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ABSTRACT

Objective: To develop and validate algorithms for predicting 30-day fatal and nonfatal opioid-related overdose

using statewide data sources including prescription drug monitoring program data, Hospital Discharge Data

System data, and Tennessee (TN) vital records. Current overdose prevention efforts in TN rely on descriptive

and retrospective analyses without prognostication.

Materials and Methods: Study data included 3 041 668 TN patients with 71 479 191 controlled substance pre-

scriptions from 2012 to 2017. Statewide data and socioeconomic indicators were used to train, ensemble, and

calibrate 10 nonparametric “weak learner” models. Validation was performed using area under the receiver

operating curve (AUROC), area under the precision recall curve, risk concentration, and Spiegelhalter z-test

statistic.

Results: Within 30 days, 2574 fatal overdoses occurred after 4912 prescriptions (0.0069%) and 8455 nonfatal

overdoses occurred after 19 460 prescriptions (0.027%). Discrimination and calibration improved after ensem-

bling (AUROC: 0.79–0.83; Spiegelhalter P value: 0–.12). Risk concentration captured 47–52% of cases in the top

quantiles of predicted probabilities.

Discussion: Partitioning and ensembling enabled all study data to be used given computational limits and

helped mediate case imbalance. Predicting risk at the prescription level can aggregate risk to the patient, pro-

vider, pharmacy, county, and regional levels. Implementing these models into Tennessee Department of Health

systems might enable more granular risk quantification. Prospective validation with more recent data is

needed.

Conclusion: Predicting opioid-related overdose risk at statewide scales remains difficult and models like these,

which required a partnership between an academic institution and state health agency to develop, may comple-

ment traditional epidemiological methods of risk identification and inform public health decisions.
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INTRODUCTION

We sought to develop and validate implementable predictive models

for the state of Tennessee (TN) to predict (1) fatal and (2) nonfatal

opioid-related overdose risk by leveraging statewide data sources

provided by the Tennessee Department of Health (TDH). Through

our academic-state partnership, we applied ensemble learning to fa-

tal and nonfatal overdose prediction using statewide controlled sub-

stance prescription data, hospital discharge diagnoses, and causes of

death from vital records.1

BACKGROUND AND SIGNIFICANCE

The link between the current opioid epidemic in the United States

and the over-prescribing of opioid pain relievers (OPRs) has been

well established. Over-prescribing and OPR-related harms were first

observed in the 1990s and some states including TN have experi-

enced higher rates of prescribing and the subsequent harms.2,3 Near

the opioid prescribing peak in 2010, TN providers wrote more OPR

prescriptions than there were residents in the state.4 Between 2014

and 2018, OPR-related deaths rose 49% to an annual cost of 1307

lives.5,6 The United States meanwhile has seen a near-universal

adoption of prescription drug monitoring programs (PDMPs) with

intentions to combat the opioid epidemic by monitoring prescribing

histories, informing providers, and identifying concerns with varying

success.7–10 Although PDMPs have seldomly been used to predict

imminent risk at the patient level, prevention at the practice, county,

or regional levels might be possible if accurate algorithms are devel-

oped, validated, and implemented.11–14 Severely affected by the opi-

oid crisis, TN has already linked its controlled substance PDMP (II–

V scheduled and gabapentin) to statewide mortality data and hospi-

tal discharge data.15,16 In this study, researchers at TDH and Van-

derbilt University Medical Center (VUMC) partnered to develop

and validate the first scalable predictive models from statewide data-

sets in TN for the related but disparate outcomes: (1) fatal and (2)

nonfatal opioid overdose.17,18

The application of machine learning to predict individual risk is

not new in the biomedical literature nor in OPR overdose preven-

tion. Prior studies have predicted overdose risk using Medicare

claims, self-reported substance use patterns, and demo-

graphics.13,19–21 Many studies have also utilized electronic health

records with or without vital records including at Mt. Sinai, in the

state of Colorado, and at the Veteran’s Health Administration

(VHA).22–25 Few US states, however, have specifically used PDMP

data to predict overdose—namely Maine, Oregon, and Mary-

land.11,26,27 In Maryland, hospital discharge, healthcare utilization,

and criminal justice data have been linked to predict future OPR

overdose risk for individuals.12,14,28 Our study likewise combines

predictive modeling with comprehensive statewide data. No previ-

ous studies to our knowledge have assembled these kinds of data for

a large, southern US state like TN where the rates of OPR prescrib-

ing are much higher than the national average.

