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Abstract: The present paper proposes a new level of regulation of programmed cell death (PCD)
in developing systems based on epigenetics. We argue against the traditional view of PCD as an
altruistic “cell suicide” activated by specific gene-encoded signals with the function of favoring the
development of their neighboring progenitors to properly form embryonic organs. In contrast, we
propose that signals and local tissue interactions responsible for growth and differentiation of the
embryonic tissues generate domains where cells retain an epigenetic profile sensitive to DNA damage
that results in its subsequent elimination in a fashion reminiscent of what happens with scaffolding
at the end of the construction of a building. Canonical death genes, including Bcl-2 family members,
caspases, and lysosomal proteases, would reflect the downstream molecular machinery that executes
the dying process rather than being master cell death regulatory signals.
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1. Historical Background

In addition to the turnover of tissues subjected to permanent renewal, cell death
was considered in the past an undesirable event in healthy pluricellular animals. It was
largely assumed that cell death in adult animals was a pathological phenomenon associated
with degenerative diseases, ischemia, mechanical damage, or toxin exposure. The term
“necrosis” was coined to name this process, assigning several adjectives to differentiate
some processes from others according to the outcome of the damaged tissue (coagulative,
liquefactive, caseous, etc.). Lysosomes, as a source of hydrolytic enzymes, are considered
central, but often passive, effectors of these degenerative processes (see [1]). However,
in the first half of the last century, researchers became aware of the presence of massive
degenerative processes associated with the growth and differentiation of embryonic and
larval organisms. Remarkably, these processes were closely correlated with morphological
(i.e., tail loss during tadpole metamorphosis), structural (i.e., formation of neural circuits in
the developing CNS), or functional (i.e., maturation of the immune system) modeling of
developing organisms, suggesting that in embryonic systems, cell death reflected develop-
mentally regulated planning (see reviews [2,3]). Consistent with this view, the existence of
a dead clock within the prospective dying cells of some embryonic organs was proposed to
determine the time when cells should die [4]. However, this dead-clock was not confirmed
in other models of programmed cell death where cells can be experimentally diverted from
the death program, giving rise to ectopic functional structures [5,6].

2. Apoptosis versus Necrosis

The identification of intense cell dying processes in actively growing tumors and dur-
ing involution of hormone-dependent tissues, together with the morphological similitudes
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between embryonic dead cells and such tumor dying cells, and the absence of inflamma-
tory response accompanying these degenerative processes were taken as evidence for a
specific form of cell death, distinct to necrosis, that was termed apoptosis [1,7]. Among the
morpho-structural features that differentiate apoptosis from necrosis, the following can be
highlighted: apoptotic cells appear rounded, they preserve the integrity of the membranes,
and in the nucleus the chromatin appears densified with clumps of greater density in their
contour. In contrast, necrotic cells appear swollen and in the course of disintegration with
a massive rupture of the plasma membrane and vacuolization of the organelles. Initially,
apoptosis was thought to be an active genetically programmed degeneration involving
the activation of endogenous endonucleases [8], while necrosis, was considered a passive
process resulting from circumstances outside the cell.

3. Genetic Regulation of Cell Death

The hypothesis of a genetic regulation of developmental cell death became intensely
reinforced by the identification of a number of genes in the nematode Caernohabditis elegans
(C. elegans), termed “cell death abnormal genes” (Ced genes) whose mutation abolished the
physiological dying process occurring in the course of development of this worm [5].

The results obtained from the study of an “oncogene” associated with the human B
cell lymphoma, termed Bcl-2, gave a great push to the concept of apoptosis as a geneti-
cally regulated process (see [9]). It was found that this gene protected cells from death
and was highly homologous, and functionally interchangeable with the C. elegans Ced-9
gene [10–12]. Bcl-2 was the first gene associated with cell death in mammalian cells, but
soon a complex regulatory network constituted by a large family of proteins sharing one or
various characteristic domains of BCL-2, termed BH domains (BCL-2 homology domains),
was discovered.

