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Genome-wide analysis of miRNA molecules can reveal important information for

understanding the biology of cancer. Typically, miRNAs are used as features in statistical

learning methods in order to train learning models to predict cancer. This motivates us

to propose a method that integrates clustering and classification techniques for diverse

cancer types with survival analysis via regression to identify miRNAs that can potentially

play a crucial role in the prediction of different types of tumors. Our method has two

parts. The first part is a feature selection procedure, called the stochastic covariance

evolutionary strategy with forward selection (SCES-FS), which is developed by integrating

stochastic neighbor embedding (SNE), the covariance matrix adaptation evolutionary

strategy (CMA-ES), and classifiers, with the primary objective of selecting biomarkers.

SNE is used to reorder the features by performing an implicit clustering with highly

correlated neighboring features. A subset of features is selected heuristically to perform

multi-class classification for diverse cancer types. In the second part of our method, the

most important features identified in the first part are used to perform survival analysis via

Cox regression, primarily to examine the effectiveness of the selected features. For this

purpose, we have analyzed next generation sequencing data from The Cancer Genome

Atlas in form of miRNA expression of 1,707 samples of 10 different cancer types and 333

normal samples. The SCES-FS method is compared with well-known feature selection

methods and it is found to perform better in multi-class classification for the 17 selected

miRNAs, achieving an accuracy of 96%. Moreover, the biological significance of the

selected miRNAs is demonstrated with the help of network analysis, expression analysis

using hierarchical clustering, KEGG pathway analysis, GO enrichment analysis, and
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protein-protein interaction analysis. Overall, the results indicate that the 17 selected

miRNAs are associated with many key cancer regulators, such as MYC, VEGFA, AKT1,

CDKN1A, RHOA, and PTEN, through their targets. Therefore the selected miRNAs can

be regarded as putative biomarkers for 10 types of cancer.

Keywords: cancer, cox regression, feature selection, gene ontology, KEGG pathway, machine learning, next

generation sequencing, stochastic neighbor embedding

1. INTRODUCTION

MicroRNAs (miRNAs) belong to the non-coding RNA family.
They consist of 19–25 nucleotides and play an important role
in the regulation of gene silencing. These non-coding RNAs are
present in every eukaryotic cell and can also be encoded by a
viral genome (Ray and Maiti, 2015; Bruscella et al., 2017). The
miRNAs are formed by RNA polymerase II in the cell nucleus and
are then transferred to the cytoplasm (Bartel, 2009) for biological
activities such as cell cycle control, apoptosis, and oncogenesis.
They interact with the complementary strand of mRNAs and
lead to the degradation of the corresponding mRNAs; they
also interfere with protein production by suppressing protein
synthesis (Valencia-Sanchez et al., 2006). A miRNAmolecule can
bind one or more targets, thus forming a complex underlying
regulatory network. These networks have a profound impact on
cancer signaling pathways (Wang et al., 2017). Previously, low-
throughput and high-cost technologies were the main obstacle
to answering systems-level biological questions. However, recent
advancements in next generation sequencing (NGS) have enabled
researchers to address such complex problems (van Dijk et al.,
2014). Moreover, new sequencing technologies and genomic
datasets have helped us to gain better understanding of the
biological complexities related to genomic abnormalities in
cancer. The considerable achievements in sequencing techniques
have made high-throughput techniques a fundamental platform
for miRNA, RNA, and DNA research. Generally, miRNAs are
involved in a wide range of diseases, including neurological
disease, heart disease, and cancer (Giza et al., 2014; Paul et al.,
2018). In many cases of cancer in humans, dysregulation of
miRNA expression has been observed, and it is well-known that
miRNAs can serve as potential cancer biomarkers (Lu et al., 2005;
Jacobsen et al., 2013; Wong et al., 2017). In this regard, scientific
communities are also trying to understand the role of miRNAs
in paring with mRNAs (Zhang et al., 2014; Shrestha et al., 2017),
in different cancer types by ranking miRNAs (Li et al., 2014) to
elucidate their effects and drug resistance (Ma et al., 2010; Li and
Yang, 2014; Cheerla and Gevaert, 2017).