In 2019, a federal investigation led by the Department of Justice

(DOJ) uncovered fraud and inappropriate opioid prescribing in TN

and resulted in the arrests of multiple physicians, pharmacists, and

other health professionals.29 Such measures relied upon descriptive

analytics for harms that had already occurred years prior. While

monitoring and descriptive analytics may provide a lens into the cur-

rent state of the opioid epidemic, they cannot identify the next pa-

tient, practice, or community at risk. The goal of this work was to

supplement these traditional epidemiological methods of identifying

and characterizing risk with precise and automated predictive mod-

els. Part of our efforts was to leverage known sociodemographic and

economic factors relating to mental and physical health. Community

characteristics have been known to be predictive of OPR overdose

risk.30

Seeking to predict future risk by combining linked PDMP and

overdose data, TDH partnered with VUMC to help the state under-

stand the opioid epidemic statewide, target interventions, and allo-

cate scarce resources accordingly. Adhering to the architectural and

implementation requirements of TDH, the VUMC team derived a

data management strategy, sourced a wide array of social determi-

nant variables to help quantify risk, and evaluated our approach.

Once implemented in TDH systems, such models might allow TN to

further support the greatest at-risk communities and identify inter-

vention touch points within the community health system.

MATERIALS AND METHODS

This study was approved by the VUMC Institutional Review Board

(#171323).

Data sources
Controlled Substance Monitoring Database (CSMD, TN’s PDMP)

data, Hospital Discharge Data System (HDDS) data, and TN death

certificates were combined to produce a 6-year observational cohort

that spanned from the beginning of 2012 through the end of 2017.

Publicly available socioeconomic indicators relating to health,

healthcare utilization, and treatment access were compiled and

mapped to either ZIP codes or counties.

The following were mapped to residential ZIP codes: Area Dep-

rivation Index (ADI); statistics on employment from the U.S. Census

Bureau; and Medication-Assisted Treatment (MAT) locations in-

cluding buprenorphine providers, methadone clinics, and Opioid

Treatment Programs (OTPs) from data aggregated by TDH.31,32

TN age-adjusted morbidity rates from TDH; the Tennessee Vulnera-

bility Index (TVI) from TDH; statistics on income, poverty, college

education, crowding, and private insurance from the American

Community Survey (ACS); Rural–Urban Continuity Codes (RUCC)

from the U.S. Department of Agriculture; the Social Vulnerability

Index (SVI) from the Centers for Disease Control and Prevention

(CDC); and Anti-Drug Abuse Coalition services from TDH were

mapped to individual counties.33–36 A full list of sourced data is

available within the Supplementary Material.

Outcome ascertainment
The outcomes of interest in this study were fatal and nonfatal

opioid-related overdose events that occurred within 30 days of a

controlled substance prescription fill. The 30-day time window was

chosen after plotting the accumulation of overdoses over time after

a prescription fill (Supplementary Material). Fatal and nonfatal

overdoses were identified consistent with methods used by TDH in

their annual Prescription Drug Overdose Reports.37 Fatal overdoses

were identified from TN death certificates using International Clas-

sification of Disease, revision 10 (ICD-10) codes.38 Nonfatal over-

doses were identified in the HDDS with specified opioid-related

diagnostic codes (Supplementary Material).

Predictive modeling details
Our modeling choices were as follows: (1) establish a vector of so-

cioeconomic indicators based on a patient’s last reported location
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from the PDMP (from the time of the previous prescription); (2)

count the cumulative number of prior medications, diagnostic codes,

and hospital visits by type a patient has accumulated thus far; and

(3) add age, sex, and derived variables that represent a patient’s pre-

scription history for controlled substances.15 Variables chosen in-

cluded the sums of distinct practitioners, distinct pharmacies,

distinct hospital identifiers, total prescriptions, total morphine milli-

gram equivalents, short/long-acting OPR prescriptions, overlapping

OPR and benzodiazepine prescriptions, prior medications for opioid

use disorder, and opioid-naı̈ve prescriptions as defined as not having

an OPR prescription within the last 45 days (Supplementary Mate-

rial). Race and ethnicity were not explicitly represented in our mod-

els. Modeling at the prescription level was done to create time-

dependent and granular risk predictions which could then be aggre-

gated to practice, pharmacy, local, county, and regional levels. This

approach intended to potentially guide planning and response activi-

ties at varying levels of detail.

