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16S rRNA gene profiling (amplicon sequencing) is a popular technique for understanding
host-associated and environmental microbial communities. Most protocols for
sequencing amplicon libraries follow a standardized pipeline that can differ slightly
depending on laboratory facility and user. Given that the same variable region of the
16S gene is targeted, it is generally accepted that sequencing output from differing
protocols are comparable and this assumption underlies our ability to identify universal
patterns in microbial dynamics through meta-analyses. However, discrepant results from
a combined 16S rRNA gene dataset prepared by two labs whose protocols differed
only in DNA polymerase and sequencing platform led us to scrutinize the outputs and
challenge the idea of confidently combining them for standard microbiome analysis.
Using technical replicates of reef-building coral samples from two species, Montipora
aequituberculata and Porites lobata, we evaluated the consistency of alpha and beta
diversity metrics between data resulting from these highly similar protocols. While
we found minimal variation in alpha diversity between platform, significant differences
were revealed with most beta diversity metrics, dependent on host species. These
inconsistencies persisted following removal of low abundance taxa and when comparing
across higher taxonomic levels, suggesting that bacterial community differences
associated with sequencing protocol are likely to be context dependent and difficult
to correct without extensive validation work. The results of this study encourage caution
in the statistical comparison and interpretation of studies that combine rRNA gene
sequence data from distinct protocols and point to a need for further work identifying
mechanistic causes of these observed differences.
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INTRODUCTION

Microbial ecology has benefited tremendously from recent
technological advances in areas such as high throughput
sequencing (Schuster, 2008). The generation of large volumes
of genomic data (e.g., 16S rRNA gene sequencing data)
has encouraged large-scale collaborative efforts, including the
Human Microbiome Project [HMP1; (Human Microbiome
Project Consortium, 2012)], the Earth Microbiome Project
[EMP2; (Thompson et al., 2017)] and TARA Oceans (Sunagawa
et al., 2015), which aim to catalog all microbial life associated
with humans, other animal hosts and across ecosystems. Publicly
available sequencing data resulting from these initiatives provide
opportunities for the production of meta-analyses and for
researchers with smaller scale projects to make comparisons
and/or combine their dataset with a much broader set of samples,
allowing increased impact of their finer sequencing efforts.

Large-scale collaborations also provide standardized protocols
for replication and adequate comparison. For example, the
EMP standardized protocols for 16S rRNA gene sequencing are
optimized for repeatedly processing large numbers of samples
and benefit from automation and high throughput sequencing
on an Illumina HiSeq platform. Smaller, individual research
laboratories are, in many cases, processing fewer samples less
frequently, likely without access to automation, but with the
capacity to shift reagents and polymerase chain reaction (PCR)
conditions to achieve optimized results. Smaller numbers of
samples are also more often sequenced on the Illumina MiSeq
platform due to cost effectiveness and increased read length. It
has been previously accepted that HiSeq and MiSeq platforms
produce comparable results (see Caporaso et al., 2012). In fact,
there are few differences in the two sequencing platforms: apart
from the discrepancy in read length (HiSeq: 150bp; MiSeq: up to
300bp) and sequencing depth (HiSeq: 150M reads/lane; MiSeq:
20–25M reads/lane), the chemistry between the two methods is
almost identical, except for the slightly different concentrations
of sodium hydroxide (NaOH) used to denature the libraries for
sequencing [HiSeq: 0.1N NaOH; MiSeq: 0.2N NaOH; outlined
in (Wu et al., 2018)]. As a result, meta-analyses of 16S rRNA
gene data across microbial study systems already utilize cross-
protocol and platform data that are stored in public repositories
(see Duvallet et al., 2017; Pammi et al., 2017; Mo et al., 2020).

