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Abstract
Registration of subject and control brains to a common anatomical space or template is the

basis for quantitatively delineating regions of abnormality in an individual brain. Normally, a

brain atlas is chosen as the template. Limitations in the registration process result in persis-

tent differences between individual subject brains and template, which can be a source of

error in an analysis. We propose a new approach to the registration process where the sub-
ject of interest is the registration template. Through this change, we eliminate errors due to

differences between a brain template and a subject’s brain. We applied this method to the

analysis of FA values derived from DTI data of 20 individual mTBI patients as compared to

48 healthy controls. Subject-centered analysis resulted in identification of significantly fewer

regions of abnormally low FA compared to two separate atlas-centered analyses, with sub-

ject-centered abnormalities essentially representing the common subset of abnormal low

FA regions detected by the two atlas-centered methods. Whereas each atlas-centered

approach demonstrated abnormalities in nearly every subject (19/20 and 20/20), the sub-

ject-centered approach demonstrated abnormalities in fewer than half the subjects (9/20).

This reduction of diffusion abnormalities observed using the subject-centered approach is

due to elimination of misregistration errors that occur when registering the subject of interest

to a template. Evaluation of atlas-centered analyses demonstrated that 9.8% to 13.3% of

subject GM and CSF was misregistered onto the WM of the brain atlas, resulting in the

observation of additional low FA clusters compared to the subject-centered approach. With-

out careful evaluation, these misregistrations could be misinterpreted as pathology. An

additional benefit of the subject-centered approach is that diffusion abnormalities can now

be visualized directly in the subject’s anatomical space, rather than interpolating results

from the brain atlas space, and can thereby enhance correlation with other components of

an imaging protocol.
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Introduction
Conventional neuroimaging techniques, such as CT and MRI, readily demonstrate distinct
lesions due to many neurological diseases. However, these techniques provide a limited win-
dow into brain pathology. Advanced MR imaging techniques, such as DTI, reveal additional
pathology and offer important additional information that compliments standard imaging. It
is increasingly apparent that even small changes in diffusion parameters can indicate clinically
significant pathology. However, the inherent spatial variability of normal MR-derived diffusion
measures limits the identification of significant alterations in these parameters by visual inspec-
tion. Thus, a quantitative approach to the evaluation of these data is essential. Quantitative
methods for detecting regions of abnormal diffusion in a single subject require comparison of
diffusion parameter images from the subject to the diffusion parameter images from a norma-
tive reference group. In order to ensure that analogous brain regions are compared, one of two
basic strategies is followed: a region-of-interest (ROI) based approach or a voxel-based
approach [1–4].

In ROI based approaches, brains of the subject and controls are segmented into anatomical
structures and the average values of the metric of interest within each ROI are compared. ROIs
are commonly delineated based on anatomical landmarks or by registering subjects’ brains to a
parcellated template. Use of larger ROIs has been proposed as a means to mitigate registration
errors in ROI based analyses [5]. However, modifying the size of the ROI does not in fact alter
the registration process or its accuracy. For a given registration algorithm, inaccuracy may be
less conspicuous when averaged over a larger area, but will be present to the same degree
whether the image volume is analyzed at the level of one or many voxels. A more robust imple-
mentation of this approach deforms an atlas-based template to each subject, thereby creating
an individualized set of anatomical ROI for each individual [5]. However, the implicit assump-
tion of any ROI based approach is that boundaries of abnormalities coincide with boundaries
of delineated ROIs and affect most of the tissue within the ROI in the same way. In many dis-
eases, including mTBI, foci of pathology cannot be expected to respect and be delimited by
canonical anatomical boundaries. Thus, the implicit assumption of the ROI based analysis can-
not be expected to hold and the use of ROI-based methods to detect abnormalities is associated
with penalties in sensitivity due in large part to partial volume effects and cancelations by spa-
tial averaging. To improve the detection of abnormalities in a single subject for a given ROI,
enlarging the normative cohort may offset the loss of sensitivity.

In voxel-based approaches, subject and control imagesmust be registered to a template,
placing each brain into a common reference frame, after which a voxel-by-voxel comparison
over the entire brain is performed. Since no region-specific assumption is made, this method is
inherently more sensitive to abnormalities in a single subject as compared to the ROI-based
approach. Typically, a brain atlas, such as those available from the Montreal Neurological Insti-
tute (MNI) [6,7] or Johns Hopkins University (JHU) [8–10], is chosen as the template for this
“atlas-based registration” (aBR) process. Such atlas-centered analysis of DTI data is typically
displayed as a color overlay on T1-weighted images (T1WI) of the brain atlas template.