To reduce the time taken for clinical trials, and to provide
better and more accurate treatments while avoiding unnecessary
interventions, the proper selection of miRNAs as biomarkers is

crucial. For this purpose, miRNAs are often used as features

in statistical learning methods viz. clustering, classification, and
regression in order to identify potential biomarkers (Song et al.,
2016; Yang et al., 2017; Yokoi et al., 2017). Song et al. (2016)
performed a clustering analysis on breast cancer data in order to
findmiRNAs that could be prognostic biomarkers; these miRNAs

are up-regulated in this type of cancer and are linked to local
relapse, distant metastasis, and poor clinical outcomes. Similarly,
Yang et al. (2017) used clustering to find miRNA biomarkers
for breast cancer. The identified miRNAs have higher specificity
and sensitivity than single-gene biomarkers. On the other hand,
Yokoi et al. (2017) used a classification task to inform the
development of a predictive model to distinguish patients with
ovarian cancer tumors from healthy subjects. In this study, eight
miRNAs were found as biomarkers for ovarian cancer. Jacob
et al. (2017) conducted a study on colon cancer and identified
16 miRNA signatures, which act as prognostic biomarkers at
cancer stages II and III. Apart from the aforementioned works,
regression analysis has been used to predict the survival rates of
patients with different types of cancer (Liang et al., 2018). Liang
et al. (2018) used Cox regression analysis for pancreatic cancer
and identified five miRNAs as independent prognostic factors.
The progress in this regard can be found in the literature (e.g.,
Peng and Croce, 2016; Hosseinahli et al., 2018).

Generally, in miRNA-based cancer studies, statistical learning
algorithms viz. clustering, classification, and regression are used
separately for different cancer types, as described above and in
the literature (Akhtar et al., 2015; Ang et al., 2016; Li et al.,
2016; Lin and Lane, 2017). However, to leverage the advantages
of the different algorithms, it may be useful to integrate them into
a single method for identifying potential biomarker miRNAs.
Besides, little work exists on multi-class classification of diverse
cancer types using NGS data. These two facts motivated us to
develop the method described in this paper, which can not only
classify 10 types of cancer (bladder, breast, colon, glioblastoma,
head and neck squamous cell, kidney renal clear cell, lung
adenocarcinoma, lung squamous cell, ovarian, and uterine
corpus endometrial carcinoma) but also find putative miRNAs
that are highly associated with these cancer types. The proposed
two-part wrapper-based feature selection method, referred to
as the stochastic covariance evolutionary strategy with forward
selection (SCES-FS), uses stochastic neighbor embedding (SNE)
(Hinton and Roweis, 2003) in conjunction with the covariance
matrix adaptation evolutionary strategy (CMA-ES) (Hansen
et al., 2003) and a simple classifier, either random forest
(RF) (Breiman, 2001), support vector machine (SVM) (Cortes
and Vapnik, 1995), naive Bayes (NB) classifier (George and
Langley, 1995), K-nearest-neighbors (K-NN) classifier (Altman,
1992), or decision tree (DT) (Quinlan, 1986), in the first part.
Here SNE is used to reorder the features by performing an
implicit clustering, such that neighboring features are highly
correlated. Then, from these clusters of features, a subset of
features is selected randomly in order to perform the multi-class
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classification task for the diverse cancer types. However, as the
features are randomly selected, this classification task is treated
as an underlying optimization problem for CMA-ES to find the
features automatically. Hence, the final set of features/miRNAs is
obtained by using forward selection (Whitney, 1971).

