-r.a had initial activities set to 1 and all other nodes set to 0.
Then, the values of the FVS control nodes were overridden using the
pupregulatedi or pdownregulatedi equations. Since there was no gene expression
data, for all FVS control genes the pupregulatedi = 2.5 and pdownregulatedi =−2.5.
The internal-marker node expression values for the unperturbed and
perturbations on FVS node simulation results can be found in Supplemen-
tary Table 1. A perturbation was considered successful in replicating the
experimental results if the difference in the expression values between the
specified internal-marker node for the relevant tissue in the attractor
generated from a perturbation on FVS control nodes and the attractor
generated from the unperturbed initial state was positive (Supplementary
Table 4). These values were additionally graphed using radar plots to
visualize the respective upregulations for each perturbation (Fig. 4).

Induced pluripotent stem cell reprogramming from primed to naive
pluripotency. The intracellular signaling network for induced pluripotent
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stem cell signaling was obtained from Yachie-Kinoshita et al.57. The
normalized expression data for EpiSCs and ESCs were downloaded from
the Gene Expression Omnibus (GSE88928)90. There were three replicates
for each experimental sample. Each replicate was used separately as initial
state values to simulate the network, compute their associated steady-
states, and perform perturbations on the FVS control nodes. Initially, we
selected as internal-marker nodes the four output nodes used in the
Boolean Model of Yachie-Kinoshita et al.: Oct4, Sox2, Nanog, and EpiTFs.
Although these three nodes were also FVS control nodes, they were used
as internal-marker nodes to be consistent with the output nodes in the
Boolean simulations. To further filter our perturbations, we selected
additional internal-marker nodes from gene expression data provided by
Yachie-Kinoshita et al.57. Based on the gene expression data for the
network nodes, there were six genes whose values differed significantly
between the ESC and EpiSC states. These included Lefty1, Pitx2, and Esrrb.
The three other genes, Tbx3, Gata6, and Klf4, were not included as internal-
marker nodes as they were FVS control nodes. Radar plots were used to
visualize the perturbations of Klf4 upregulation, Nanog upregulation, and
the combined Klf4+Nanog upregulation (Fig. 6).

Overcoming adaptive resistance to MAPK inhibitory therapy in colorectal
cancers. The colorectal cancer (CRC) tumorigenesis signaling network and
annotated HT29 mutational profile for network nodes were provided by
Park et al.59. The RNA-seq from untreated HT29 cells was obtained from the
Cancer Cell Line Encyclopedia (CCLE)91.
In this study of adaptive resistance to MAPKi therapy in CRC, the

ultimate therapeutic goal is to decrease proliferation and increase
apoptosis in tumor cells. In a method adapted from Beal et al.60, we verify
that CRC tumors’ proliferation and apoptosis signatures are preserved
under the SFA simulation of the generic CRC network for patient tumors
(Supplementary Text 5).
The network was simulated using as initial conditions the normalized

expression and mutational profile of an untreated HT29 as there was no
available gene expression data for treated HT29 cells. As annotated in Park
et al.59, PIK3CA and BRAF have gain-of-function mutations, while APC,
SMAD4, and TP53 have loss-of-function mutations in HT29 cells. Therefore,
the values of these nodes were fixed to the appropriate pupregulatedi or
pdownregulatedi value. To simulate BRAFi (HT29_BRAFi), pdownregulatedi override
was applied to the state of BRAF. To simulate BRAFi+EGRFi (HT29_BRAFi
+EGRFi), BRAF and EGFR had the appropriate overrides applied using the
pdownregulatedi equation. We used the FVS-finding algorithm to search for a
sufficiently large number of FVS in the CRC network, which identified 68
FVSes of size 14. TP53 was removed from the FVSes since it was already
fixed to its pdownregulatedi value due to the loss-of-function mutation in HT29
cells (Supplementary Data 1). Based on feedback vertex set control theory5,
all FVSes of a system can guide the system to any of its natural attractors;
therefore, we randomly selected the first FVS identified by the algorithm to
perform virtual screenings. For simulating perturbations on FVS control
nodes, the system was initialized with the same parameters as the
(HT29_BRAFi) simulation, with the additional perturbations to the FVS
control nodes.
Perturbations on FVS control nodes were filtered first by the set of 3