Registration processes are limited in the degree to which the anatomy of one brain can be
mapped on to another brain [11]. Although appropriately registered brains closely resemble a
chosen template, they are not anatomically identical and therefore, constitute a distribution in
conformational space around the template (Fig 1A). Consequently, voxels from individual sub-
jects’ diffusion parameter images closely but not exactly map onto corresponding voxels of the
template. Therefore, some regions of the subject’s brain may be classified as abnormal not
because there is abnormality but because disparate brain regions are compared between subject
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and controls. Conversely, an abnormality may be missed if a truly abnormal value happens to
fall within the normal range at the control brain region to which it is improperly compared.

Numerous registration algorithms have been developed in an effort to improve the accuracy
in registering a subject brain to a given template, some faring better than others [11]. In addi-
tion, a method of asymmetric image-template registration [12] and a study of the effects of reg-
istration regularization and atlas sharpness on segmentation accuracy [13] have been
performed to improve the registration process. Although improvements in the registration pro-
cess can be made, no algorithm is likely to perfectly register one brain onto another; some level
of limitation will persist with respect to accuracy of the registration result. Because registration
quality is sensitive to the similarity of subject brains to the template, one method to increase
accuracy is to use a study-specific “central” template—a template requiring least average defor-
mation of the brains in the study—with the idea that smaller deformations are accompanied by
smaller registration errors [14]. Since mapping of voxels from an individual brain to a template
is not precise, voxel-based approaches suffer sensitivity loss due to broadening of the distribu-
tion of any quantitative metric by inclusion of values from other locations, manifesting as addi-
tional noise in the metric at each voxel [11]. While more accurate deformation algorithms and
use of a central template lead to smaller broadening, further noise reduction by increasing the
number of individual brains and thereby further averaging inherent registration inaccuracies,
as in the ROI-based analysis (above), is always available. This approach works well in both
ROI-based and voxel-based group-to-group comparisons because averaging takes place within
each group.

Limitations of the registration process in the voxel-based analysis manifest very differently
when comparing a single subject to a group of controls: the averaging effect described above is
operative for the controls, but not for the subject. In this situation, imperfect registration of the
subject to the template leads to a bias: a diffusion metric derived from the subject is compared
to values from controls at a different anatomical location, exclusively due to misregistration of
the subject to the template (Fig 1A). Moreover, because the quality of registration is sensitive to

Fig 1. Schematic diagram representing the conformational space of the brain (concentric red and
yellow circles). (A) When the target of the registration process is a brain atlas template, registration of the
controls (green dots) and subject (blue dot) result in a distribution of brain conformations around the brain
atlas template (white dot). (B) If the target of the registration process is the subject, registration of the controls
results in a distribution of brain conformations around the patient.

doi:10.1371/journal.pone.0142288.g001
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how similar a subject is to the template, the bias depends on choice of template. Increasing the
number of controls cannot reduce this bias. Although data from the subject and controls
appear to be handled identically, as the registration analysis steps are the same, the subject’s
data is in fact treated differently, since averaging of registration errors occurs only for controls.
To remove this bias, the subject’s image must be explicitly treated differently in order to put it
on equal footing with those of the control group.

In this study, we exploit the sensitivity of this bias to the choice of the template and propose
a modification of the registration scheme for voxel-wise comparison of a single subject to a
group of controls: choosing the individual subject of interest as the template (Fig 1B). Such
subject-based registration (sBR), which we term SUbject-REgistered Quantification of DTI
(SURE-Quant DTI), thus occurs in the subject’s anatomical space. Due to limitations of the
registration process, errors of registration of each control to the subject (serving now as the
template) are still present. However, these errors average across controls, as is in the conven-
tional atlas-centered approach. Most importantly, these errors will not affect the subject. We
hereby eliminate bias inherent when atlas-based registration (aBR) is used to compare a single
subject to a group of controls. We demonstrate dependence of this bias on choice of template
and the impact of the SURE-Quant approach.