In the second part of the method, survival analysis is
performed using Cox regression (Cox, 1972), where the levels
of miRNA expression and corresponding clinical data are
used. The experiment is conducted with data collected from
The Cancer Genome Atlas (TCGA)1 for 10 different types
of cancer. The performance of the proposed wrapper-based
feature selectionmethod is compared with the followingmethods
in terms of classification accuracy, with the top 17 miRNAs
selected as putative biomarkers: ensemble SVM-recursive feature
elimination (ESVM-RFE) (Anaissi et al., 2016), the least absolute
shrinkage and selection operator (LASSO) (Tibshirani, 1996),
the non-dominated sorting genetic algorithm II-based stacked
ensemble (NSGA-II-SE) (Saha et al., 2017), the SVM-wrapped
multi-objective genetic algorithm (MOGA) (Mukhopadhyay and
Maulik, 2013), SVM-based novel recursive feature elimination
(SVM-nRFE) (Peng et al., 2009), SVM recursive feature
elimination (SVM-RFE) (Guyon et al., 2002), conditional mutual
information (CMIM) (Fleuret, 2004), interaction capping (ICAP)
(Jakulin, 2005), smoothly clipped absolute deviation (SCAD)
(Fan and Li, 2001), joint mutual information (JMI) (Bennasar
et al., 2015), conditional infomax feature extraction (CIFE)
(Brown et al., 2012), minimum redundancy maximum relevance
(mRMR) (Peng et al., 2005), feature selection with Cox
regression (FSCOX) (Kim et al., 2014), double-input symmetrical
relevance (DISR) (Brown et al., 2012), signal-to-noise ratios
(SNRs) (Mishra and Sahu, 2011), and the Wilcoxon rank-
sum test (RankSum) (Troyanskaya et al., 2002). Thereafter,
the significance of the 17 selected miRNAs to 10 different
cancer types is determined using Cox regression analysis.
Finally, survival analysis, network analysis, expression analysis
using hierarchical clustering in the form of heatmaps, KEGG
pathway analysis (Kanehisa and Goto, 2000), gene ontology (GO)
enrichment analysis (Kuleshov et al., 2016), and protein-protein
interaction (PPI) network analysis (Szklarczyk et al., 2019) are
performed to assess the biological significance of the selected
miRNAs. Additionally, a web-based cancer predictor application
is developed to predict 10 different types of cancer given the
expression of 17 miRNAs.

2. MATERIALS AND METHODS

In this section, we briefly describe SNE (Hinton and Roweis,
2003), CMA-ES (Hansen, 2006), and Cox regression
analysis (Cox, 1972). More details about classification
techniques and feature selection methods are given in the
Supplementary Material2 for this article. This section also
describes the proposed method, which consists of two parts.
The first part is the wrapper-based SCES-FS. In the second part,
the selected features, such as expression of miRNAs and clinical

1https://tcga-data.nci.nih.gov/tcga/
2http://www.nitttrkol.ac.in/indrajit/projects/mirna-prediction-multicalss/

FIGURE 1 | Flowchart for the proposed method.

data, are used in survival analysis to assess the importance of
the selected miRNAs in different types of cancer and to evaluate
the effectiveness of the selected miRNAs. Figure 1 shows the
flowchart of the proposed method.

2.1. Stochastic Neighbor Embedding
Let X = {x1, x2, . . . , xn} denote a set of n observations, where
xi ∈ R

D. SNE (Hinton and Roweis, 2003) constructs a low-
dimensional embedding that recreates X in a space of lower
dimension as X ′ = {x′1, x

′
2, . . . , x

′
n}, where x

′
i ∈ R

d. In SNE, both
X and X ′

〉
are represented as discrete probability distributions P

and Q, where

pij =
exp

(

−‖xi−xj‖
2

2 vari

)

∑

k 6=i exp
(

−‖xi−xk‖
2

2 vari

) , qij =
exp

(

−‖x′i − x′j‖
2
)

∑

k 6=l exp
(

−‖x′
l
− x′

k
‖2
) ,

(1)
that model pairwise distances between data points. The values
of vari ∈ R are adjusted in such a way that the entropies of all
distributions Pi are equal.

The mismatch between P and Q is reduced through
minimization of Kullback-Leibler (KL) divergence objective

KL(P||Q) =
∑

i

∑

j pij log
pij
qij
=

∑

i KL(Pi||Qi), by altering

Q with gradient-based optimization methods. Optimization is
difficult due to the existence of multiple local optima, and entirely
different embeddings may be obtained with different initial
Q distributions.
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2.2. Covariance Matrix Adaptation
Evolution Strategy
Evolutionary strategies are black-box optimization algorithms
which belong to a broader group of evolutionary algorithms.
In such methods, a set of candidate solutions is maintained. In
successive iterations of the procedure, these candidate solutions
are perturbed and evaluated, and in each iteration the best
solution is left unchanged and carried over to the next set
of candidate solutions. CMA-ES (Hansen and Ostermeier,
1996) is an evolutionary strategy where the set of candidate
solutions is modeled and sampled from a multivariate Gaussian
distribution N (m,C). The covariance matrix C represents
pairwise relationships between attributes. The objective function
of CMA-ES maximizes two likelihoods: (a) the likelihood of
having the best individuals in previous iterations, and (b) the
likelihood of taking the best search steps in previous iterations.
At the end of each iteration, (a) guides updates of the meanm as

a weighted average of µ best solutions,m(g+1) =
∑µ

i=0 wix
(g+1)
i ,

where x
(g+1)
i is the ith best solution in iteration g + 1 and wi is its

weight, and (b) updates the covariance matrix C as follows:

C(g+1) = (1− c1 − cµ)C
(g) + c1p

(g+1)
c p

(g+1)T

c

+ cµ

µ
∑

i=1

wi

(

x
(g+1)
i −m(g)

σ (g)

)(

x
(g+1)
i −m(g)

σ (g)

)T

.
(2)

Finally, p
(g+1)
c ∈ R

D is a vector that amplifies the updates in
favorable directions:

p(g+1) = (1− cc)p
(g)
c + z

m(g+1) −m(g)

σ (g)
, (3)

where c1, cµ, cc ∈ R are weights, σ (g) ∈ R is an adaptive step size,
which is dependent on the iteration, and z ∈ R is a normalizing
constant. Details of the parameters of CMA-ES can be found in
Hansen and Ostermeier (1996) and Hansen et al. (2003).

2.3. Cox Regression Analysis
The Cox regression model (Cox, 1972) is a proportional hazards
regression model in which the hazard ratio is constant but other
contents have the same baseline hazard function. Based on this
assumption, the survival function is calculated as

S(τ ) = exp
(

−H0(τ ) exp(Xβ)
)

= S0(τ )
exp (Xβ), (4)

where H0(τ ) represents the cumulative baseline hazard function
at time τ and S0(τ ) = exp(−H0(τ )) is the baseline survival
function; H0(τ ) is taken to be Breslow’s estimator (Breslow,
1974), which is the most widely used and given by

Ĥ0(τ ) =
∑

τi≤τ

ĥ0(τi). (5)

As the Cox model is based on the proportional hazards
assumption, it is represented as

h(τ , xi) = h0(τ ) exp(xiβ) (6)

for an given instance i = 1, 2, 3, . . . , n, where the baseline hazard
function h0(τ ) can be an arbitrary negative function of time, and
xi = (xi1, xi2, . . . , xiD) is the corresponding covariate vector for
instance i and is the coefficient vector. The Cox model is a semi-
parametric algorithm where the baseline hazard function h0(τ ) is
unspecified. For any two instances x1 and x2, the hazard ratio is
given by

h(τ , x1)

h(τ , x2)
=

h0(τ ) exp(x1β)

h0(τ ) exp(x2β)
= exp

[

(x1 − x2)β
]

. (7)

This means that the hazard ratio is independent of the baseline
hazard function.

2.4. Wrapper-Based Feature Selection
Integrating SNE and CMA-ES
The first part of our proposed method performs the task of
miRNA selection for diverse cancer types, which is considered
a multi-class classification problem here. SNE is used to reorder
the features by performing an implicit clustering such that
neighboring features are highly correlated. Then, the underlying
multi-class classification task is performed using well-known
classifiers and treated as an optimization problem for which
CMA-ES is used to find the miRNAs automatically. The miRNAs
thus found are further refined using forward selection (FS).
Therefore, we call this wrapper-based feature selection method
as stochastic covariance evolutionary strategy with forward
selection (SCES-FS).

Algorithm 1 presents the SCES-FS method in detail. It starts
with the dataset X = {x1, x2, . . . , xn}, which denotes a set of
n observations with xi ∈ R

D, the class label Y , the population
size λ, the maximum number of generations N, the classifier
A, and the number of runs R as inputs. In the dataset, each
feature is characterized by expression levels of the samples. The
features of the original dataset X are reordered using SNE in
the ConstructEmbedding step, producing the embedding dataset
X ′ whose size is the same as that of the original dataset.
The parameters are initialized in the SetParamsCMAES step.
The individuals/vectors in CMA-ES are encoded as a simple
threshold weight vector, with a single weight for each miRNA.
An individual x ∈ R