However, when attempting to combine 16S rRNA gene data
for a large, longitudinal coral microbiome dataset, we found
that the data derived from our in-house preparation and MiSeq
sequencing runs clustered separately from those prepared and
sequenced by EMP, despite following a highly similar preparation
protocol. This led us to re-evaluate if the two protocols
utilizing different sequencing platforms provide comparable
results. Using 24 coral samples that were sequenced in parallel
both in-house (MiSeq) and by EMP (HiSeq), we examined
if methodological biases lie within these complex microbial
communities, and how (or whether) results obtained from the
two protocols are comparable when running standard microbial

1https://www.hmpdacc.org/hmp
2https://earthmicrobiome.org/

ecology analyses on alpha diversity, beta diversity, dispersion and
differential abundances. Large collaborative sequencing efforts
and public sharing of these data are central to understanding
general, cosmopolitan patterns in the coral microbiome, which
makes effective comparison of sequencing data originating from
multiple laboratories vital.

MATERIALS AND METHODS

Sample Collection, DNA Extraction,
Library Preparation and Sequencing
Coral samples were originally collected from Kiritimati
(Christmas) Island in May 2015 from two species: Porites lobata
(n = 13) and Montipora aequituberculata (n = 11). Frozen tissue
for each individual sample was split in two: one portion was
sent directly to EMP (University of California, San Diego) for
DNA extraction, PCR, library preparation and sequencing on
an Illumina HiSeq 2 × 150bp run (Ul-Hasan et al., 2019) and
the other processed in-house at Oregon State University (see
previously published methods in McDevitt-Irwin et al., 2019)
using a highly similar protocol as EMP but sequenced on an
Illumina MiSeq 2 × 300bp run. Both protocols targeted the
V4 region of the 16S rRNA gene with the following primers:
515F (Parada et al., 2016) 5′–TCGTCGGCAGCGTCAGATGT
GTATAAGAGACAGGTGYCAGCMGCCGCGGTAA–3′ and 80
6R (Apprill et al., 2015) 5′–GTCTCGTGGGCTCGGAGATGTG
TATAAGAGACAGGGACTACNVGGGTWTCTAAT– 3′, with
the Illumina adapter overhangs underlined. The only difference
between the two protocols was the Taq used for PCR: EMP
used Platinum Hot Start PCR MasterMix (Thermofisher) and
in-house used AccustartTM II PCR ToughMix (QuantaBio).
Hereafter, the two protocols will be referred to by their most
significant difference: the “HiSeq protocol” run by EMP and the
“MiSeq protocol” run in-house.

Bioinformatics
Sequences from both HiSeq and MiSeq protocol outputs were
processed using the QIIME2 pipeline to undergo trimming,
quality control, identification of amplicon sequence variants
(ASVs), and taxonomic assignment. To ensure comparability
between the two protocols and accuracy in ASV-picking, we
chose to follow similar treatment of sequencing data by EMP
(Thompson et al., 2017); only forward reads were used and
trimmed to 120bp. Primers were removed using the plug-in
cutadapt (Martin, 2011), and denoising and ASV picking was
performed using the DADA2 plug-in (Callahan et al., 2016)
on sequences from HiSeq and MiSeq protocols separately, after
which were combined into a single dataset for downstream
processing. For comparison, ASVs were simultaneously clustered
using the plug-in vsearch (Rognes et al., 2016) by 97% similarity,
resulting in two output biom tables: one for ASVs and one for
97% clustered operational taxonomic units (hereafter, “OTUs”).
Taxonomic assignment for both tables was performed using a
naïve Bayes classifier with the SILVA v. 132 database (Quast
et al., 2013), trained on each set of representative sequences from
the two pipelines.
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Data Import Into R
All statistical analyses were performed in R v. 4.0.2 (R Core Team,
2020); graphics were conducted in R using the package ggplot2
(Wickham, 2016). QIIME feature tables, taxonomic assignments,
and tree files for the ASV and OTU datasets were imported
into phyloseq (McMurdie and Holmes, 2013) via qiime2R
(Bisanz, 2020) for downstream analyses. The SILVA annotations
characterized some reads as Phylum: Alphaproteobacteria,
Family: Mitochondria. This annotated family contained a
mix of bacterial and mitochondrial (eukaryotic) reads: thus
eukaryotic mitochondria were further identified using BLASTn
(Altschul et al., 1990) and subsequently removed from the
two datasets. In the absence of blank controls from the EMP
dataset, contaminants were identified using the 4 blank control
samples from the MiSeq Data (McDevitt-Irwin et al., 2019).
Contaminants were identified and removed (n = 102) by
prevalence using the decontam package (Callahan, 2020) with
a threshold value of 0.5 to ensure all sequences that were
more prevalent in negative controls than positive samples were
removed. Samples with less than 1000 and 998 reads, respectively,
were removed from all analyses for ASV and OTU data. These
two numbers differ slightly due to differences in contaminant
and mitochondrial read removals as a result of ASV identification
versus OTU picking.