Material and Methods
After Albert Einstein College of Medicine Institutional Review Board approval and written
informed consent, a cohort of 20 acute mTBI patients were prospectively recruited from an
urban Emergency Department (ED), distinct from clinical care [3,15]. A total of 48 healthy
individuals were recruited from the local community through advertisements as part of the
same study [3,15]. Inclusion criteria for patients included: age 18–70 years, ED diagnosis of
concussion within 2 weeks, Glasgow Coma Scale = 13–15, loss of consciousness<20 minutes,
posttraumatic amnesia<24 hours, no focal neurologic deficits and proficiency in English or
Spanish. Exclusion criteria for patients and controls included: prior head injury, hospitalization
due to the injury, neurodevelopmental or neurological disorder, major psychiatric disorder,
illicit drug use within 30 days, or skull fracture or abnormal CT [3,15]. Prior head injury was
determined by questioning subjects if they ever suffered a head injury “for which they sought
or were advised to seek medical attention.” Subjects were also excluded if ED records indicated
prior concussion or TBI.

All patients and controls underwent 3 Tesla diffusion tensor MRI as well as acquisition
of T1WI and T2-weighted images (T2WI) on a Philips Achieva TX scanner using an
8-channel head coil. T1WI was performed using 3D MPRAGE (TR/TE, 9.9/4.6 ms; field of
view, 240 mm; matrix, 240x240; section thickness, 1 mm). T2WI was performed using
axial 2D TSE (TR/TE, 4000/100 ms; field of view, 240 mm; matrix, 384x512; section thick-
ness, 4.5 mm). DTI was performed using single shot EPI (TE, 51ms; flip angle, 90 degrees;
section thickness, 2mm; matrix = 128x128; FOV, 256x256; diffusion directions, 32; b value,
800 sec/mm2).

Removal of non-brain voxels, eddy current correction, tensor fitting and rigid body registra-
tion of the diffusion data to the individual’s T1WI were performed using the FMRIB-FSL soft-
ware package [16–18]. EPI distortion correction of each diffusion tensor MRI dataset was
performed with the Automated Registration Toolbox package using a non-linear procedure
[19,20]. The distortion-corrected EPI volume thus produced was then registered to the
patient’s T1W volume, using a rigid body transformation, as a separate step. For the aBR
approach, T1W was registered to the template brain (MNI, JHU) using the 3D-Warper module
from the Automated Registration Toolbox [19,20].
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Three sets of identical analyses comparing each subject to the entire control group, with
each employing a different template, were performed: (1) all individuals were registered to the
MNI template (aBR-MNI), (2) all individuals were registered to the JHU template (aBR-JHU)
and (3) for each subject’s analysis, all controls were registered to the subject’s brain (sBR). It
should be emphasized that in this latter approach, the template was different for each subject’s
analysis, with that template being the subject’s brain.

Each subject’s registered T1WI was segmented using the fast automated segmentation tool
(FAST) within the FMRIB-FSL package [16–18], yielding binary masks of WM, GM and CSF.
WMmasks of the template brain for each analysis (MNI, JHU or patient) were used to restrict
the subsequent voxelwise comparison of FA images to WM voxels only. A voxelwise t test was
performed comparing each patient’s FA to that of the 48 control subjects. Clusters of abnor-
mally low FA voxels were defined by applying a voxelwise threshold of p< 0.005. Clusters that
reached a minimum size of at least 100 contiguous voxels were considered significant in this
study (see S1 Appendix). These criteria have been previously reported [21]. It should be
emphasized that the registration procedure and voxelwise analysis were applied in the same
way for each of the three analyses. The analyses differed only in the template chosen for the
registration process.

In order to assess whether the numbers of abnormally low FA clusters detected using the
sBR approach were significantly different from those detected using either of the aBR methods
and to compare the aBR approaches to each other, a paired Wilcoxon signed-rank W-test was
performed.

In addition, to demonstrate that the observed differences are not specific to mTBI and to
establish base rates, we selected two independent groups of 20 healthy subjects. The first set of
20 subjects was labeled the “reference group” while the second the “test group”. We then
repeated the sBR and aBR-JHU analyses for each mTBI and each test subject against the refer-
ence group.

The GM and CSF masks derived from each subject’s registered T1WI were combined to
produce a single mask delineating all “non-white matter” brain voxels. This mask was used to
identify regions where non-white matter of a registered subject brain was misregistered and
overlapped with white matter voxels of the template. We term these GM/CSF misregistrations.