H encodes a weight vector w ∈ R
H and a

threshold t ∈ R, where H ≤ D is the number of weights. Only
those features whose weights exceed the threshold are eventually
selected into a feature set S:

S = {i ∈ 1, . . . ,D : closest(xi) = j ∧ wi ≥ t}, (8)

where t ∈ R is a threshold that is chosen carefully. The
population of vectors is drawn in the DrawPopulationCMAES
step from N (m, σ 2C), where m is the mean, C is the covariance
matrix, and σ is the step-size control parameter of CMA-ES. In
the ConstructFeatureSets step, each individual xi is translated to a
feature set Si according to Equation (8).

In the ScoreFeatureSet step, each feature set is evaluated
by training a classifier on a dataset restricted to only the
selected features. The objective function of CMA-ES combines
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the accuracy obtained from the classifier for each individual x and
the size of the feature set S as follows:

f (x) = accuracy(S)− α
max(0, |S| − ϒ)

D
, (9)

where D is the dimension of the dataset, ϒ is the target number
of features, and α ∈ R+ balances the penalty for the excessive
number of features. The objective function is designed in this way
so that higher classification accuracy can be achieved for a small
number of features, and it incorporates L0 regularization term
as penalty, which is bounded by ϒ in order to have redundancy
in selected subsets of features. The optimization with CMA-
ES allows inter-feature relationships with covariance matrices.
Finally, the parameters are updated according to CMA-ES update
rules in the UpdateParamsCMAES step, and the best set of
features/miRNAs in a particular run are kept in SRBest.

Algorithm 1 Pseudo-code of the SCES-FS

Input: X ,Y , λ,N,A,R (dataset, class label, population size,
maximum number of generations, classifier, number of runs)

Output: Sbest (feature subset)
1: Initialize a NULL list, L
2: for i← 1 toR do

3: X ′ ← ConstructEmbedding(X ) // With SNE
4: θ ← SetParamsCMAES() // µ, σ ,m,C
5: for g ← 1 to N do

6: P ← DrawPopulationCMAES(X ′, λ, θ)
7: S ← ConstructFeatureSets(P)
8: ScoreFeatureSet(S ,X ′,A,Y)
9: SRBest ← BestFeatureSet(S , SRBest)
10: θ ← UpdateParamsCMAES(θ)
11: end for

12: L← L ∪ SRBest
13: end for

14: L’← RankFrequency(L)
15: Sbest ← ForwardSelection(L’,X ′,A,Y)
16: return Sbest

2.5. Preparation of the Final Set of Features
The SCES-FS is random in nature to reduce the probability of
returning sub-optimal solutions. Therefore, a single run of SCES-
FS does not guarantee a reliable solution. To overcome this
limitation, SCES-FS is executed up to a maximum number of
runs, R. In each run, a set of best features/miRNAs are collected
into a list, L. After completion of the maximum number of runs,
RankFrequency sorts the cumulative set of features in descending
order according to the frequency of occurrence in each run
and produces a modified list, L′. Thereafter, ForwardSelection
applies the forward feature selection method, using the classifier
to evaluate the feature set iteratively to obtain the best feature
set, Sbest.

2.6. Justification for miRNA Selection
Because of the random nature of the algorithm, there is a chance
of false positives or false negatives occurring in the selection

of miRNAs. To reduce the probability of having false positives
or false negatives in the selected set of miRNAs, the SCES-FS
algorithm is run 50 times, and then the miRNAs are ranked based
on their frequencies of occurrence in 50 different sets of features.
Thus, a stable set of miRNAs is selected on the basis of maximum
classification accuracy, which is computed by considering the
miRNAs cumulatively from the top of the list. By this process,
17 distinct miRNAs are selected.

This procedure does not, however, ensure the absence of false
positives or false negatives, so additional measures are taken.
The presence of false positives is made unlikely by the sorting
procedure. In fact, since a given false positive is supposed to occur
less frequently than all the true positives, it will appear in the
tail after sorting. Consequently, it is likely that this false positive
will be filtered out when selecting the final list of miRNAs. On
the other hand, the presence of false negatives is related to the
choice of the number of runs and the corresponding expected
number of miRNAs belonging to the sorted list. In this regard, a
mathematical argument is given below to justify that the SCES-FS
does not exhibit random behavior.