Data preprocessing
Patient linkage across our datasets relied on TDH-determined mas-

ter patient indexing.39 Only records with valid person identifiers

were retained, and records determined to be related to a nonhuman

patient (ie, veterinary prescription records) were removed. Hospital

records from the HDDS were limited to verified inpatient

encounters.

Precise ADI and RUCC features were developed from the mini-

mum, maximum, and mean values of each ZIP code. Other ZIP

code features were developed from county data using the TN county

that contained the majority area of each ZIP code. OTP and metha-

done clinic availability were modeled using a 60-mile radius, repre-

senting a practical range for driving a normal distance in TN (90–

120 minutes driving time).

To reduce the dimensionality of PDMP and HDDS features,

prior medications and diagnoses were grouped to higher-order cate-

gories using the National Drug File-Reference Terminology (NDF-

FT), Pharmacologic Classes and Clinical Classification Software

(CCS), Level 2 groupings from National Drug Codes (NDCs) and

International Classification of Disease, revision 10, Clinical Modifi-

cation (ICD-10-CM) codes.40–42 In total, 342 features were used for

model training after this dimensionality reduction and only entries

in patient records prior to prediction dates were used.

Sampling strategy and model training
We separated the data into 75% training, 5% development, and

20% testing partitions to ultimately derive one model for fatal over-

dose and one model for nonfatal. All prescriptions in the data that

were associated with an individual were added together to only one

set to prevent leak between training and testing within individuals.

Models were trained in the training set and then calibrated,

ensembled, and evaluated in the development set.

The training set was equally divided into 10 smaller training par-

titions or subsets due to computational limits. To help combat case

imbalance, all cases and their associated records were added to each

training set, but only 10% of all the controls from the entire training

set were included in an individual training set (ie, only one training

set contained any one control). Ten random regression forest “weak

learners” were then developed from the training subsets using the

ranger R package with an estimated response variance splitting crite-

ria.43 To help limit memory consolidation, 200 trees were used for

each random forest. In total, 20 random forests were developed

from the 20 training subsets—10 for each of the 2 outcomes.

During training, each training subset itself was split into a 90%

training set and a 10% testing set to allow predictions to be made

for each case. Each case was placed in the testing set of each subset

exactly one time which guarantied all case data were used in training

and at least one prediction for each associated record was generated.

After the weak learners were ensembled and calibrated in the devel-

opment set, the resulting ensembled models were validated in a final

held-out testing set. A conceptual diagram of this training scheme is

shown (Figure 1).

Calibration
A development set consisting of 5% of the data was reserved to cor-

rect the miscalibrations from the under-sampled controls in the

training subsets. We compared 7 methods of ensembling and cali-

bration. Either the minimum, maximum, mean, or median predic-

tion was taken from the 10 weak learner predictions and passed

through logistic calibration, or the 10 weak learner predictions were

used as inputs for ridge regression, random forest, or penalized re-

gression (LASSO).43–46

Logistic calibration, when applied, was defined by training a uni-

variate logistic regression in the calibration set where the sole pre-

dictor was the aggregate in question (eg, max) and the outcome was

either fatal or nonfatal overdose. The resulting generalized linear

models along with the aggregation methods were then considered as

ensemblers. The more complex ensembling methods trained multi-

variate models using the 10 weak learners as predictors. Random

forest was used for comparison for 2 types of penalized logistic re-

gression: L1-regularized (LASSO) and L2-regularized (RIDGE) re-

gression. All resulting models were expected to be calibrated as they

were either trained on the calibration set or calibrated via logistic

calibration.

Final ensembled and calibrated algorithms were then tested on

the test set. Weak learners were tested on the calibration set. We

note that no additional calibration was performed on the test set,

making it a pure test of calibration as well as discrimination.

Performance assessment methods
Discrimination performance metrics included area under the re-

ceiver operating curve (AUROC), area under the precision recall

curve (AUPRC), and risk concentration. Risk concentration was per-

formed by dividing the predictions from the test set into 10 quantiles

and calculating the proportion of all the cases those quantiles held.

