
Journal of the National Cancer Center 3 (2023) 286–294 

Contents lists available at ScienceDirect 

Journal of the National Cancer Center 

journal homepage: www.elsevier.com/locate/jncc 

Full Length Article 

Identification of plasma proteomic signatures associated with the 

progression of cardia gastric cancer and precancerous lesions 

Jianhua Gu 

1 , 2 , † , Shuanghua Xie 

1 , 3 , † , Xinqing Li 1 , Zeming Wu 

4 , Liyan Xue 

5 , Shaoming Wang 

1 , ∗ , 
Wenqiang Wei 1 , ∗ 

1 Office of National Central Cancer Registry, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical 

Sciences and Peking Union Medical College, Beijing, China 
2 Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China 
3 Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, 

China 
4 iPhenome Biotechnology (Dalian), Inc., Dalian, China 
5 Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking 

Union Medical College, Beijing, China 

a r t i c l e i n f o 

Keywords: 

Cardia gastric cancer 
Proteomics 
Screening 
Precancerous lesion 

a b s t r a c t 

Objective: Considering that there are no effective biomarkers for the screening of cardia gastric cancer (CGC), 
we developed a noninvasive diagnostic approach, employing data-independent acquisition (DIA) proteomics to 
identify candidate protein markers. 

Methods: Plasma samples were obtained from 40 subjects, 10 each for CGC, cardia high-grade dysplasia (CHGD), 
cardia low-grade dysplasia (CLGD), and healthy controls. Proteomic profiles were obtained through liquid 
chromatography-mass spectrometry (LC-MS/MS-based DIA proteomics. Candidate plasma proteins were iden- 
tified by weighted gene co-expression network analysis (WGCNA) combined with machine learning and further 
validated by the Human Protein Atlas (HPA) database. The area under the receiver operating characteristic curve 
(AUC) was used to evaluate the performance of the biomarker panel. 

Results: There was a clear distinction in proteomic features among CGC, CHGD, CLGD, and the healthy controls. 
According to the WGCNA, we found 42 positively associated and 164 inversely associated proteins related to 
CGC progression and demonstrated several canonical cancer-associated pathways. Combined with the results 
from random forests, LASSO regression, and immunohistochemical results from the HPA database, we identified 
three candidate proteins (GSTP1, CSRP1, and LY6G6F) that could together distinguish CLGD (AUC = 0.91), CHGD 

(AUC = 0.99) and CGC (AUC = 0.98) from healthy controls with excellent accuracy. 

Conclusions: The panel of protein biomarkers showed promising diagnostic potential for CGC and precancerous 
lesions. Further validation and a larger-scale study are warranted to assess its potential clinical applications, 
suggesting a potential avenue for CGC prevention in the future. 
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. Introduction 

Cardia gastric cancer (CGC), arising from the upper part of the stom-
ch adjoining the esophagus, is a subtype of gastric cancer (GC) with a
igh incidence in East Asia. 1 In China, the CGC was defined as a car-
inoma with its center located within the region 1 cm above and 2 cm
elow the gastroesophageal junction (GEJ), corresponding to Siewert
ype II adenocarcinoma of the GEJ. 2 Due to a lack of specific symptoms,
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GC is often diagnosed at late stages, with a subsequent poor prognosis
or most patients. 3 

Endoscopy and biopsy have become the dominant modality for
opulation-based CGC screening programs in China. Despite the great
chievements in reducing mortality, 4 the high cost and invasive nature
urtail their large-scale application. Blood-based biomarkers are of par-
icular interest as cancer screening tests as a result of their convenience,
ow cost, and quantitative measure. In countries with a high incidence
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f GC such as China, 5 Japan 6 and South Korea, 7 serum pepsinogen,
astrin-17 and Helicobacter pylori IgG antibodies have been used for risk
tratification in screening programs of non-cardia gastric cancer (NCGC)
t the population level. However, these strategies have been proven ef-
ective in the screening of NCGC, while having poor diagnostic effec-
iveness in CGC. 5 Therefore, robust detection biomarkers for CGC are
esperately needed. 