Diversity Metrics and Differential
Abundance
We conducted all diversity tests on the two coral species
separately due to well-established differences in both alpha and
beta diversity measures across host species (Hernandez-Agreda
et al., 2017; Epstein et al., 2019; Ziegler et al., 2019) that could
have obscured significant differences between protocols. Three
alpha diversity metrics were calculated to account for richness,
evenness and phylogenetic diversity: observed species richness,
Shannon diversity index and Faith’s Phylogenetic Diversity (PD)
were calculated on rarefied data (1000 and 998 reads/sample for
ASV and OTU data, respectively; these depths were chosen for
each dataset to maintain comparability using the highest sample
sizes without severely compromising rarefied alpha diversity).
For each host species and data type (ASV and OTU), the
three alpha diversity metrics were checked for normality using
standardized residual plots, Q-Q plots and Shapiro-Wilk tests. If
required, log and square-root transformations were performed
to meet normality assumptions when data were non-normal
(see Supplementary Table 2). Differences in alpha diversity
indices between protocols were tested using paired t-tests.
We also quantified four metrics of beta diversity to examine
differences in microbial communities accounting for microbial
abundance (Bray-Curtis), presence/absence (binary Jaccard),
phylogeny coupled with abundance (weighted UniFrac) and
phylogeny coupled with presence/absence (unweighted UniFrac).
For each host species, we constructed Bray-Curtis and weighted
Unifrac dissimilarity matrices using the relative abundances of
taxa to account for differences in sequencing depth between data
derived from HiSeq and MiSeq protocols and constructed binary
Jaccard and unweighted Unifrac dissimilarity using unrarefied

counts. Dissimilarity matrices for all metrics were also built with
unrarefied data after removing rare taxa (abundance below 0.5%
and 1% threshold per sample). Differences in beta diversity [i.e.,
both multivariate location (“turnover” and variation)] were tested
using permutational analyses of variance (PERMANOVAs) with
999 permutations blocked by coral colony ID (strata = sample
label) using the adonis function from the package vegan
(Oksanen et al., 2019) implemented in phyloseq (McMurdie
and Holmes, 2013). Homogeneity of variances were further
tested between protocols using betadisper (PERMDISP) with 999
permutations and communities were visualized using non-metric
multidimensional scaling (NMDS) plots. To identify specific
significant differences in taxon abundance in the two protocols,
differential abundance analyses were performed using DESeq2
(Love et al., 2020) on unrarefied count data with an alpha cut-
off of 0.05. All analyses were performed on both ASV and OTU
datasets unless otherwise specified. To assess any differences
in secondary structure between specific ASVs differentially
abundant in HiSeq vs. MiSeq protocols resulting from library
denaturation, GC content (%) and melting temperatures were
verified through the TmCalculator package in R (Li, 2020).
Differences in mean GC content and melting temperature
were tested among ASVs present in MiSeq, HiSeq and both
protocols using analyses of variance (ANOVAs). We chose to
present results from unrarefied data unless otherwise specified
in the above methods; however, all analyses were run on both
rarefied and unrarefied data and showed no major differences in
significance (see Supplementary Tables 3, 5–7).