Calibration was assessed using Spiegelhalter z-test. The ridge re-

gression ensembles were further assessed for performance differen-

ces by subgroups consisting of race, ethnicity, and gender as

determined by hospital records as well as age and RUCC codes from

residential ZIP codes for urbanicity/rurality. To test how perfor-

mance varied when the number of partitions in the training set was

changed, additional models were trained using N¼5 or N¼15 and

compared using AUPRC. For both fatal and nonfatal overdose, we

ranked each feature by taking the mean of the important values

from the 10 weak learners—determined by the variance of responses

from each random forest.43 A full list is available within the Supple-

mentary Material.
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RESULTS

Study data
Study data included 71 479 191 controlled substance prescriptions

across 3 041 668 TN patients. As sourced from hospital records,

when available: 1 409 556 (46.3%) patients were Female; 958 440

(31.5%) patients were Male; and 673 672 (22.1%) patients were

Unknown. Patients by coded race showed 7104 (0.23%) patients

were Asian-American; 360 314 (11.8%) patients were Black; 704

(0.023%) patients were Native American; 20 147 (0.66%) patients

were Other; 1 851 324 (61.0%) patients were White; and 802 075

(26.4%) patients were Unknown. Patients by coded ethnicity also

showed 16 061 (0.53%) patients were Hispanic; 2 064 654 (67.8%)

patients were non-Hispanic; and 960 953 (32.0%) patients were Un-

known. Within 30 days, 2574 fatal overdoses occurred after 4912

(0.0069%) prescriptions and 8455 nonfatal overdoses occurred after

19 460 (0.027%) prescriptions. Nearly 60% of all fatal and nonfatal

overdoses in the data occurred within 30 days of a prescription (Sup-

plementary Material).

Weak learner and ensembling model performance
Both the fatal and nonfatal weak learner models had similar preva-

lence rates throughout the training set and showed consistent

AUROC and AUPRC values when applied to the development set

(Table 1). AUROC was useful to compare these models simply de-

spite having known problems when assessing absolute performance

with case imbalance. The total number of cases and controls in the

training set were 3725 and 53 591 596 (0.0069%) for fatal and 14

695 and 53 580 626 (0.027%) for nonfatal overdose.

Discrimination varied by ensembling method when applied to

the test set for both fatal and nonfatal overdose (Table 1). Averaging

or selecting the minimum or maximum predictions from the 10

weak learner models for both fatal and nonfatal produced similar

results to using more complex methods of aggregation (eg, ridge,

LASSO). Random forest performed worse compared to other meth-

ods of aggregation. The top 2 performing ensembles, mean and ridge

regression, were further evaluated in the risk concentration and cali-

bration analyses.

Risk concentration and calibration performance
Risk concentration showed that, in the test set, the mean and ridge

regression ensembling methods concentrated 47–52% of the over-

dose outcomes within the top quantiles of predicted probabilities

(Table 2). Both top quantiles contained 10% of the test set predic-

tions. Overlapping quantiles where the predictions had the same val-

ues were combined as seen by the number of prescriptions in the

first quantile of the fatal mean ensembling method.

Calibration measured the degree to which the predictions

reflected the true outcome prevalences. The ensembled models pre-

dicting fatal overdose showed nonsignificant calibration from mean

ensembling and significant calibration from ridge regression as indi-

cated by the nonsignificant Spiegelhalter z-test. The ensembled mod-

els for nonfatal overdose showed better calibration for ridge

regression than for mean ensembling although both were nonsignifi-

cantly calibrated (Table 3). The ridge regression ensembling method

was subsequently used to analyze performance variations by sub-

groups.

Subgroup performance differences and partition

variation
Both the fatal and nonfatal ridge regression ensembles were tested

on subgroups in the test set. AUROC and AUPRC values varied by

subgroup in age, sex, race, ethnicity, and RUCC values of residential

ZIP codes (Table 4). Case and control percentages among the sub-

groups also varied.

Repeating the modeling experiments for N¼5 and N¼15

showed no differences in AUPRC values when the number of parti-

Figure 1. Conceptual diagram of training data splits, weak learners, the ensembling/calibration development step, and the testing step.
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tions was changed (Figure 2). Absolute change by partition choice

was minimal as evidenced by the small absolute differences in y-axes

shown (eg, <0.0001 change in AUPRC by number of folds for the

fatal model).

Weak learner feature importances
The top 15 model features from the 10 weak learner models for fatal

and nonfatal overdose were determined by ranking their mean re-

sponse variances (Figures 3 and 4). Twelve features were within the

top 15 of both the fatal and nonfatal overdose models.