The development of high-throughput proteomic techniques based on
iquid chromatography-mass spectrometry (LC-MS) provides a powerful
latform for the exploration of biomarkers. 8 However, due to the bias
oward high-abundance ions and limited dynamic range, the conven-
ional data-dependent acquisition (DDA)-MS model has limitations in
he quantification and identification of low-abundance proteins. Com-
ared to this, the emerging strategy of data-independent acquisition
DIA) combines the protein-wide coverage of DDA with the reproducibil-
ty, sensitivity, and accuracy of targeted methods. 9 , 10 Motivated by the
bundant unique advantages in the acquisition of MS data, DIA pro-
eomics has been widely applied for the exploration of pathogenesis and
otential biomarkers in sorts of cancers such as colorectal, 11 prostate 12 

nd lung cancer. 13 

In this study, we applied LC-MS/MS-based DIA proteomics to analyze
lasma samples from CGC, cardia high-grade dysplasia (CHGD), cardia
ow-grade dysplasia (CLGD), and healthy controls, aiming to identify a
et of potential plasma protein biomarkers for CGC early diagnosis. 

. Materials and methods 

.1. Study population and sample collection 

CGC patients were recruited and treated at the Linzhou Cancer Hos-
ital, Henan Province. Information related to pathologic diagnosis and
umor stage was obtained from the medical records. This study coded
GC as C16.0 and defined it as a carcinoma with its center located within
 cm of the GEJ. 14 CHGD, CLGD, and healthy groups were recruited
rom residents who underwent endoscopic examination with subsequent
athological diagnoses in the same area. Details including inclusion
nd exclusion criteria have been reported previously. 14 , 15 Groups were
atched 1:1 for age ( ± 3 years), sex, and ethnicity ( n = 10 per group).
lasma samples were obtained from peripheral blood by centrifugation
t 3 000 g for 15 min at 4 °C and immediately stored at − 80 °C until
sed. 

.2. Sample preparation 

.2.1. Sample preparation for spectral library construction 

Total proteins from each plasma sample were extracted using the
rotein extraction kit (Beyotime Biotechnology, China) according to the
anufacturer’s instructions. In brief, the protein extraction buffer con-

aining protease inhibitors (1:100) was added to the samples at a ratio
f 1:2 and centrifuged at 15 000 g for 15 min twice at 4 °C to collect the
upernatant. Protein concentrations were determined by BCA protein
ssay (Beyotime Biotechnology, China). 

Equal amounts (5 ul per sample) of 40 plasma samples were pooled
ogether for spectral library construction. The albumin, IgA, IgG, 𝛼1-
ntitrypsin, and other 14 interfering high-abundance proteins in pooled
amples were removed through the Human 14 Multiple Affinity Re-
oval LC Column (Agilent, USA). 16 Subsequently, the proteins were

educed to a 20 mM final concentration of 20 mM dithiothreitol (DTT)
t 37 °C for 60 min. Alkylation was performed in the dark for 30 min
y adding 1 M iodoacetamide (IAA) to a final concentration of 50 mM.
fterward, trypsin digestion was carried out in an enzyme-to-protein ra-

io of 1:50, overnight and in the dark at 37 °C. The digested peptides
ere desalted using a C18 Cartridge (Thermo, USA) and concentrated by
acuum centrifugation. An aliquot of 100 μg peptide samples was frac-
ionated using high pH reversed-phase fraction chromatography (HPRP)
287 
ollowed by collecting 10 fractions. Finally, the peptides from each frac-
ion were reconstituted in 0.1% formic acid and spiked with the indexed
etention Time standard (Biognosys, Switzerland) before LC-MS/MS. 

.2.2. Sample preparation for DIA analysis 

Sample preparation for DIA analysis was identical to the one de-
cribed above for the spectral library construction. Following comple-
ion of the protein extraction from 40 plasma, each protein sample was
enatured, reduced with DTT, alkylated with IAA, and digested with
rypsin sequentially, and then the DIA–MS was performed (Supplemen-
ary Fig. 1A). 

.3. LC-MS/MS analysis 

LC-MS/MS analysis was performed on an EASY-nLC 1200 coupled to
 Q-Exactive HF mass spectrometer (all from Thermo Scientific, USA).
etailed parameters for liquid chromatography and mass spectrometry
rocedures are provided in Supplementary materials. 

.4. Spectral library generation 

DDA files were analyzed by MaxQuant software (version 1.5.3.17)
nd searched against the human-specific SwissProt-reviewed database
version 2019.12). After the completion of database retrieval, a spectral
ibrary was created from the MaxQuant output of the DDA runs using
pectronaut Pulsar X software (version 12.0.20491.4). More detailed
arameter settings were displayed in Supplementary materials. Protein
uantities were presented as relative quantification on the log 2 scale of
ormalized protein expression (NPX) values. 