RESULTS

Sequencing Results
To test whether coral microbiome sequence data generated from
the two protocols were comparable, we analyzed paired sequence
libraries, combined for comparative downstream analyses, using
four standard variables for assessing microbiome variations at
both the ASV and OTU levels: alpha diversity, beta diversity,
beta dispersion, and differential abundance measures. The final
ASV dataset included all 24 samples (total n = 48 to account for
2 technical replicates per sample, one from each protocol) with
a combined total of 1,444,493 reads consisting of 5,512 distinct
ASVs for analysis. In the OTU dataset, two P. lobata HiSeq
protocol samples contained less than 998 reads and were removed
along with their MiSeq protocol counterparts leaving 22 samples
(total n = 44 to account for 2 technical replicates per sample, one
from each protocol) for comparison consisting of 953,396 reads
and 2,174 OTUs. All comparisons were done using identical read
values for both protocols (for sequence read count variation by
host species and protocol, see Supplementary Table 1).

Sensitivity of Alpha Diversity to Protocol
When using ASVs for analysis, there was a slight tendency
for alpha diversity to be lower when calculated from MiSeq
protocol data, but diversity did not differ significantly between
protocols for any of the four alpha diversity metrics measured
(p > 0.05: Supplementary Table 2), in either species (Figure 1).
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However, when using OTUs there was a host species-specific
effect on some measures of diversity. Specifically, alpha
diversity was not significantly different between protocols for
M. aequituberculata, but there was protocol sensitivity for
P. lobata when using Shannon diversity and Faith’s PD measures
(but not observed richness), both of which were significantly
greater in data resulting from the HiSeq protocol (Figure 1 and
Supplementary Table 2).

Protocol Explains Large Amount of
Variation in Community Beta-Diversity
Significant differences in microbial community composition
were found between protocols for both M. aequituberculata
and P. lobata in all beta diversity metrics except for weighted
UniFrac distances for M. aequituberculata in both ASV
and OTU datasets (Figure 2, Supplementary Figure 1, and
Supplementary Table 3). All beta diversity metrics maintained
similar dispersions (homogeneity of variances as calculated by
the function “betadisper” and referred to as “PERMDISP”;
Supplementary Table 3), aside from Bray-Curtis for P. lobata
in both ASV and OTU datasets (Figure 2G, Supplementary
Figure 1G, and Supplementary Table 3), as well as Unweighted
UniFrac distances for M. aequituburculata in the ASV dataset
(Figure 1B and Supplementary Table 3) and P. lobata in the
OTU dataset (Supplementary Figure 1F and Supplementary
Table 3). While the communities did not show consistent, distinct
visual segregation of nMDS data clouds according to protocol
(Figure 2 and Supplementary Figure 1), some individual
samples had highly different relative abundances of bacterial
taxa (Figure 3) and community structure (Supplementary
Figures 2, 3). While the top 10 most abundant taxa were
similar between protocols and across datasets, differences in the
relative abundances and detection of some phyla were present
(Figure 3 and Supplementary Table 4). In the ASV dataset,
seven out of ten phyla were detected in both MiSeq and HiSeq
protocols, and phylum-level bacterial community compositions
across samples were dominated by Proteobacteria, followed by
Firmicutes. However, when clustered as ASVs, these two phyla
account for 74.71% versus 54.67% of the composition in MiSeq
and HiSeq protocols, respectively, and three different phyla were
alternatively detected between the platforms. One of them was
phyla Euryarchaeota, which was present in the ASV dataset for
MiSeq protocol samples with a mean relative abundance of 4.45%
(Supplementary Table 4), but absent in the top 10 most abundant
taxa for HiSeq protocol samples, in which the mean relative
abundance was less than 0.002%. Although differences in the
relative abundances were persistent when clustering at the 97%
OTU level, fewer discrepancies were observed (Figure 3 and
Supplementary Table 4). For example, nine out of ten phyla
were detected in both protocols, and the two dominant phyla
(Proteobacteria and Firmicutes) account for 79.1% and 75.15%
for MiSeq and HiSeq protocols, respectively. Interestingly, in
both ASV and OTU datasets, the most abundant phyla were
more evenly represented across samples from the HiSeq protocol
as opposed to the MiSeq protocol (see “n” in Supplementary
Table 4). However, ASV libraries derived from the HiSeq and