Results

Number of Low FA Clusters
Table 1 shows the number of abnormally low FA clusters detected in each of the 20 mTBI
patients, using each of the three registration methods while Table 2 shows the number of abnor-
mally low FA voxels within clusters. Locations of these clusters tend to be in regions typical of
mTBI injury [22,23]. Both aBR approaches detected significantly more abnormally low FA clus-
ters (aBR-MNI = 90; aBR-JHU = 101) than the sBR approach (sBR = 24), thus detecting an aver-
age of 76.8% fewer abnormally low FA clusters compared to the two aBRmethods. The results of
theWilcoxon signed-rank test identified significant differences between the number of abnor-
mally low FA clusters in each of the 20 subjects using the sBR method to those identified in each
using the aBR approach (both sBR vs aBR-JHU and sBR vs aBR-MNI hadW = 171 (N = 18)
one-tailed p-value< 0.0001). In contrast, the number of abnormally low FA clusters identified
with the two aBR methods did not differ (W = 34 (N = 16) one-tailed p-value = 0.1922). Whereas
the aBR approaches detected clusters of abnormally low FA voxels in nearly all subjects (19/20
and 20/20 for MNI and JHU spaces, respectively), the sBR approach detected the abnormality in
less than half the patients (9/20). On average, the aBR approaches detected 3.3 and 3.9 more clus-
ters of abnormally low FA voxels per subject (MNI and JHU based templates, respectively)
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compared to the sBR approach. For the 9 subjects in whom abnormally low FA clusters were
detected using the sBR approach, 383.3% to 405.5%more FA voxels were identified as having
abnormally low FA when the aBR approaches were used (aBR-MNI and aBR-JHU approaches,
respectively).

When comparing against the 20-subject reference group (above), only 2 test subjects and
only 1 mTBI patient showed no abnormalities in the aBR-JHU analysis, whereas these numbers
become 10 and 10 in the sBR analysis. This difference is significant (test sBR vs test aBR:
W = 140, N = 17, one-tailed p< 0.0005 and mTBI sBR vs aBR: W = 194, N = 20, one-tailed
p< 0.0002). These results for mTBI subjects are similar to those obtained using the full set of
controls (n = 48). We note that the observed rate of abnormalities in the test group is very simi-
lar to that of the mTBI subjects using either approach. This is because the mTBI patient sample
we address does not lend itself to discriminating base rate in normal subjects from our patient
sample. The large majority of these mildly injured patients, who we imaged during the acute
phase, recover at 1-year follow-up. We therefore do not expect the rate of abnormalities in
patients to be excessive.

Most clusters of abnormally low FA detected using the sBR approach were also detected
using the aBR approaches (Fig 2, Table 1). Comparing the 24 clusters of abnormally low FA
detected in 9 patients using the sBR approach, 20/24 (83.3%) were detected using the aBR
approach with the MNI template, while 22/24 (91.7%) were detected using the aBR approach
with the JHU template. In contrast, we observed very little overlap between those clusters
detected using the two aBR approaches (excluding those clusters identified in the sBR approach

Table 1. Abnormally Low FA Clusters.

Patient Low FA
Clusters (sBR)

Low FA Clusters
(aBR-MNI)

Low FA Clusters
(aBR-JHU)

Overlap Low FA
Clusters (sBR vs

aBR-MNI)

Overlap Low FA
Clusters (sBR vs

aBR-JHU)

Overlap Low FA Clusters
(aBR-MNI vs aBR-JHU)*

TBI1 0 3 2 0 0 0

TBI2 0 4 3 0 0 0

TBI3 2 4 2 1 1 0

TBI4 1 4 7 1 1 1

TBI5 4 8 8 4 4 0

TBI6 0 6 5 0 0 0

TBI7 0 7 4 0 0 0

TBI8 2 6 4 2 2 0

TBI9 0 3 6 0 0 0

TBI10 1 10 7 0 1 0

TBI11 0 5 10 0 0 1

TBI12 0 1 2 0 0 0

TBI13 0 0 2 0 0 0

TBI14 0 2 4 0 0 0

TBI15 6 9 8 6 6 0

TBI16 1 5 5 0 1 0

TBI17 0 1 7 0 0 0

TBI18 0 1 4 0 0 0

TBI19 3 7 7 3 3 1

TBI20 4 4 4 3 3 0

SUM 24 90 101 20 22 3

* Excluded were aBR clusters that overlapped with either sBR clusters or GM/CSF misregistrations

doi:10.1371/journal.pone.0142288.t001

Subject Based Registration for Individualized Analysis of DTI Data

PLOS ONE | DOI:10.1371/journal.pone.0142288 November 18, 2015 6 / 17



Table 2. Number of Abnormally Low FA Voxels within Clusters.