.5. Statistical analysis and bioinformatic analysis 

The workflow of data processing and analysis is shown in Supple-
entary Fig. 1B. 

.5.1. Exploratory differential expression data analysis 

The unsupervised dimensionality reduction of the multidimensional
ataset was first performed employing principal component analysis
PCA) using SIMCA (version 14.1). As a complement, we also performed
 supervised analysis using partial least squares discriminant analysis
PLS-DA). The up- or down-regulated proteins were defined as proteins
ith log 2 fold changes ≥ 1 or ≤ − 1 at FDR < 0.05. 

.5.2. Weighted gene co-expression network analysis 

Weighted gene co-expression network analysis (WGCNA) was con-
ucted by the R (R version 4.0.2) package “WGCNA ” to find a correla-
ion between modules and disease courses. Pearson correlation coeffi-
ient was calculated for peptide abundance expression in the 40 sam-
les, and an appropriate soft threshold was selected to ensure a scale-
ree co-expression network. The adjacency matrix was generated us-
ng the selected 𝛽 and transformed into a Topological Overlap Matrix
TOM). Next, this TOM was hierarchically clustered, and the proteins
ith highly similar co-expression relationships were grouped and visu-
lized by the dendrogram. Modules were identified using dynamic tree
utting and labeled in different colors. Whether a module was positively
r negatively associated with disease courses was estimated by the sign
f the Spearman correlation coefficient between principal components
f individual modules and individuals sequenced by disease severity. 

.5.3. Gene ontology and pathway analysis 

Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and
enomes (KEGG), and Wikipathway cancer enrichment analysis of dif-

erential expression genes (DEGs) in the above key modules were per-
ormed by Metascape ( http://metascape.org ). The DEGs were assigned
o functional groups based on Molecular Functions, Biological Processes,
nd Cellular Compartments. 

http://metascape.org
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.5.4. Selection of biomarkers 

We employed a random forest (RF) model to construct a classifier
or discriminating among different groups (R package “randomForest ”)
nd the top 200 proteins were selected according to the mean decrease
ccuracy. The intersection between the WGCNA and RF was analyzed
hrough Venn Diagram. The least absolute shrinkage and selection oper-
tor (LASSO) regression was implemented for further variable selection
nd shrinkage (R package “glmnet ”). In addition, the Human Protein At-
as (HPA) ( http://www.proteinatlas.org/ ) was used to confirm the ex-
ression of identified proteins. The receiver operating characteristics
ROC) curve from RF models with the area under the curve (AUC) was
sed to assess the performance of the final selected protein markers. To
roduce a smooth ROC curve, 100 cross-validations were performed and
he results were averaged to generate the plot. 

. Results 

.1. Protein identification 

The baseline characteristics of the groups were well-matched for sex
nd age (Supplementary Table 1). We performed DIA with targeted data
xtraction using sample-specific spectral libraries generated from the
orresponding DDA run. Herein, an average of 757 proteins per sample
ere recovered and a total of 826 proteins were identified. 

.2. Proteins differently expressed between four groups 

The results of PCA revealed that there was substantial variability
n the distribution of protein abundance related to disease progression
 Fig. 1 A), and PLS-DA further supported that samples primarily clus-
er by the group ( Fig. 1 B). Volcano plots were used for the visualiza-
ion of differentially expressed proteins between arbitrary two groups
 Fig. 1 C-E). Compared with the healthy controls, the CLGD group had
23 differential proteins (60 up-regulated and 63 down-regulated), the
HGD group had 287 differential proteins (152 up-regulated and 135
own-regulated) and the CGC group had 115 differential proteins (41
p-regulated and 74 down-regulated). 

.3. Identification of the most significant module by WGCNA 

To identify the biologically significant protein modules associated
ith a course of CGC, we constructed gene-correlation networks using
GCNA. Outlier samples were examined using hierarchical clustering

nd no one was removed (Supplementary Fig. 2). The 𝛽 = 10 (scale-free
 

2 = 0.935) was selected as the soft-thresholding parameter to ensure
 scale-free co-expression network (Supplementary Fig. 3). A total of
even modules were identified and marked by colors on the horizontal
ar ( Fig. 2 A). According to the correlation analysis between modules
nd traits ( Fig. 2 B), the green module containing 42 proteins was iden-
ified as the positively correlated module ( r = 0.61, P < 0.05), and the
lue module containing 165 proteins was identified as the inversely cor-
elated module ( r = − 0.43, P < 0.05). The plots of module membership
nd gene significance also illustrated significant correlations in the two
odules ( Fig. 2 C and D). The layered clustering heat map showed the

elative average expression for related proteins and the clustering re-
ults in different groups across the two modules (Supplementary Fig. 4
nd 5). 