MiSeq protocols also contained several unclassified bacterial
ASVs that were resolved when clustering at the 97% OTU level
(see “Unclassified Bacteria” in Figure 3). Further investigation
into the make-up of these unclassified reads using NCBI blast
(Altschul et al., 1990) found a few close hits to eukaryotes, yet
the majority remained unidentified; comparing reads against the
more prokaryote-focused RDP database (Cole et al., 2014) did
not better resolve unclassified bacteria (< 0.1% of hits passed
a 97% identity threshold). To ensure these putative eukaryotes
that passed our automated quality control measures did not affect
the results of this study, we also manually removed them and
re-ran statistical tests (Supplementary Table 5) and re-plotted
relative abundance (Supplementary Figure 4). This additional
quality control measure did not change the results of this
study. Regardless, this suggests there may be challenges in the
taxonomic assignment of ASVs from short read data and requires
further attention.

Standard Normalizations Do Not
Overcome Protocol Induced Variability in
Microbiome Diversity
To examine whether standard normalization methods used in
the field could overcome the differences between protocols,
the datasets were manipulated by either removing rare taxa or
grouping at higher taxonomic classifications, including Family
and Phylum level. Truncating the microbial communities by
removing rare taxa did not eliminate the beta diversity differences
between the two protocols (Supplementary Table 6). Removing
rare taxa reduced the communities to less than 20 taxa (at ASV or
OTU level), representing less than 1% of the total and suggesting
that these bacterial communities are predominantly composed
of low abundance taxa. Datasets of both species and taxonomic
assignments (ASVs and OTUs) maintained the previously seen
significant differences between protocols for all dissimilarity
metrics aside from Weighted UniFrac for M. aequituberculata for
both 0.5% and 1% rare taxa cut-offs (Supplementary Table 6).
To reduce the effects of minor differences in closely related
bacterial taxa, we also ran PERMANOVAs and homogeneity of
variance tests on communities at both the Family and Phylum
classification level. Significant differences were found again
between protocols, however, this varied according to both host
species and taxonomic level (Supplementary Table 7). Porites
lobata showed significant differences between protocols even at
the Phylum level, whereas M. aequituberculata communities were
significantly different between protocols at the Family level, but
only the two dissimilarity metrics utilizing presence/absence data
(binary Jaccard and Unweighted UniFrac) showed significant
differences at the Phylum level.

Differential Abundance Analysis Is Not
Protocol Agnostic
Differential abundance analyses showed that only a few specific
ASVs were significantly enriched in one protocol or the other
(Figure 4 and Supplementary Table 8). The most enriched taxa
belong to the dominant phyla, Proteobacteria and Firmicutes,
with the magnitude of enrichments ranging between an
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FIGURE 1 | Alpha diversity metrics of bacterial ASVs (top) and OTUs (bottom) between protocols in both species, Montipora aequituberculata (A–C and G–I) and
Porites lobata (D–F and J–L), for observed species richness (A,D and G,F), Shannon diversity (B,E and H,K), and Faith’s phylogenetic distance (C,F and I,L)
[significant p-values are reported in lower left-hand corner of panel with an asterisk (*). For all other p-values, see Supplementary Table 2].
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FIGURE 2 | Non-metric multidimensional scaling (NMDS) ordinations of ASV bacterial communities between the two species, M. aequituberculata (A–D) and
P. lobata (E–H) for each of the four tested dissimilarity metrics: Jaccard, Unweighted UniFrac, Bray-Curtis and Weighted UniFrac. P-values with asterisks (*) refer to
significant PERMANOVA results (see Supplementary Table 3).

approximately 7- and 29-fold change. While there was variation
in differentially abundant taxa between protocols according to
species and clustering method, some taxa were consistently
different. For instance, HiSeq protocol libraries for both species

had consistently higher abundances of Geobacillus sp., and
lower abundances of Xenococcus PCC-7305 using the OTU
dataset (Figures 4B,D). The magnitude of these enrichments was
also consistent between coral species (Supplementary Table 8).
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FIGURE 3 | Relative abundances of the top ten most abundant bacterial phyla present in each coral sample from both M. aequituberculata and P. lobata prepared
and sequenced using the HiSeq protocol (top) and the MiSeq protocol (bottom), using both the ASV (left) and OTU (right) datasets. “Other” groups phyla that are not
in the top ten most abundant, and “Unassigned Bacteria” refers to unassigned bacterial reads.