DISCUSSION

This study supports the validity of combining statewide PDMP data

with clinical discharge and socioeconomic data to predict fatal and

nonfatal opioid overdose within 30 days of a controlled substance

prescription fill. Partitioning and ensembling the data allowed us to

use all study data despite computational limits. We modeled risk at

the prescription level, making these models applicable to any indi-

vidual prescription with historical data. Aggregating these predic-

tions enables risk to be calculated at varying levels of detail for

better informed public health decision-making.

AUROCs and AUPRCs of the fatal and nonfatal models in the

development set improved in the test set after ensembling (Table 1).

Risk concentration analyses consistently captured half the outcomes

of interest in the top quantiles of risk (Table 2). Given the presence

of case imbalance, the highest risk quantiles may enable TN to focus

prevention efforts more efficiently. Both ensembles were miscali-

brated when predicting nonfatal overdose, but the ridge regression

ensemble was calibrated when predicting fatal overdose (Table 3).

Future recalibration efforts should reduce these gaps. Predicting fa-

tal overdose in the future may enable better prevention. Prospective

evaluation with more recent data is needed.

The subgroup performance analysis showed that the ridge regres-

sion models resulted in disparate performance in terms of AUPRC

and AUROC for race and age despite small absolute AUPRC differ-

ences (Table 4). Case imbalance may be driving these differences.

Correcting performance differences is necessary for accurately

assessing risk in the state. When the number of training partitions

was varied, AUPRCs varied minimally if at all (Figure 2).

In the fatal overdose model, the top predictors were face valid as

known risk factors for opioid-related overdose (Figure 3). The total

quantity of controlled substances prescribed was close to the top of

the list. Notably, overlapping benzodiazepine prescriptions were

more important in the prediction of fatal opioid-related overdose

than nonfatal. Multidrug combinations have been known to play a

large role in the fatality potential of opioid-related overdoses and

benzodiazepines have a synergistic respiratory depressant effect

when taken with opioids.47

Informatics implications of this study include the importance of

partitioning and sampling to lessen overfitting in settings with high

stake, but rare (at state scale), outcomes. Efforts to predict risk at an

actionable timepoint, for example, a prescription fill event, do not

obviate aggregating risk analyses to levels relevant for public health

intervention such as the community and regional levels. US states

have long implemented PDMPs, but most have not disseminated

predictive modeling approaches at this scale and none of the nearby

states in the southern United States have done so. Characterizing

OPR risk in our state might inform better prevention both in TN

and in neighbor states, as the overdose crisis varies considerably

near and across state lines.

Several attributes of this overdose modeling problem increased

its complexity. First, extreme case imbalance resulted from the rarity

of fatal and nonfatal overdoses at statewide scale—prevalence less

than a fraction of 1%. Second, person disambiguation in data that

were manually entered by pharmacists into the CSMD resulted in re-

liance on constructed, probabilistic patient mapping indices. Ongo-

ing work within TDH continues to refine and improve this

Table 1. Characteristics of both the 20 weak learner models in the development set and the 14 ensemble models in the test set for fatal and

nonfatal overdose

Fatal overdose Nonfatal overdose

Weak learner/en-

semble

AUROC AUPRC Cases Controls % Outcomes AUROC AUPRC Cases Controls % Outcomes

WL1 0.77 0.00024 224 3 566 077 0.0063 0.79 0.0018 1131 3 580 452 0.032

WL2 0.73 0.00023 0.78 0.0016

WL3 0.76 0.00023 0.79 0.0019

WL4 0.75 0.00024 0.78 0.0016

WL5 0.72 0.00026 0.79 0.0021

WL6 0.73 0.00027 0.80 0.0019

WL7 0.71 0.00023 0.79 0.0017

WL8 0.78 0.00024 0.80 0.0017

WL9 0.75 0.00025 0.79 0.0017

WL10 0.72 0.00026 0.78 0.0015

Maximum 0.83 0.00040 963 14 316 606 0.0067 0.82 0.0014 4031 14 309 753 0.028

Minimum 0.67 0.00032 0.76 0.0014

Mean 0.83 0.00042 0.83 0.0015

Median 0.80 0.00041 0.82 0.0015

LASSO 0.79 0.00038 0.82 0.0015

Ridge 0.83 0.00042 0.83 0.0016

Random forest 0.38 0.00007 0.49 0.0004

Note: Ensemble models combined and calibrated weak learner model predictions from the development set.