.4. GO functional enrichment and pathway enrichment analyses 

To further elucidate the functional roles of the DEGs in the blue and
reen modules, GO functional enrichment ( Fig. 3 A and B) and path-
ay enrichment analyses were performed. According to the results of
EGG and Wikipathway cancer pathway analysis, the androgen recep-

or signaling pathway, Staphylococcus aureus infection, ubiquitin me-
iated proteolysis, glutathione metabolism, and selenium micronutrient
288 
etwork were most significantly overrepresented in the green module
 Fig. 3 C). For the blue module, we found that 20 pathways were signif-
cantly enriched, and the top 10 pathways are shown in Fig. 3 D. 

.5. Identification and validation of candidate protein biomarkers 

The top 200 proteins were identified based on RF importance scores,
ndicating their contribution to classification performance grouped by
isease status (Supplementary Fig. 6). Take the intersection of the TOP
00 proteins from the RF model and the proteins from key modules of
he WGCNA analysis. The Venn diagrams showed that 67 proteins were
hared between the two subsets ( Fig. 4 A). 

To identify key protein biomarkers that could distinguish CGC and
recancerous lesions from healthy controls, we merged CLGD, CHGD,
nd CGC in a single group. Subsequently, the LASSO analysis was per-
ormed to screen candidate protein biomarkers from the intersection,
nd five proteins were filtered with optimal lambda value ( Fig. 4 B
nd C). The expression of GSTP1, PRDX1, and RAB2B was higher in
he case group than in the control group, whereas those of CSRP1
nd LY6G6F were significantly lower than those in healthy controls
 Fig. 4 D). 

We used immunohistochemical results from the HPA database to fur-
her validate the expression of the five candidate protein biomarkers be-
ween GC and normal tissues ( Fig. 4 E). The results in agreement with
he relative protein expression levels were confirmed except for RAB2B
nd PRDX1, which exhibited negative or insignificant outcomes. 

With the results obtained from immunohistochemistry, GSTP1,
SRP1, and LY6G6F were selected for further validation through the
F model to discriminate CGC and precancerous lesions from healthy
ontrols. The ROC curve analysis demonstrated that the candidate
iomarker panel has good discriminatory power, with an AUC of 0.91
95% CI, 0.69–1.00) for control vs. CLGD ( Fig. 5 A), 0.99 (95% CI, 0.99–
.00) for control vs. CHGD ( Fig. 5 B), 0.98 (95% CI, 0.78–1.00) for con-
rol vs. CGC ( Fig. 5 C). The PLS-DA models obtained with the panel re-
ealed a clear separation between CLGD ( Fig. 5 D), CHGD ( Fig. 5 E), and
GC ( Fig. 5 F) compared to the healthy control. 

. Discussion 

Due to its nonspecific symptoms and lack of non-invasive detection
ethods, CGC is often diagnosed at advanced stages when the window

or effective surgical treatment has passed. Therefore, a quest for po-
ential biomarkers for CGC screening is urgently needed. In this study,
e conducted LC-MS/MS-based DIA proteomics to explore dynamic

hanges in protein signatures in the evolution of CGC and precancer-
us lesions. We identified 42 positively associated and 164 inversely
ssociated proteins related to CGC progression and demonstrated sev-
ral canonical cancer-associated pathways. We also identified a panel of
hree candidate protein biomarkers that could distinguish CLGD, CHGD,
nd CGC from healthy controls with excellent accuracy. 