Patient Low FA Voxels
(sBR)

Low FA Voxels +

(aBR-MNI)
Low FA Voxels +

(aBR-JHU)
Voxel Increase*

(aBR-MNI)
Voxel Increase*

(aBR-JHU)

TBI1 0 415 247 415 247

TBI2 0 472 667 472 667

TBI3 210 645 270 435 60

TBI4 193 802 1089 609 896

TBI5 3312 6190 4695 2878 1383

TBI6 0 2065 710 2065 710

TBI7 0 4270 2477 4270 2477

TBI8 778 1606 1414 828 636

TBI9 0 865 1120 865 1120

TBI10 127 1473 1711 1346 1584

TBI11 0 1339 2836 1339 2836

TBI12 0 215 328 215 328

TBI13 0 0 345 0 345

TBI14 0 400 926 400 926

TBI15 1433 2361 2015 928 582

TBI16 146 861 1114 715 968

TBI17 0 523 1943 523 1943

TBI18 0 111 1423 111 1423

TBI19 404 1297 1101 893 697

TBI20 938 928 1020 -10 82

AVG 965 996

+ Volume adjusted to Patient Volume
* Number of Additional Low FA Voxels Compared to sBR

doi:10.1371/journal.pone.0142288.t002

Fig 2. Abnormally low FA clusters detected in a single mTBI patient using three different registration
approaches. Abnormally low FA clusters are shown in red overlaid on axial T1-weighted images: the
patient’s anatomy (sBR), the MNI atlas (aBR-MNI) and the JHU atlas (aBR-JHU), respectively (left to right).
Most abnormally low FA clusters observed using sBR were also present using the aBRmethods, as
demonstrated by the 3 clusters seen in the right frontal lobe. However, additional clusters (e.g., yellow arrow)
detected using a particular aBR template generally will not overlap with the alternate aBR template or sBR.

doi:10.1371/journal.pone.0142288.g002
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or misregistered to non-WM regions). Specifically, when comparing the 70 clusters detected
using the aBR-MNI approach to the 79 clusters detected using the aBR-JHU approach, only 3
clusters showed overlap.

We quantified the extent of misregistration of GM or CSF as WM in each patient (Table 3).
Using the aBR approach, 9.8% to 13.3% of GM/CSF voxels were misregistered to WM.
Although many of these misregistered voxels do not result in FA abnormalities, 39.9% to
51.2% of voxels detected within abnormally low FA clusters are a result of such misregistrations
(Fig 3 and Table 4). It is important to point out that the subject’s image cannot be misregistered
when using the sBR approach, because the subject is the template and does not undergo regis-
tration. As a point of clarification, we refer to misregistration as displacement of tissue beyond
the borders of a tissue interface, not partial volume effects. Partial volume averaging exists due
to the finite size of the voxel. These effects cannot be eliminated by the sBR or any other analy-
sis approach.

Discussion
We demonstrate, for a voxelwise analysis comparing an individual subject to a group of con-
trols, that simply defining the template as the subject themself results in a significant decrease
in the number of low FA clusters detected. The additional clusters of abnormally low FA identi-
fied in analyses based on the aBR approach are primarily due to misregistration of the subject’s

Table 3. Misregistration of GM/CSF ontoWM of Template.

Patient Number of
WM Voxels
(Patient)

Number of Misregistered
GM/CSF Voxels on WM of

Template (aBR-MNI)

Number of Misregistered
GM/CSF Voxels on WM of

Template (aBR-JHU)

Percent Overlap
Misregistered GM/CSF

Voxels and WM Template
(aBR-MNI)

Percent Overlap
Misregistered GM/CSF

Voxels and WM Template
(aBR-JHU)