Suppose that at each run the SCES-FS randomly selects 10
miRNAs from the whole collection of miRNAs. We first compute
the expected number of distinct miRNAs reported after all the
runs, and then we compare this number with the results of our
experiments. We have the following parameters: D = 199 is
the number of miRNAs, S = 10 is the number of miRNAs
returned after each run, and R = 50 is the number of runs. For
i = 1, . . . ,D, let Vi be a Bernoulli-distributed indicator variable,
where Vi = 1 if the miRNA mi never shows up. The probability
that mi is selected in one run is S/D, so the probability that it is
never selected is 1−S/D. Since each of theR runs is independent,
the following equation can be written:

E[Vi] = Pr(Vi = 1) =

(

1−
S

D

)R

. (10)

Let V =
∑D

i=1 Vi be the random variable that counts the number
of miRNAs that do not belong to the final set of miRNAs reported
at least once. By linearity of the expectation, we obtain the
equation

E[V] =

D
∑

i=1

E[Vi] = D

(

1−
S

D

)R

. (11)

Hence, the number of expected miRNAs reported at least once is

E[(D− V)] = D− E[V]. (12)

Substituting the above-mentioned values for the parameters, we
obtain that

• the expected number of miRNAs reported at least once after
50 iterations is 183; and
• the number of newmiRNAs added in a further iteration would

be 1.

As the number of sorted miRNAs in our experiment is 39 (see the
Supplementary Material), this difference suggests that 50 runs
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TABLE 1 | Details of the data for 10 different cancer types.

Cancer type Code No. of tumor

samples

Gender Average

age

Average no. days

from last followup

Male Female

Bladder urothelial carcinoma BLCA 94 67 27 67.07 416.97

Breast invasive carcinoma BRCA 255 0 255 58.28 1297.82

Colon adenocarcinoma COAD 119 57 62 70.91 616.80

Glioblastoma multiforme GBM 38 20 18 62.78 376.81

Head and neck squamous cell carcinoma HNSC 298 218 80 60.98 1038.31

Kidney renal clear cell carcinoma KIRC 146 91 55 59.99 1236.55

Lung adenocarcinoma LUAD 61 29 32 65.62 743.09

Lung squamous cell carcinoma LUSC 89 64 25 64.78 1296.87

Ovarian serous cystadenocarcinoma OV 509 0 509 59.85 1020.87

Uterine corpus endometrial carcinoma UCEC 98 0 98 62.32 1066.01

TABLE 2 | Values of parameters.

Symbol Value Description

C I CMA-ES initial covariance matrix of size H

σ 0.3 Initial value of step-size control parameter

λ 200 Population size

µ 100 Number of parents

R 50 Number of runs

N 200 Maximum number of generations

t 0.5 Threshold for calculating subsets Si

α 0.5 Excessive attributes penalty term

ϒ 10 Target number of miRNAs

γ 0.05 SVM RBF kernel parameter

C 1.0 SVM C constant

K 5 Value of K in K-NN

M 50 Number of trees in RF

are enough to conclude that all the true positives are included in
the sorted list and so false negatives are unlikely.

2.7. Cox Regression Analysis for
Evaluating miRNAs
The second part of the proposed method is for the evaluation
of selected miRNAs using Cox regression analysis. The primary
objective of this stage is to assess the importance of the miRNAs
selected in the first part of the method, and this is done using
Cox regression analysis for survival in 10 different cancer types.
Expression data of the selected miRNAs and the associated
clinical data are used for the Cox regression analysis. In the
clinical data, the vital status of each patient, indicating whether
the patient is still alive or has died, and the number of days
since the last followup are taken into account when performing
the survival analysis. Based on the expression levels and the
clinical data of the selected miRNAs in each cancer type, the
Cox coefficient, hazard ratio, and p-value are computed. A higher
value of the Cox coefficient signifies greater importance of that
miRNA to the respective cancer type. Moreover, the up- and

down-regulation of all the selected miRNAs are observed to
understand their behavior with respect to that particular cancer
type based on change in expression in tumor and normal samples.