DIA is a relatively novel technique in MS-based proteomics and has
he advantage of both quantitative accuracy and increased data com-
leteness when compared to DDA. Previous studies have investigated
ancer-specific diagnostic biomarkers based on DIA mode, such as pan-
reatic cancer, 17 breast cancer 18 and colorectal cancer. 19 Noteworthy,
he study of Su et al. 20 analyzed the differences in proteomic features
n ten GC and adjacent non-tumor tissues using DIA-MS and identified
hree protein markers with excellent diagnostic capability. Nevertheless,
hese studies were mainly focusing on cancer and adjacent non-cancer
issues and did not include patients with precancerous lesions. The de-
elopment of CGC is a lengthy, dynamic biological process that advances
rom normal tissue, precancerous lesions (CLGD and CHGD), and inva-
ive carcinoma, in which the expression of biomarkers at various stages
ay change along with neoplastic progression. 15 For instance, the lev-

ls of Helicobacter pylori antibody in blood serum were highly expressed
rom atrophic gastritis and precancerous lesions stages, then dropped or

http://www.proteinatlas.org/
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Fig. 1. The DIA-based quantitative proteomic landscape of the CGC and precancerous lesions. (A) Principal component analysis illustrating moderate clustering 
among four groups. (B) Partial Least Squares Discriminant Analysis illustrating obvious clustering among four groups. (C-E) Volcano plots showing the differentially 
expressed proteins in CGC and precancerous lesions versus healthy controls. The gray line represents the cutoff line with indicated significance criteria. Points having 
absolute log fold-change ≥ 1 and FDR adjusted P -value < 0.05 are shown in red, with absolute log fold-change ≤ 1 and P -value ≥ 0.05 are in blue, and the rest are in 
gray: (C) CLGD versus healthy controls, (D) CHGD versus healthy controls, and (E) CGC versus healthy controls. CGC, cardia gastric cancer; CHGD, cardia high-grade 
dysplasia; CLGD, cardia low-grade dysplasia; DIA, data-independent acquisition; FC, fold change; FDR, false discovery rate. 
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Fig. 2. The results of weighted gene co-expression network analysis. (A) WGCNA was performed to identify seven modules by unsupervised clustering. (B) Six 
modules (non-gray) were identified. The blue module was identified as the inversely correlated module ( r = − 0.43, P < 0.01) and the green module was identified 
as the positively correlated module ( r = 0.61, P < 0.01). (C) The gene significance and module membership of the genes in the blue module exhibited an inverse 
correlation. (D) The gene significance and module membership of the genes in the blue module exhibited a positive correlation. 
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ven disappeared during advanced gastric carcinoma. 21 Therefore, the
dentification of the more valuable biomarkers through the evolution of
recancerous gastric cardia lesions and CGC development was required.
n two studies conducted in Linqu, the researchers explored proteomic
ignatures associated with the progression of gastric lesions and risk of
arly GC using urine 22 and pathological tissues, 23 both achieving highly
ffective predictive results. The above results may have translational sig-
290 
ificance for defining high-risk populations of GC and its early detection;
owever, the patients were dominated by non-cardia gastric cancer and
he DDA model was used. Given this, the present study explored dy-
amic changes in proteome and protein signatures in multiple stages
f CGC through DIA-MS, which may help identify specific biomarkers
nd protein-associated pathway networks, thus providing a reference
or population risk stratification. 
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Fig. 3. GO functional enrichment and pathway enrichment analyses in blue and green modules. (A) Top 10 GO terms associated with the Molecular Functions, 
Biological Processes, and Cellular Compartments in the blue module. (B) Top 10 GO terms associated with the Molecular Functions, Biological Processes, and Cellular 
Compartments in the green module. (C) KEGG and Wikipathway enrichment analyses in green (green bar) module. Five pathways were enriched significantly. (D) 
KEGG and Wikipathway enrichment analyses in the blue module. Twenty pathways were enriched significantly and the top 10 were shown here. 

 

t  

c  

b  

w  

n  

v  

o  

e  

c  

c  

l  

t  

a  

d  

s  

p  

l  

e  

o  

d  

w  

s  

i  

i
 

t  

a  

s  

b  

m  

a  

g  

w  
Pathway enrichment analysis of the blue and green modules revealed
hat there are several signal pathways involved in cardia gastric car-
inogenesis and development. The results of our pathway analysis can
e summarized into three main processes: Selenium micronutrient net-
ork, muscle atrophy induced by cancer cachexia and sex hormone sig-
aling pathways. Evidence from prospective studies suggests that indi-
iduals with lower blood Selenium levels have an increased risk of devel-
ping digestive tract cancers, while supplementation with Selenium can
ffectively antagonize the development of gastric cancer and esophageal
ancer. 24-27 Muscle atrophy induced by cancer cachexia is a significant
linical characteristic of patients with gastric cancer, and there is pre-
iminary evidence that it was associated with increased chemotherapy
oxicity. 28 In addition, the ubiquitin-proteasome system (UPS) and the
utophagic-lysosomal system (ALS) are the two major cellular protein
egradation pathways. 29 A recent study noted that ALS and UPS were
imultaneously activated in gastric cancer cachexia and might play com-
lementary and sometimes synergistic roles in cachexia-induced muscle
291 
oss. 30 We also found the sex hormone signaling pathways, including
strogen and androgen signaling pathways, were associated with the
ccurrence and development of CGC. Previous studies suggested that a
eficiency of estrogen may be associated with an increased risk of GC,
hile reduced androgen may also lead to a lower risk of GC. 31 , 32 The