TBI1 527752 75859 53688 12.5 9.5

TBI2 625444 80502 56677 13.2 10.0

TBI3 638950 79791 48797 13.1 8.6

TBI4 515464 80629 57413 13.3 10.1

TBI5 519619 83016 53590 13.7 9.4

TBI6 591886 81188 51184 13.4 9.0

TBI7 688909 82261 55971 13.5 9.9

TBI8 474424 82225 51525 13.5 9.1

TBI9 679664 79110 58091 13.0 10.2

TBI10 619657 79616 57949 13.1 10.2

TBI11 642122 72919 55168 12.0 9.7

TBI12 566821 76050 55562 12.5 9.8

TBI13 617823 75079 49328 12.4 8.7

TBI14 649398 74964 56431 12.3 9.9

TBI15 613713 89060 63087 14.7 11.1

TBI16 633477 73954 53026 12.2 9.3

TBI17 645457 93796 66432 15.4 11.7

TBI18 551298 80069 52994 13.2 9.3

TBI19 579439 94136 69478 15.5 12.2

TBI20 594236 79985 47348 13.2 8.3

AVG 13.3 9.8

Note: Number of WM voxels (MNI atlas) = 607633

Number of WM voxels (JHU atlas) = 567402

doi:10.1371/journal.pone.0142288.t003
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Fig 3. Misregistration of GM/CSF voxels ontoWM of an atlas based template.On the left is an axial
T1-weighted image of an mTBI patient transformed to match the MAI template. On the right is a
corresponding T1-weighted axial image from the MAI template. The yellow overlay demonstrated the GM and
CSF portions of the registered mTBI brain that have been misregistered to the WM of the MNI template. The
red overlay is an abnormally low FA cluster that clearly incorporates misregistered voxels.

doi:10.1371/journal.pone.0142288.g003

Table 4. Overlap of Voxels from Abnormally Low FA Clusters and GM/CSFMisregistered Voxels.

Patient Percent Overlap (sBR) Percent Overlap (aBR-MNI) Percent Overlap (aBR-JHU)

TBI1 0 77.4 15.0

TBI2 0 86.9 77.5

TBI3 0 36.5 50.4

TBI4 0 23.8 40.6

TBI5 0 4.9 7.4

TBI6 0 20.9 65.5

TBI7 0 40.4 84.3

TBI8 0 14.0 15.7

TBI9 0 60.7 37.2

TBI10 0 47.4 28.6

TBI11 0 45.5 48.5

TBI12 0 4.8 100.0

TBI13 0 N/A* 93.1

TBI14 0 19.5 86.5

TBI15 0 5.9 16.5

TBI16 0 29.5 50.2

TBI17 0 90.9 72.8

TBI18 0 98.4 75.4

TBI19 0 37.4 43.6

TBI20 0 13.8 15.6

AVG 0 39.9* 51.2

* No Abnormally Low FA Clusters in this aBR-MNI registration thus ratio is undefined. Average excludes this patient.

doi:10.1371/journal.pone.0142288.t004
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GM/CSF as WM during the registration process. This explains the lack of concordance of such
clusters between the aBR-MNI and aBR-JHU approaches. These effects are solely due to the
choice of registration target (brain atlas as template vs. subject as template) because all other
aspects of the analysis remained identical; image data, image processing and statistical analyses
were not changed across the different registration approaches (aBR vs. sBR). Therefore, these
factors have no bearing on the effects we observe.

Misregistration as the Source of Error
Using the aBR method, the WMmask of the template (MNI or JHU) defines those voxels to be
included in the analysis, whereas in the sBR method, the WMmask of the subject’s brain (the
template for sBR) defines those voxels to be included in the analysis. With the aBR approach,
misregistration of the subject can lead to erroneous classification of gray matter or CSF con-
taining voxels as white matter. As the set of controls are employed collectively to identify
abnormal FA values in the subject, misregistration of an individual control will not signifi-
cantly affect the determination of abnormally low FA voxels in a subject; these registration
errors will be distributed across controls and have no significant net effect. However, misregis-
tration of the voxels of the subject’s brain, to which the ensemble of controls are compared in
the one vs. many analysis, can have a significant effect on the determination of abnormally low
FA voxels. This error is eliminated using the sBR approach, where the subject’s anatomy is not
transformed, but rather serves as the template for the analysis.

Individual-to-Group vs. Group-to-Group Comparison: Reduction of Bias
In order for conclusions to be reliable when testing a hypothesis, the test must be constructed
in a fairmanner. When testing the role of a factor, the test is considered fair if that factor is
changed while other aspects of the test remain the same; otherwise, the test may be biased.
That is, significant findings cannot be attributed exclusively to the factor of interest. In a
group-to-group comparison designed to characterize manifestations of a disease, care must be
taken to collect and analyze data from both subjects and controls in the same manner, so that
the factor under investigation is the sole variable. In this case, the aBR approach is the method
of choice. If, however, the test is intended to detect evidence of disease in an individual, and
not to provide the initial characterization of disease-related imaging changes, the principle of
treating both subject and control groups in an identical manner would be inappropriate as the
sample of interest is no longer a group, but a single individual, while the group of controls
remains large. This unavoidable imbalance of group size threatens the fairness of the test and
can lead to bias. And in fact, as we demonstrated, it actually does. The averaging of registration
errors, as in a group-to-group comparison, cannot be achieved for the subject of interest in an
individual-to-group comparison. However, registration of each control to the subject (the sBR
method) does average registration errors across the group of controls and preempts these
errors entirely in the subject of interest. Thus, sBR assures fairness of the comparison of single
individual to a control group.