AUPRC: area under the precision recall curve; AUROC: area under the receiver operating curve.
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disambiguation. Third, CSMD data in TN contain human and non-

human controlled substance prescription data. Removing those pre-

scriptions known to be nonhuman was straightforward but ensuring

nonhuman data are not miskeyed as human was not.

Neither the fatal nor nonfatal models are suitable for direct clini-

cal application. Given the resulting model AUPRCs, high false-posi-

tive rates are expected at virtually every cutoff. While it is possible

that clinically actionable subgroups may exist within the high-risk

tiers, given the size of this study, most localized clinical interventions

would likely see highly variable calculated individual risk and unac-

ceptably high false positives. Current actionability of these models

rests upon their ability to ascribe relative risk geographically within

TN. Studies of their ability to predict counties and regions at highest

risk in need of public health resource allocation are underway. Over-

dose prevention is currently directed after harm has already oc-

curred—for example, basing “high impact area” designations on

deaths that have already occurred, not those we seek to prevent.

Strengths
The training-development-test framework in this study enriched

case data in the presence of case imbalance without discarding valu-

able noncase comparator data. Our weak learner approach over-

came computational constraints which may apply to other groups

attempting similarly scaled experiments. Our academic-public part-

nership catalyzed and made possible a modeling study at this scale

coupled with design choices to enable implementation at TDH.

This study included the use of comprehensive real-world data de-

rived from statewide operational datasets. Vital records, validated

by medical examiners, and certified hospital discharge records were

used in the context of our partnership with stakeholders at TDH to

ensure modeling decisions reflected the implementation environment

Table 2. Risk concentration of the ensembled fatal and nonfatal prediction models which were validated in the test set

Fatal/Nonfatal Ensembling method Quantile Prescriptions Cases Proportion of cases Inclusive lower bound Exclusive upper bound