Another C. elegans cell death abnormality gene, Ced-3, which is crucial for the ex-
ecution of cell death in the worm and is found downstream of Ced-9 in the death cas-
cade [13], was found to be homologous to a family of cysteine-aspartic proteases, called
caspases, which orchestrate most of the steps of the apoptotic process in vertebrate organ-
isms. The apoptotic caspases include initiator caspases, occupying initial or intermediate
steps in the degeneration cascade (caspase 2, 8, 9, and 10 in humans) and executioner
caspases (caspases 3, 6, and 7) that complete the degeneration process. The functions of
executioner caspases include the cleavage of distinct structural and regulatory proteins
and the activation of caspase-dependent endonuclease that in turn break the DNA at the
internucleosomal spaces [8].

4. Intrinsic and Extrinsic Apoptotic Pathways

Detailed studies in a wide variety of models established the occurrence of two path-
ways of activation of the apoptotic molecular cascade: one originating from extracellular
signals belonging to the TNF superfamily (extrinsic apoptotic pathway) and the other origi-
nating inside the cells, intrinsic, or mitochondrial, apoptotic pathway (see Galluzi et al. [14] for
a detailed review). The latter being the predominant mechanism responsible for develop-
mental cell death in vertebrates.

The intrinsic pathway is triggered by distinct, but often related, endogenous cell
perturbations that include DNA damage, deprivation of growth factors, or increase in
reactive oxygen species (ROS). Such perturbations trigger a complex functional interplay
between BCL-2 family members that results in the permeabilization of the outer mitochon-
drial membrane by the BH-multidomain factors, BAX, BAK, and BOK and subsequent
cytosolic release of damaging factors, including Cytochrome C, AIF (apoptotic inducing
factor), DIABLO (direct IAP-binding protein with low pI), or HtrA2 serine proteases. The
activation of BAX and BAK is regulated by a balance between a positive (pro-apoptotic)
influence of members of the BCL-2 family containing the BH3-domain only (BIM, BID,
PUMA, and NOXA), and a negative (antiapoptotic) influence of members of the family
containing the four BH domains (BCL-2, BCL-Xl, MCL1, BCL-W, BFL-1). The cytochrome C
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delivered from the mitochondria exerts a key role in the next step of the apoptotic cascade
generating active caspase 9 via binding to APAF-1 (apoptotic peptidase activating factor
1) and pro-caspase 9 to form the so-called apoptosome. Finally, caspase 9 catalyzes the
activation of executioner caspases.

The extrinsic pathway is triggered by the binding of TNF family ligands (TNF alpha,
FASL, and TRAIL) to transmembrane receptors that contain a characteristic intracellular
death domain (FAS, TNFR1, DR4, and DR5). Upon ligand binding the intracellular tail
of the receptor forms a multiprotein complex termed DISC (death-inducing signaling
complex) that directs the activation of caspase 8. This caspase may proteolytically activate
the executioner caspases and/or activate the intrinsic pathway via proteolytic activation
of BID.

Considering the complexity of these dying cascades associated with embryonic pro-
grammed cell death, apoptosis was often considered an evolutionarily conserved cell
self-destruction process (see [15]). However, all the members of the apoptotic cascades
also exert functions unrelated to cell death [16,17]. The existence of universal activators
of apoptosis and transcription factors functionally specialized to direct cell death have
been suggested in C. elegans [18] and Drosophila [19] but has not been identified in devel-
oping vertebrates. In fact, it would be difficult to explain the evolutionary conservation
of a gene whose expression results in the disappearance of the organism that possesses it.
Consistent with this interpretation, mouse phenotypes following silencing components of
the apoptotic molecular cascade reveal a limited impact of apoptosis deficiency in normal
development [20,21] (and see below).

5. Multiple Varieties of Non-Apoptotic Cell Death

Intensification of research in recent decades has provided a more complex view of cell
degeneration processes in both embryonic and adult systems [14]. Rather than necrosis and
apoptosis only, different forms of cell death of distinct biological significance and regulated
by specific triggering mechanisms were identified (see [14,22]). In some cases, such as
the so-called pyroptosis or necroptosis, the degenerating cells exhibit intermediate features
between necrosis and apoptosis; in other cases, lysosomes play the leading role in the
degenerative processes.