Misregistration of control images increases variance in the diffusion metrics with both aBR
and sBR approaches. This issue can only be addressed by improving registration algorithms
themselves. Notwithstanding this inherent limitation of all approaches, the sBR approach does
eliminate bias (not variance) inherent in the aBR approach.

Sources of Subject-to-Template Misregistration
Misregistration is the assignment of an anatomical location in the brain volume of a subject to
a different anatomical location in the template brain. This is clearly evident when GM/CSF is
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misclassified as WM during the registration process. The comparison of GM/CSF (which
inherently has lower FA thanWM) to WMmay yield erroneous inferences of abnormally low
FA in the subject. Using the aBR approach, we found significant misregistrations of GM/CSF
voxels onto the WM of the brain atlas template, with as much as half of these misclassified
GM/CSF voxels contributing to observed clusters of abnormally low FA. It should be noted
that WM could also be misregistered, either to GM/CSF or to other WM locations. Misregistra-
tion of WM toWM is more difficult to visualize as white matter generally has relatively homo-
geneous signal intensity on typical structural images. Thus, white matter voxels misregistered
to adjacent white matter voxels appear similar to the native voxels at the location to which they
are misregistered. Although the T1-weighted signal of these adjacent voxels might be similar,
misregistration still can occur and therefore diffusion parameters at these adjacent locations
can differ.

To illustrate the misregistration process, we can follow a single voxel as it is transformed to
the template anatomy. Using 15 control subjects from this study, a single white matter voxel
was identified and labeled, within the center of the “hand-knob”, a prominent anatomic feature
of the precentral gyrus [24], in the left cerebral hemisphere of each control (Fig 4). Each of
these control brains was then registered to the JHU template, as would occur in the aBR
approach. The transformed labeled “hand-knob” voxel was then displayed as a color overlay
on the JHU template brain image (Fig 5A). Examination of the registered voxels from each of
the controls demonstrates that they were not transformed to the same central location within
the “hand-knob”, but were distributed within the gyrus. This demonstrates the potential for

Fig 4. Tracking individual voxels through the registration process. Figure demonstrates a single labeled voxel within the hand-knob region of the left
precentral gyrus in each of fifteen control subjects prior to transformation to the template.

doi:10.1371/journal.pone.0142288.g004
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error in the registration process. The transformed voxel of one control (control 6) was actually
misregistered to the cortical gray matter at the surface of the “hand-knob” of the template
brain. In order to simulate the sBR approach, we repeated this registration process, assigning as

Fig 5. Demonstration of the registration result of aBR and sBR approaches. (A) Registration using the aBR-JHUmethod: all voxels are located within
the hand-knob region, one voxel (blue), from control 6 (C6), has been displaced into GM. (B) Registration using the sBR approach, using C6 as the template,
demonstrates the resultant location of these same 15 voxels. Using the sBR approach, the labeled voxel of C6 remains centered in the hand-knob gyrus with
the labeled voxels of the other subjects, while still present in the gyrus, are distributed around the C6 voxel.

doi:10.1371/journal.pone.0142288.g005
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the template, the brain volume of the control whose brain was misclassified when registered to
the JHU template (Control 6, above) (Fig 5B). The previously marked voxel remained centered
within the “hand-knob” white matter because, serving as the template for the registration, this
individual brain volume did not undergo any transformation. The labeled voxels of each of the
remaining control subjects were distributed in proximity to the template voxel, again reflecting
the inherent imperfection of the registration process.

Errors in accuracy using the aBR approach arise due to the misregistration of subject anat-
omy onto a brain atlas template. Such errors can lead to erroneous detection of abnormal FA
clusters, which are the result of errors in the registration process, not of pathology. It is impor-
tant to note that such erroneously detected clusters, are not present in the sBR results, but can
be identified in the aBR results at locations where the subject’s white matter overlaps GM or
CSF in the brain atlas template. Without careful scrutiny and sufficient interpretation experi-
ence, erroneous conclusions regarding the nature or even the presence of pathology can occur,
when using the aBR methodology. Elimination of these erroneously detected clusters using the
sBR approach can provide for more definitive determinations, which are less dependent on the
expertise of those interpreting the results.