Fatal Mean 1 4 106 507 32 0.033 0.00Eþ00 1.65E�08

2 210 474 4 0.004 1.65E�08 6.28E�08

3 1 412 596 14 0.015 6.28E�08 3.33E�05

4 1 429 211 33 0.034 3.33E�05 3.53E�04

5 1 431 757 40 0.042 3.53E�04 7.07E�04

6 1 432 104 66 0.069 7.07E�04 1.46E�03

7 1 434 688 100 0.104 1.46E�03 2.92E�03

8 1 428 476 171 0.178 2.92E�03 6.80E�03

9 1 431 756 503 0.522 6.80E�03 3.34E�01

Ridge regression 1 1 431 758 81 0.084 3.85E�05 5.47E�05

2 4 776 940 43 0.045 5.47E�05 5.48E�05

3 950 091 4 0.004 5.48E�05 5.48E�05

4 1 443 236 55 0.057 5.48E�05 5.54E�05

5 1 420 274 60 0.062 5.54E�05 5.66E�05

6 1 431 800 103 0.107 5.66E�05 6.00E�05

7 1 431 716 159 0.165 6.00E�05 6.73E�05

8 1 431 754 458 0.476 6.73E�05 3.19E�01

Nonfatal Mean 1 1 929 336 43 0.011 0.00Eþ00 1.93E�08

2 933 421 25 0.006 1.93E�08 8.68E�06

3 1 437 802 67 0.017 8.68E�06 2.50E�04

4 1 425 055 81 0.020 2.50E�04 6.91E�04

5 1 432 474 123 0.031 6.91E�04 1.41E�03

6 1 430 183 143 0.035 1.41E�03 2.55E�03

7 1 431 883 290 0.072 2.55E�03 4.50E�03

8 1 431 048 415 0.103 4.50E�03 8.04E�03

9 1 431 205 835 0.207 8.04E�03 1.59E�02

10 1 431 377 2009 0.498 1.59E�02 2.86E�01

Ridge regression 1 1 431 493 106 0.026 1.33E�04 2.11E�04

2 2 073 804 45 0.011 2.11E�04 2.11E�04

3 788 932 19 0.005 2.11E�04 2.11E�04

4 1 431 285 96 0.024 2.11E�04 2.14E�04

5 1 432 043 143 0.035 2.14E�04 2.21E�04

6 1 430 714 172 0.042 2.21E�04 2.31E�04

7 1 431 378 239 0.059 2.31E�04 2.49E�04

8 1 431 379 478 0.119 2.49E�04 2.85E�04

9 1 431 378 807 0.200 2.85E�04 3.85E�04

10 1 431 378 1926 0.478 3.85E�04 9.97E�01

Table 3. Calibration statistics for the mean and ridge regression

ensembling methods for the fatal and nonfatal overdose models

after application in the test set

Ensembled model Brier score Intercept Slope Sz Sp

Fatal mean 0.0001305 �5.5329 0.6205 �191.59 0.00

Fatal ridge regression 0.0000673 �0.3313 0.9599 1.55 0.120

Nonfatal mean 0.0004239 �4.0305 0.7625 �272.14 0.00

Nonfatal ridge regres-

sion

0.0002923 �1.7524 0.7942 �9.34 0.00
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Table 4. AUROC and AUPRC for various subgroups in the test set for the fatal and nonfatal ridge regression ensembled models

Characteristic Subgroup Fatal Nonfatal

AUROC AUPRC Cases (%) Controls

(%)

AUROC AUPRC Cases (%) Controls

(%)

Age 20–29 0.83 0.00030 16 (1.74) 393 406

(3.22)

0.75 0.0014 141 (3.50) 381 438

(3.12)

30–39 0.79 0.00036 126 (13.74) 1 417 833

(11.60)

0.75 0.0011 502 (12.48) 1 421 592

(11.63)

40–49 0.79 0.00054 233 (25.41) 1 934 651

(15.83)

0.80 0.0013 590 (14.66) 1 945 431

(15.91)

50–59 0.80 0.00062 351 (38.28) 2 583 639

(21.14)

0.82 0.0021 966 (24.01) 2 606 848

(21.32)

60–69 0.84 0.00045 172 (18.76) 2 695 746

(22.06)

0.82 0.0019 1036 (25.75) 2 704 083

(22.12)

70–79 0.91 0.00022 14 (1.53) 1 876 554

(15.36)

0.83 0.0015 546 (13.57) 1 856 381

(15.18)

80–89 0.95 0.00020 5 (0.55) 948 381

(7.76)

0.78 0.0013 217 (5.39) 945 839

(7.74)

Sex F 0.84 0.00048 470 (48.81) 7 633 488

(53.42)

0.81 0.0016 2439 (60.61) 7 657 711

(53.61)

M 0.81 0.00044 447 (46.42) 4 556 799

(31.89)

0.80 0.0015 1570 (39.02) 4 542 227

(31.80)

U 0.74 0.00006 46 (4.78) 2 100 560

(14.70)

0.99 0.0009 15 (0.37) 2 084 944

(14.60)

Race Asian-American N/A N/A 0 (0.00) 12 253

(0.090)

N/A N/A 0 (0.00) 11 428

(0.080)

Black 0.86 0.00023 35 (3.63) 1 101 369

(7.71)

0.79 0.0010 198 (4.92) 1 105 227

(7.74)

Native American N/A N/A 0 (0.00) 1 888

(0.010)

N/A N/A 0 (0.00) 1947

(0.010)

Other 0.78 0.00021 2 (0.21) 32 659

(0.23)

0.88 0.0006 4 (0.10) 32 400

(0.23)

Unknown 0.79 0.00041 105 (10.90) 2 794 866

(19.56)

0.92 0.0031 413 (10.26) 2 763 247

(19.34)

White 0.83 0.00045 821 (85.25) 10 347 812

(72.41)

0.80 0.0015 3409 (84.72) 10 370 633

(72.60)

Ethnicity Hispanic 0.83 0.00034 2 (0.21) 25 870

(0.18)

0.81 0.0009 5 (0.12) 25 665

(0.18)

Non-Hispanic 0.81 0.00035 709 (73.62) 10 404 402

(72.80)

0.80 0.0014 3080 (76.54) 10 448 420

(73.14)

Unknown 0.86 0.00066 252 (26.17) 3 860 575

(27.01)

0.89 0.0021 939 (23.33) 3 810 797

(26.68)

RUCC 1, metro, >1 000 000 0.86 0.00064 357 (37.07) 4 856 038

(33.98)

0.84 0.0021 1593 (39.59) 4 898 834

(34.29)

2, metro, 250 000–1

000 000

0.83 0.00042 301 (31.26) 3 852 307

(26.96)