The initial proposal of “apoptosis” as a regulated process alternative to necrosis ruled
out the role of lysosomes, considering them responsible for passive cell death induced
by external damaging agents or implicated in the phagocytic removal of the cell debris
generated in the degenerative process. However, the systematic study of different models
of developmental cell death allowed for the identification of dying mechanisms in which
lysosomes exerted a major function. In fact, prior to the consolidation of the term apoptosis,
Schweichel and Merker [23], based on transmission electron microscopic observations,
proposed the terms “necrosis type I”, for what was later termed apoptosis, “necrosis type
II”, for dying processes characterized by the implication of lysosomes via autophagy, and,
finally, “necrosis type III” for what now is called necrosis. With the advance of genetic and
molecular technologies to study cell death, lysosomes were confirmed as major effectors of
cell death [24,25].

There are, at least, two alternative lysosomal ways for accomplishing cell self-destruction.
Destruction may be mediated via permeabilization of the lysosomal membrane followed by
release of lysosomal hydrolases into the cytosol (lysoptosis [26,27]) or may destroy the cells
via intensification of autophagy, as originally described for type II cell death [23]. However,
autophagy, was traditionally considered a survival mechanism that provides energy to
cells subjected to metabolic stress [28]. Consistent with this view, in some cases lysosomal
activation accompanies, but does not cause, the degenerative process [29], and in other
cases, rather than inducing cell death autophagy, protects cells from dying [28].

Remarkably, in recent years, developmental cell senescence has been proposed as a new
tissue remodeling mechanism [30], but, most likely, it could in fact represent the destructive
process formerly assigned to autophagy [31]. As autophagy, senescence was originally



Int. J. Mol. Sci. 2022, 23, 1154 4 of 9

considered a defense mechanism against cell injuries, and is characterized by three fea-
tures: (1) cell cycle arrest via upregulation of tumor suppressor genes; (2) the elaboration
of a senescence-associated secretory phenotype (SASP) that promotes the local expan-
sion of senescence; and (3) lysosomal activation detectable via histochemical detection of
senescence-associated-β- galactosidase (SAβ-gal) [31] or cathepsin D [32]. All these fea-
tures take place together in embryonic areas of programmed cell death, and histochemical
detection of SAβ-gal at pH 6 overlaps with traditional markers for developmental cell
death, such as Nile blue, or neutral red vital staining, which detect lysosomes in the areas of
cell death [33–36]. Furthermore, chemical inhibition of cathepsin D reinforces the inhibition
of programmed cell death mediated by caspase inhibitors [37]. Based on these findings,
it has been proposed that developmental cell senescence represents the involvement of lyso-
somes in programmed cell death, receiving the name of destructive cellular senescence to be
distinguished from the canonical form of senescence as a cellular defense mechanism [31].

Of note, lysosomal implication in cell death may act individually or in concert with
the apoptotic molecular machinery [38–40]. Regardless lysosomal activity occurring via
cytosolic release of proteases or by its delivery into the autophagic vacuoles, the required
permeabilization of lysosomes appears to be mediated by the multidomain members of the
BCL-2 family, BAX and BAK [25]. In addition, cathepsins delivered after permeabilization
of lysosomes may cleave and activate initiator or executioner caspases, or promote mito-
chondrial outer membrane permeabilization [38,41,42], thus activating in a cooperative
fashion lysosomal cell death and caspase-dependent cell death.

A singular mechanism that escape from the conventional cell autonomous regulation
of dying process results from the ingestion of still alive cells by their neighbors. This dying
mechanism has been described in cancer studies with the name of entosis [43]. In this
case, it is considered that the prospective dying cell invades a non-phagocytic neighbor
cell prior to undergoing degeneration. A relative similar process has also been reported
in developmental models with term of “assisted suicide” [44], but different to entosis,
the elimination of the dying cells involves a true phagocytic process. The mechanisms
underlying these processes are out of the scope of our review.