Advantages of sBR
The increase in accuracy obtained through use of the sBR approach is an important advantage
of this method. Another important advantage is that the quantitative results may be viewed
directly in the anatomical space of the subject. When using the aBR approach, results are typi-
cally displayed as a color overlay on a T1-weighted image of the template, which will have nei-
ther identical anatomic proportions nor identical plane of section as the subject’s
untransformed brain images. Absent an additional transformation to map the quantitative
results onto the subject’s native anatomy, which would carry over the inaccuracies of the aBR
approach, the interpreting radiologist must interpolate the quantitative results to compensate
for these differences. The sBR results, however, are displayed on the subject’s brain volume,
without any spatial transformation to a template. Abnormal clusters can therefore be displayed
directly on the subject’s MR images. This advantage could enhance the accuracy and efficiency
of interpretation and improve correlation with clinical findings as well improving accuracy of
localization for surgical planning. Because quantitative results are defined on the subject’s
images, targets of interest for Magnetic Resonance Spectroscopy (MRS) or tissue biopsy based
on conventional imaging could be further refined by directly targeting diffusion abnormalities.
Moreover, sBR need not be limited to diffusion tensor MRI. Any quantitative or semi-quantita-
tive imaging technique, including newer MRI diffusion techniques, dynamic susceptibility con-
trast MRI, dynamic contrast enhanced MRI, arterial spin labeling or MRS imaging, could
leverage the advantages of sBR. In addition, sBR could improve identification of specific WM
tracts affected by areas of abnormal anisotropy. Regions of abnormal FA, for example, could
serve as seed ROI for tractography, thereby delineating tracts affected by disease (Fig 6).

Limitations
A potential limitation of sBR is that it is much more computationally intensive. Using the aBR
approach, a set of controls only needs to be registered once to a brain atlas template. Assuming
a set of controls have previously been registered to a brain atlas template, only each new sub-
ject/patient to be analyzed need be registered to the atlas after which a quantitative voxelwise
analysis can be performed by comparing to the previously processed control brain volumes. In
sBR, however, where the template is the subject, all control brains must be registered to each
new subject. Although considerably more registrations are thus required for sBR, parallel and
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high performance computing systems can reduce actual processing to be time comparable to
the aBR approach.

A potential limitation of our comparison of the aBR and sBR approaches is the effect of
smoothing of the imaging data as the result of transformations performed in the study. Three
transformations are applied, as separate steps, using the aBR method; (1) EPI distortion

Fig 6. Diffusion tensor tractography in anmTBI patient based on sBR derived clusters.Overlying the 3D rendered T1WI a tractogram generated from
the patient’s diffusion tensor imaging is shown in color. Tractography was performed using the Medinria software package (v1.8.0) and a single seed ROI
within the right middle cerebellar peduncle (red). The seed ROI is a cluster of abnormally low FA generated from voxelwise analysis using the sBR approach.
An additional ROI in the right cerebral peduncle was used as a waypoint.

doi:10.1371/journal.pone.0142288.g006
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correction of DTI images (within subject); (2) rigid body transformation from DTI space to
T1 space (within subject) and (3) non-linear registration of the subject T1-weighted volume
to the T1-weighted template. When using the sBR approach, the last transformation to the
T1-weighted template is not performed for the subject of interest, but is performed for each
control, to match each control’s T1-weighted volume to the subject’s. Thus, smoothing as a
result of distortion correction and rigid-body transformation occur similarly in both aBR and
sBR approaches; in the sBR approach one less transformation, that required for registration to
the template, does not occur for the subject of interest. We performed additional analysis to
characterize the ultimate impact of the single additional interpolation step on ultimate results
of the analysis. The results support the conclusion that the interpolation difference does not
explain the impact of the sBR approach (see S2 Appendix).

An additional limitation is that some of the available brain atlas templates are segmented
atlases that can facilitate analyses. A number of software packages, which perform parcellation
of an individual subject brain (e.g. Freesurfer), or registration to a segmented atlas can address
this limitation.

Conclusion
Detection of image abnormalities in a single subject requires comparison of that subject’s
images to those of a control group. To ensure analogous brain regions are compared, subject
and control images are registered to a template. Typically, a canonical atlas or a subject selected
from the control group serves as the template. This type of atlas based registration (aBR)
approach suffers from potentially important errors of accuracy due to misregistration of the
subject’s brain to the atlas. The sBR approach results in a significant reduction of erroneous
findings that arise from these registration errors. The resulting SUbject-REgistered Quantifica-
tion (SURE-Quant) analysis can greatly facilitate utilization of quantitative image analysis in
the clinic and can be applied to many quantitative imaging measures, even beyond diffusion
MRI.
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