2.8. Complexity Analysis
Let D be the number of features and n the number of
samples in the input dataset. As the available approximations
may considerably lower the overall complexity, we discuss the
complexity of each building block separately. A single step of SNE
requires computing relations between all data points. We embed
a transposed dataset, making an optimization step in O(D2)
time. Computing SNE usually involves performing principal
component analysis for preliminary dimension reduction,
though its cost is negligible. The internal complexity of CMA-
ES is estimated as O(D2), due to sampling and updating of
the covariance matrix. The matrix needs to be factorized,
which can be done by eigen decomposition in O(D3) time.
Factorization does not happen in every generation, which
gives O(D2) amortized time. Empirical evidence suggests that
the sufficient number of objective function evaluations usually
scales sub-quadratically with D (Ros and Hansen, 2008). The
computation time is similar, since the vast majority of it is time
spent training similar classifiers. On the other hand, the time
complexity of Cox regression analysis is O(nD2) for a single
run (Kelley, 1999).

3. RESULTS AND DISCUSSION

The performance of the proposed method (SCES-FS) was
tested on real miRNA expression datasets for 10 different
cancer types and compared with the results of 16 existing
methods, namely ESVM-RFE (Anaissi et al., 2016), LASSO
(Tibshirani, 1996), NSGA-II-SE (Saha et al., 2017), MOGA
(Mukhopadhyay and Maulik, 2013), SVM-nRFE (Peng et al.,
2009), SVM-RFE (Guyon et al., 2002), CMIM (Fleuret, 2004),
ICAP (Jakulin, 2005), SCAD (Fan and Li, 2001), JMI (Bennasar
et al., 2015), CIFE (Brown et al., 2012), mRMR (Peng et al.,
2005), FSCOX (Kim et al., 2014), DISR (Brown et al., 2012),
SNRs (Mishra and Sahu, 2011), and RankSum (Troyanskaya
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TABLE 3 | Number of features and classification accuracy of feature selection methods for five classifiers with five-fold cross-validation.

Method
Number RF SVM NB K-NN DT

of features

SCES-FS 17 96.881± 0.039 96.332± 0.194 96.251± 0.168 96.132± 0.369 94.232± 0.057

ESVM-RFE 22 95.684± 0.031 95.902± 0.193 92.672± 0.161 91.382± 0.369 90.429± 0.056

LASSO 48 95.601± 0.038 95.547± 0.191 92.582± 0.164 91.251± 0.367 90.241± 0.051

NSGA-II-SE 26 95.587± 0.033 95.537± 0.195 92.538± 0.166 91.183± 0.366 90.229± 0.052

MOGA 24 95.391± 0.036 95.531± 0.194 92.293± 0.161 90.338± 0.362 89.142± 0.055

SVM-nRFE 26 95.224± 0.032 95.321± 0.191 92.281± 0.167 90.106± 0.361 88.993± 0.051

SVM-RFE 28 95.048± 0.038 95.159± 0.199 92.116± 0.165 89.889± 0.366 88.691± 0.053

CMIM 28 94.299± 0.037 92.029± 0.193 90.683± 0.161 89.374± 0.369 89.161± 0.052

ICAP 27 93.721± 0.031 92.951± 0.192 90.874± 0.163 90.643± 0.362 87.057± 0.053

SCAD 25 91.972± 0.034 90.839± 0.194 90.003± 0.165 89.918± 0.366 87.495± 0.058

JMI 28 91.718± 0.031 90.602± 0.196 89.986± 0.166 88.639± 0.369 87.057± 0.051

CIFE 32 90.886± 0.034 89.072± 0.199 88.389± 0.162 87.261± 0.362 86.205± 0.056

mRMR 28 91.063± 0.032 89.753± 0.195 87.402± 0.161 87.254± 0.361 85.208± 0.059

FSCOX 23 89.298± 0.038 88.529± 0.198 87.505± 0.169 87.287± 0.368 85.498± 0.058

DISR 29 89.286± 0.031 88.276± 0.196 87.580± 0.167 87.321± 0.369 85.858± 0.053

SNR 30 87.866± 0.035 86.712± 0.193 85.749± 0.163 85.364± 0.365 84.042± 0.059

RankSum 32 86.633± 0.033 85.556± 0.199 85.466± 0.166 84.669± 0.366 84.322± 0.055

Without feature selection 199 86.428± 0.036 85.294± 0.191 85.183± 0.162 84.552± 0.367 84.118± 0.053

et al., 2002) (see section 1 for the full names of these
methods), as well as the results with all features (i.e., without
feature selection).