The discovery of different types of cell deaths included the identification of a large
panel of dying executioner factors in addition to the well-known mitochondria-delivered
factors and executioner caspases [45], and the multifunctional properties of crucial effectors
of apoptotic cell death that are also able to trigger necrosis [45].

6. Redundancy of Dying Mechanisms in Developing Systems

Since the establishment of the concept of programmed cell death, this process has been
considered not only of major importance in morphogenesis but also a causal mechanism
of abnormal development induced by teratogens [46]. However, the scarcity of overt cell
death phenotypes following genetic ablation of the different components of the cell death
molecular cascades in the mouse questioned the occurrence of a major developmental
function for cell death unless the dying mechanism was very redundant [21]. Thus, mice
subjected to single gene silencing of distinct caspases [47] or Bcl-2 family members [21]
lack major morphological alterations in organs sculpted by physiological cell death. Sim-
ilar negative findings were found after genetic ablation of lysosomal cathepsins [48,49].
Furthermore, independent chemical inhibition of caspases or lysosomal proteases caused
only a low inhibition of interdigital cell death responsible for sculpting the digits from
the embryonic autopod [27]. However, mouse genetic studies [50] and observations in
the embryonic chick model supported the functional redundancy of dying machinery [51].
It was observed that the partial inhibition of interdigital cell death by local pancaspase
inhibitor treatments was potentiated when the treatment was combined with inhibitors of
lysosomal proteases [27]. Furthermore, it was also observed that mouse KO for caspase 9,
which plays a crucial role in apoptosis, does not have digit phenotypes because under this
experimental condition, interdigital cells die via necrosis instead of apoptosis [50].
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Combined mutations of proapoptotic members of the Bcl-2 family reinforced the
redundant nature of the dying machinery. Double or triple KOs of pro-apoptotic Bcl-
2 superfamily members, such as Bax and Bak, exhibit cell death phenotypes, such as
syndactyly [52], but the inhibition of cell death and subsequent syndactyly appears to be
incomplete, as the penetrance of the phenotype is potentiated by additionally silencing
genes associated with autophagy [53].

7. Sensitivity of the Prospective Areas of Programmed Cell Death to Cell
Damaging Agents

A common observation in former teratological studies was that the undifferentiated
tissue regions of the embryo, such as those undergoing physiological cell death, were the
most prone to be altered by diverse damaging stimuli [46] (virus embryopathy, ionizing
irradiation, etc.). Often, teratogen exerts its effect by inducing new cell death regions [54]
or by increasing the extension of the areas of physiological cell death [55]. This association
can explain why, frequently, in old teratological studies, normal areas of cell death were
mistakenly taken as abnormal [46]. The specific sensitivity of embryonic regions to cell
damage was confirmed in studies of chick embryos subjected to sublethal X-irradiation [56].
Thus, in avian embryos, sublethal X-irradiation at stages preceding the formation of free
digits causes massive degeneration of the interdigital cells preceding the appearance
of the physiological areas of interdigital cell death without altering digit development.
Remarkably, as that which occurs physiologically, cell death is preceded by DNA damage
detectable by immunohistochemical detection of γH2AX foci that are precocious markers
of DNA repair.

8. Epigenetic Profile and Embryonic Programmed Cell Death

The above surveyed data and advances in the study of programmed cell death in recent
decades support the following contentions: (1) no master transcription factors responsible
for triggering cell death in vertebrate embryos have been identified; (2) cells fated to die
retain their potential to differentiate and survive until the initiation of the dying process (i.e.,
there is not a “dead clock”); (3) dying pathways are multiple and functionally redundant;
and (4) all components of the dying machinery have functions unrelated to cell death.
Considering these facts together, it can be concluded that the initiation of embryonic dying
processes rather than being dependent on a dying-specific signal is caused by increasing the
sensitivity of the target cells to damage by signals that are not harmful for their neighboring
cells destined to survive.