Importantly, differential enrichment between the protocols was
observed in two taxa identified as crucial players of coral health
and resilience, Endozoicomonas and Vibrio spp. Endozoicomonas
exhibited significantly higher abundances in data derived from
the HiSeq protocol in both species and datasets (ASV vs. OTU),
except in P. lobata using the OTU dataset (Figures 4A–C).
Porites lobata showed significantly higher abundances of a
Vibrio ASV when sequences were prepared with the MiSeq
protocol (Figure 4C), but this difference was not maintained
in the OTU dataset (Figure 4D). A closer look at all Vibrio
and Endozoicomonas ASVs found in the sequencing output
from HiSeq, MiSeq, or both protocols revealed no significant
differences in mean GC content or melting temperatures
(Supplementary Table 9).

DISCUSSION

In Scleractinian corals, 16S rRNA gene profiling remains a
common and cost-effective tool for quantifying diversity of
bacteria and some archaea in holobionts (Hernandez-Agreda
et al., 2019). With the increase in sequencing of coral hosts
by large collaborative groups such as EMP, and subsequent
public sharing of sequencing data, it has become a common
goal to examine widespread patterns through meta-analyses
that combine datasets from multiple laboratories, making direct
comparability a necessity.

In this small-scale comparative analysis of technical replicates,
we found the greatest differences between the HiSeq and MiSeq
protocols in the beta diversity and dispersion measures of
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FIGURE 4 | Significantly different ASVs (left) and OTUs (right) between protocols labeled by bacterial genus and colored by phylum for M. aequituberculata (A,B) and
P. lobata (C,D). Positive log2fold change refers to those significantly enriched in MiSeq protocol samples and negative log2fold change are those significantly
enriched in HiSeq protocol samples. NA refers to bacteria unclassified at genus level.

coral microbiomes. Specifically, beta diversity and dispersion
metrics were inconsistent between protocols, host species, and
dissimilarity metrics, with differences in protocol explaining
between 4 and 28% of the microbiome variability. Certain taxa
were also significantly enriched in only one of the protocols,

including those with known ecological importance. For example,
Vibrio spp. and Endozoicomonas spp. ASVs were significantly
enriched in MiSeq and HiSeq protocols, respectively. These
two taxa have been identified as important in the health and
maintenance of coral homeostasis and are often used to make
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statements about the health of the coral host (Bourne et al., 2008,
2016): Vibrio spp. have been implicated in disease (Ben-Haim
et al., 2003) but remain common partners in healthy corals, while
Endozoicomonas spp. are hypothesized to benefit to coral health
via synthesis of dimethylsulfoniopropionate (DMSP) (Tandon
et al., 2020), carbohydrate cycling and protein provisioning
(Neave et al., 2017a), and may be considered a potential symbiont
(Neave et al., 2017b). The differential abundances of these two
taxa between protocols are particularly troubling for coral-
specific studies and further indicate that care must be taken when
comparing coral microbiome datasets resulting from even highly
similar protocols.

Alpha diversity metrics on ASV data (both abundance-based
and phylogenetic) were consistent between protocols in both
coral species. Alpha diversity using OTU data were comparable
between protocols with all metrics for M. aequituberculata, but
significant differences were present with Shannon Diversity and
Faith’s PD indices for P. lobata, suggesting some variability
in alpha diversity in regard to both relative abundances and
phylogenetic makeup when sequences are grouped with 97%
similarity only. Nonetheless, our results suggest that comparisons
of some alpha diversity metrics between protocols may be
more reliable than comparisons of community composition.
The results found here should be benchmarked in other
systems and tested more broadly across species to determine
the extent to which small differences in protocol might bias
the perceived composition of host-associated or environmental
microbiome sequencing.