ignaling pathways above are involved in the genesis, development and
nvasiveness of GC, providing compelling evidence for exploring biolog-
cally meaningful biomarkers. 

Alongside, we identified three protein biomarkers with high diagnos-
ic efficacy for CGC, including CSRP1, GSTP1 and LY6G6F. The practical
pplicability of these protein biomarkers is supported by their biological
ignificance and their role in CGC development. The CSRP1 is a mem-
er of the cysteine protease family and is involved in cellular develop-
ent and differentiation. The lower expression of CSRP1 may result in

bnormal cell growth and differentiation, which in turn kindles tumori-
enesis. 33 The GSTP1 belongs to the glutathione S-transferases family,
hich plays a critical role in detoxification and susceptibility to many
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Fig. 4. Identification and validation of candidate protein biomarkers. (A) Venn diagrams showed that 67 proteins were shared between the results of WGCNA and 
random forest. (B) The extracted features were reduced via the LASSO regression. The left and right dotted vertical lines represent the optimal values of lambda when 
using the minimum criterion and the one-fold standard error of the minimum criterion, respectively. (C) LASSO coefficients of the five variables. (D) The expression 
level of five proteins in the case group (CLGD&CHGD&CGC) and health controls. (E) Immunohistochemistry of the five proteins based on the Human Protein Atlas. 
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Fig. 5. Diagnostic performances of three protein combinations. (A-C) Receiver operating characteristic analysis of the three candidate biomarkers combined to 
discriminate CGC and precancerous lesions versus healthy controls: (A) CLGD versus healthy controls, (B) CHGD versus healthy controls, and (C) CGC versus healthy 
controls. (D-F) Partial Least Squares Discriminant Analysis of the three candidate biomarkers combined to discriminate CGC and precancerous lesions versus healthy 
controls: (D) CLGD versus healthy controls, (E) CHGD versus healthy controls, and (F) CGC versus healthy controls. AUC, area under curve; CGC, cardia gastric 
cancer; CHGD, ardia high-grade dysplasia; CI, confidence interval; CLGD, cardia low-grade dysplasia. 
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iseases including cancer. It has been suggested that the GSTP1 Val al-
ele shows interaction with Helicobacter pylori infection to increase the
isk of GC. 34 Although there is no direct evidence for the involvement
f LY6G6F in cancer development, evidence from previous investiga-
ions on the molecular mechanisms revealed that LY6G6F may operate
ownstream of the Grb7-dependent signal transduction pathway and in-
irectly participate in the pathogenesis of digestive tract tumors. 35 Com-
ined with the quantitative information of immunohistochemistry im-
ges from the HPA public database, we further verified their expression
evels in normal and GC tissues, which are consistent with the results of
IA-MS. 

Strengths of our study included the representative plasma samples
rom multiple stages of disease progression, well-matched results for
ex and age, and applied DIA strategy with better stability and repro-
ucibility. There were several limitations to our study as well. Firstly,
lthough the candidate protein biomarkers were validated by the HPA
atabase, external validation involving more representative populations
s still warranted. Secondly, we cannot unravel the complex mecha-
isms underlying these results. Since the data mining and visualization
or quantitative proteomics data were only exploratory in nature, the
echanisms of the protein biomarkers in CGC development need to be

lucidated in future studies. 

. Conclusions 

Overall, our study conducted a comprehensive proteomic analysis
tilizing the DIA strategy, resulting in the identification of three po-
ential candidate protein biomarkers. These biomarkers hold promise
or identifying high-risk populations for CGC and precancerous lesions.
owever, it is important to emphasize that further validation in larger,
293 
iverse cohorts is essential to ascertain their true diagnostic potential.
f validated in future studies, these biomarkers may have the potential
o complement existing diagnostic approaches, such as endoscopic ex-
minations, aiding in CGC prevention and control. 
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