Information accumulated in the last decade points to epigenetic modifications and
chromatin remodeling as crucial regulators of embryonic cell behavior by facilitating or
hindering the access of transcription factors to their targets and regulating chromatin
fragility. This type of regulatory mechanism would explain why a signal may be active
for a particular cell but not for close neighbor cells. In a complementary fashion, this
would also explain the occurrence of distinct or even antagonistic responses to a particular
signal among closely related cells. However, the precise basis for the differential sensitivity
to damage should not necessarily be identical in different embryonic contexts. Thus,
blastomeres of mammalian embryos at the two-cell stage are protected from apoptosis due
to DNA methylation and histone deacetylation, which make the chromatin inaccessible
to DNAses activated by caspase 3 [57]. However, in an opposite fashion, increased DNA
methylation via upregulation of DNA methyltransferases has an intense proapoptotic
influence in motor neurons of postnatal and adult mice [58] and in photoreceptors of mouse
models of retinitis pigmentosa [59].

During amphibian anura metamorphosis, thyroid hormone (TH) is a crucial regulatory
signal that promotes growth in some tadpole tissues (i.e., limb primordia) and, at the same
time, massive degeneration in other tissues [60] (tail, gills, gut, etc.). The effects of TH
depend on the regulation of the activity of histone deacetylases by corepressor or coactivator
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factors that result in chromatin remodeling accompanied by transcriptional activation or
inhibition of target genes in stage- and organ-specific manners [61,62].

Further evidence for a role of epigenetics as an initial step of programmed cell death
comes from studies of the dying process responsible for the separation of the digits during
limb development in tetrapods. The interdigital remodeling process is carried out by mas-
sive cell death involving caspases and lysosomal activation in a redundant fashion [31,63].
Consistent with the activation of caspases and lysosomal proteases, interdigital dying
cells show morphological features of apoptosis, senescence, necrosis and, autophagy [31].
Of note, preceding the activation of the dying machinery, the interdigital progenitors
bear increased genome instability to X-irradiation in comparison with their neighboring
digit-forming tissue and show spontaneous DNA damage and repair activity detectable
by immunolabeling of phosphorylated histone 2AX at serine 139 (γH2AX) [31]. In the
course of interdigit remodeling, γH2AX- foci associate with zones of intense DNA methy-
lation and histone 3 trimethylation at lysines 4, 9, and 27 (H3K4me [3]; H3K9me [3]; and
H3K27me [3]) [56,64] suggesting that regions of elevated DNA fragility depend on chro-
matin architectural cues. Consistent with this interpretation, major epigenetic regulators
responsible for DNA methylation, such as UHRF1 (ubiquitin-like containing plant home-
odomain and RING finger domain), DNA methyltransferases (Dnmt1, Dnmt 3a, and Dnmt
3b), and different histone deacetylase genes (Hdac1, Hdac2, Hdac3, and Hdac8), show reg-
ulated expression domains in the interdigital regions [56,65,66]. Experimental analysis
designed to unravel the relevance of those expression domains on cell death revealed
a dramatic increase in interdigital cell death in vivo following local inhibition of histone
deacetylases with trichostatin A [65,67]. In addition, cell death was increased and decreased
in primary cultures of limb skeletal progenitors after overexpression or silencing of the
Dnmt3b gene, respectively [56]. Remarkably, overexpression and silencing of Dnmt3b pro-
motes and inhibits the pattern of DNA methylation across the promoter of SOX9, a master
gene of chondrogenesis with a major influence on chromatin remodeling that is required
for the survival of limb skeletal progenitors [68,69] and mesenchymal stem cells [70].

As mentioned above, a general epigenetic modification rule accounting for cell death
in different systems cannot be expected, as distinct modifications may favor cell death in dis-
tinct cell populations. Among the epigenetic signatures proposed to be associated with nor-
mal or abnormal developmental dying processes are histone modifications [71–74] and/or
promoter methylation of specific genes, including master transcription factors [75,76], genes
encoding secreted factors [77], or tumor suppressor and cell death regulatory genes [78,79].
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