Regardless of rarefaction, removal of low abundance reads,
or comparisons of the resulting data at higher taxonomic levels,
the bacterial community composition and relative abundances
of taxa maintained differences between the two protocols
but in ways that were inconsistent across host species and
analytical metric. This can result, for instance, from one set of
samples containing taxa that may never be present if they are
prepared with a different protocol or sequenced on a different
platform, likely due to differences in sequencing depth, where
the deeper sequencing of the HiSeq platform can provide a
greater opportunity to identify rare taxa (Caporaso et al., 2012),
thus shifting the overall community composition. We note that
while we used a relatively high threshold for removal of rare
taxa in the present study, it may be useful to use a lower
threshold (e.g., removing taxa with below 0.1 or 0.01% relative
abundance) depending on dataset. However, differences were
also apparent between OTU and ASV datasets, suggesting that
how we characterize bacterial species and/or strains, and at what
taxonomic level we choose to analyze these data, may result
in unintended biases. We found no evidence of differences in
secondary structure of two differentially abundant taxa (Vibrio
and Endozoicomonas) that could have resulted from differential
denaturation of sequences in the two platforms due to differences
in platform chemistry (Nakamura et al., 2011). Specifically, there
was no indication of high GC content in these sequences, which
has previously been found to affect read numbers from Illumina
sequencing runs due to intermittent halting of polymerase during
amplification (Lyubetsky et al., 2006; Price et al., 2017). While this
was not an exhaustive dive into the effects of platform chemistry
on sequencing outcome, it suggests that differential abundances

of specific taxa are unlikely to be caused by the presence of
differential secondary structures. However, further research is
necessary to rule this out completely.

The samples used in this study were not initially intended to
test differences between protocols or sequencing platforms, but
rather provided an opportunity to examine an overlapping set
of technical replicates that arose from a larger study comprised
of similarly prepared and differentially sequenced samples.
Thus, we cannot clearly identify the specific mechanism(s)
involved in driving the found community differences. Biases
in these complex microbial communities could be a result
of (1) differences in sequencing depth that are not overcome
by rarefaction or other in silico normalizations, (2) library
denaturation and/or sequencing platform chemistry, (3)
differences in reagents and/or batches of reagents, such as the
type of Hi Fidelity Taq used in PCR or other extraction, PCR
or library preparation reagents, and potentially even (4) user
and/or facility bias (Rausch et al., 2016; Parker et al., 2018).
Regardless, the results shown here reveal not only the necessity to
design a targeted study to examine procedural and mechanistic
differences in sequencing protocols, but also the responsibility
of researchers to proceed with extreme caution when combining
and interpreting datasets that are generated from subtly and
seemingly innocuously different methodologies.

CONCLUSION

The present study found limitations in our ability to compare
coral microbiome ‘technical’ replicates that were generated
in almost identical fashions but then sequenced on different
platforms. Despite attempts to rectify these issues with some
commonly used normalization methods, we still found
significant differences in some alpha diversity metrics and
in most beta diversity metrics between the two protocols.
These inconsistencies make it difficult to identify a “cure-all”
adjustment for comparability between even highly similar
protocols and, instead, differences among protocols and
sequencing platforms are more likely to be specific to the
microbiome host and specific set of microbiomes found in
each dataset. Studies that aim to compare beta diversity may
find more confidence in their results if overlapping technical
replicates for each dataset and host species are run to ensure
correct adjustments are used for these specific datasets. Based
on these results, we urge caution in the statistical comparison
and interpretation of 16S rRNA gene datasets that combine data
resulting from different protocols and sequencing platforms.
While we continue to encourage meta-analyses to discover
of cosmopolitan patterns in microbiome dynamics, we advise
researchers to be cognizant that even minor variations in the
protocol can significantly affect microbiome composition, and
those running longitudinal studies be rigorous in the consistency
of their methods through time.
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