0.83 0.0015 1006 (25.00) 3 829 032

(26.8)

3, metro, <250 000 0.78 0.00021 76 (7.89) 1 491 989

(10.44)

0.83 0.0010 325 (8.08) 1 491 254

(10.44)

4, urban, >20 000þ
metro adjacent

0.80 0.00046 67 (6.96) 1 346 081

(9.42)

0.81 0.0016 398 (9.89) 1 330 476

(9.31)

5, urban, >20 000þ N/A N/A 0 (0.00) 94 940

(0.66)

0.88 0.0007 13 (0.32) 101 859

(0.71)

6, urban, 2500–19

999 metro adjacent

0.82 0.00030 101 (10.49) 1 714 426

(12.00)

0.80 0.0013 459 (11.41) 1 709 034

(11.96)

7, urban, 2500–19

999

0.71 0.00014 26 (2.70) 453 522

(3.17)

0.82 0.0016 108 (2.68) 442 912

(3.10)

8, rural, <2500,

metro adjacent

0.68 0.00020 21 (2.18) 320 187

(2.24)

0.82 0.0011 86 (2.14) 312 688

(2.19)

9, rural, <2500 0.80 0.00510 14 (1.45) 161 357

(1.13)

0.82 0.0011 36 (0.89) 168 793

(1.18)

AUPRC: area under the precision recall curve; AUROC: area under the receiver operating curve; RUCC: Rural–Urban Continuity Codes.
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and were responsive to public health informatics requirements for

overdose prevention. We leveraged the broad expertise among our

TDH and VUMC multidisciplinary partnership, working in close

communication throughout.

Limitations
Statewide data used in this study were limited to a 6-year time pe-

riod ending in 2017. Given the changing face of the opioid epidemic,

validation with more recent data is needed. Carceral, other criminal

justice data, and ambulatory clinical data were not available here,

but have been previously used to predict opioid overdose risk.14 Our

decision to predict overdose within 30 days, supported by measuring

outcomes over time was chosen empirically and in discussion with

TDH (Supplementary Material). Tools to identify patients at longer-

term risk may be important for future prevention efforts.

While our models did not explicitly use race as a predictor, other

variables were still likely proxies for race and health inequalities in

Figure 2. AUPRC of the LASSO, max, mean, median, min, and ridge regression ensembling methods for fatal and nonfatal overdose models when the number of

partitions was changed. Note: compressed y-axes used to visualize minimal differences in models by number of partitions. AUPRC: area under the precision re-

call curve.

Figure 3. Top 15 predictive features by mean rank of importance for the fatal opioid overdose model.
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our predictions. Our subgroup analysis showed that race and age

vary in both AUROC and AUPRC (Table 4). Understanding the

cause and impact of inaccurately calculating risk for different sub-

groups may have critical policy implications. Sampling may improve

this disparity. More data are needed and a dedicated investigation in

collaboration with experts in health inequalities is indicated. A large

percentage of prescriptions had unknown race and gender given a

lack of hospital discharge data for those individuals.

In addition, our outcome ascertainment strategy did not seek to

determine if the patient’s last prescription was the actual cause of

the overdose outcome nor was it used in those risk calculations. His-

torical clinical and demographic information were also added to

these models from batched HDDS data. Calculating risk in real-time

remains challenging given the additional steps necessary to incorpo-

rate data entered close to the time of prediction.

Future work
Implementation of these models into internal state systems is cur-

rently being reviewed. The choice to do so may provide a platform

for prospective validation opportunities and public health perspec-

tives unprecedented in TN. While a small number of proprietary

risk scores exist in this domain, none are being used at the state level

in TN. Implementing these models would complement traditional

epidemiologic methods that identify risk and guide planning for pre-

vention. Future work includes a need to study the interpretability of

these models and the need to assess for drift and apply recalibration

prospectively. Outcome rates and prescription rates have changed

since 2017. More advanced feature engineering and additional ex-

ternal data sources might improve these models further.

CONCLUSION

Historical statewide PDMP data, hospital discharge data, and death

certificates from vital records were linked to socioeconomic indica-

tors to produce ensembled opioid-related overdose risk models for

TN. Through an academic-state partnership, our models we able to

granularly predict fatal and nonfatal overdose risk within 30 days of

receiving a controlled substance prescription. These predictions

when aggregated may lead to more informed prevention efforts at

the local, county, and regional levels.
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