internal-marker nodes used by Park et al.59: CASP3, a marker of apoptosis,
CCNE1 (also known as Cyclin E), a proliferation marker, and ERK (also
known as MAPK1), a downstream molecule of the MAPK signaling
pathway whose activity after BRAFi treatment indicates adaptive
resistance. Potential additional internal-marker nodes were selected
from downstream signaling elements of MAPK signaling, apoptosis-
related, and proliferation-related pathways59. These sets were filtered
using the internal-marker node checking step of NETISCE to ensure that
their expression values in the attractors associated with MAPK inhibitor
therapy and MAPK inhibitor resistance were appropriate based on
literature evidence. This resulted in an additional ten internal-marker
nodes: three genes from apoptosis-related pathways (CASP9, MAPKAPK2,
PPP2CA), two genes related to proliferation (CCND1, CDC25A), and five
genes from MAPK signaling pathways (DUSP1, ELK1, HNF1B, MAPK8,
MLK3). In order for a perturbation to pass the filtering criteria using the
expanded set of internal-marker nodes, it must meet the 90% threshold
for each phenotype’s set (apoptosis, proliferation, and MAPK signaling)
independently.

Evaluating the robustness to noise of NETISCE
In COPASI, we simulated the differential equation models using the Time
Course function for the undesired and desired phenotypes. We additionally

simulate the time course for the undesired initial condition when a
perturbation on FVS nodes is applied to ensure the system still arrives at
the desired attractor. We injected seven levels of noise (1%, 5%, 10%, 20%,
30%, 40%, 50%) in the undesired and desired initial conditions using the
Random Distribution item in the COPASI’s Parameter Scan function. For
each node with a nonzero initial concentration, the noisy initial condition
was generated using a normal distribution, where the mean was the initial
state of the node, and the standard deviation was 0.01, 0.05, 0.10, 0.20,
0.30, 0.40, or 0.50, to simulate 1%, 5%, 10%, 20%, 30%, 40%, or 50% noise,
respectively. We generated 1000 initial states for each noise level for the
desired initial and undesired initial states.
In COPASI, von Dassow’s Drosophila Segment Polarity Gene model

simulations were computed using the deterministic LSODA Solver for 500 s
when a steady-state was reached. The values of the FVS control nodes
were set to the values determined by Zanudo et al. (Supplementary Table
1). The SDE model was extracted from Zhou et al. and simulated using the
SDE solver. To implement the time-delay perturbations of MafA, Pdx1,
Ngn3, Pax4 overexpression, and Ptf1a knockout in exocrine cells, we used
the Event function to increase the production or degradation rates as
performed in Zhou et al.
After completing the simulations in COPASI and generating sets of noisy

initial conditions, we tested the ability of NETISCE to correctly identify that
the specified perturbations on FVS control nodes can shift the undesired
initial state away from the undesired attractor and toward the desired
attractor. It is unlikely that an experiment contains 1000 biological
replicates in real circumstances. Therefore, we generated 1000 subsets of
three wild-type and three unpatterned initial states at each noise level,
analogous to an experiment with three biological replicates of the wild-
type phenotype and three biological replicates of the unpatterned
phenotype. For each set of 1000 initial states at each noise level, we run
NETISCE with default settings.

NETISCE implementation
The main computational scripts of our pipeline are written in Python,
utilizing the extensively optimized machine learning algorithms of the
Scikit Learn package89. Scripts for analyzing the internal-marker node
values are written in R. NETISCE is implemented as a Nextflow workflow92.
Nextflow is a state-of-the-art workflow manager tool that is language
agnostic and designed for parallel processing as a dataflow manager.
Checkpoints are implemented for the user to investigate any possible
errors or make changes to the run configuration. The code can easily be
resumed without having to re-run all computations. We provide Nextflow
pipelines for local machine use and high-performance cluster implementa-
tions. We also provide NETISCE within a Docker container to further
enhance the reproducibility of NETISCE simulations93. In addition to the
command-line tool, our pipeline is available through the Galaxy Project.
This cloud-based open-source tool requires little to no programming
experience for biological analysis and workflows94.

DATA AVAILABILITY
Data files are available at https://github.com/VeraLiconaResearchGroup/Netisce.

CODE AVAILABILITY
The NETISCE’s Nextflow pipeline version and the Docker image documentation are
available at https://github.com/VeraLiconaResearchGroup/Netisce. The installation,
tutorials, information for installing the Galaxy Project version of NETISCE, and
walkthroughs for reproducing the above results are found at http://veraliconalab.org/
Netisce/.
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