3.1. Dataset Preparation and Parameter
Setting
The miRNA expression and clinical datasets of bladder, breast,
colon, glioblastoma, head and neck squamous cell, kidney renal
clear cell, lung adenocarcinoma, lung squamous cell, ovarian,
and uterine corpus endometrial carcinoma were obtained from
TCGA. These 10 cancer types have also been studied previously
(see, e.g., Jacobsen et al., 2013). Moreover, Hoadley et al. (2018)
found that the characteristics of certain cancers out of 33 types
provided in TCGA are overlapping in nature. As a result, 10–15
distinct groups of cancer were reported in Hoadley et al. (2018),
which are similar to the cancer types studied in the present article.
Our choice of cancer types was based on: (1) careful review of the
literature, (2) the availability of tissue-specific tumor and normal
samples to avoid the class imbalance problem in classification,
and (3) the availability of common miRNA expression data for
different cancer types and their corresponding clinical data. Thus,
10 cancer types were selected for our study. The expression data
were generated using an Illumina high-throughput sequencing
machine in the form of read counts of 199 miRNAs, normalized
to reads per million, while the clinical data contain gender,
age, days since last followup, and vital status. After removing
miRNAs that contain more than 60% zeros in each cancer type
and taking the miRNAs common to all the cancer types, we
found 199 miRNAs and considered their expression in different
cancer types. The number of samples and other details for each
cancer type are given in Table 1; we also included 333 normal
samples in the analysis with the expression of same miRNAs. For

convenience, the expression datasets containing reads permillion
are further normalized onto a log2 scale. These processed datasets
can be downloaded from the Supplementary Material website3.
To construct the final ranking ofmiRNAs, the SCES-FS algorithm
was run 50 times. Five-fold cross-validation was applied during
each classification to avoid the issue of overfitting or underfitting.
The parameters used in the experiments are shown in Table 2

and were obtained either experimentally or from the literature
(Latinne et al., 2001; Oshiro et al., 2012; Hansen, 2016).

3.2. Experimental Outcomes
The problem of finding miRNAs that can correctly distinguish
different cancer types were posed as a multi-class classification
task using expression data of miRNAs, and the importance of
the selected miRNAs was evaluated using Cox regression analysis
with the help of clinical data. The classification results of SCES-
FS using the classifiers RF, SVM, NB, K-NN, and DT over 50
runs are reported in Table 3 and compared with the results of
ESVM-RFE, LASSO, NSGA-II-SE, MOGA, SVM-nRFE, SVM-
RFE, CMIM, ICAP, SCAD, JMI, CIFE, mRMR, FSCOX, DISR,
SNR, and RankSum, as well as the results with all features
(i.e., without feature selection). These results show that SCES-
FS with RF achieved the highest classification accuracy, 96.881,
with a standard deviation of 0.039, while the accuracy results
of SCES-FS with SVM, NB, K-NN, and DT are 96.332 ±
0.194, 96.251 ± 0.168, 96.132 ± 0.369, and 94.232 ± 0.057,
respectively, still better than those of the other existing feature
selection methods.

It is to be noted that our results have been verified
with FSCOX, which computes important miRNAs via
Cox regression on all miRNAs and subsequently uses

3http://www.nitttrkol.ac.in/indrajit/projects/mirna-prediction-multicalss/
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them for the classification. It has been observed that the
overall classification accuracy of FSCOX is less than the
accuracy attained by SCES-FS as reported in Table 3. Other
omics-based analyses, such as protein array, copy number
variation (CNV), and methylation studies, also have potential
applications in pan-cancer classification, as explained in
Zhang et al. (2015, 2016, 2019), where the overall accuracy
achieved in the range of 93–97%. The cancer dataset used
in Zhang et al. (2015, 2016, 2019) was carefully selected
for protein array, CNV, and methylation studies and is
not directly suitable for experimenting with miRNAs, as it
creates a class imbalance problem when selecting miRNA
expression data for both tumor and normal cases. However,
the overall accuracy of our method is higher than 96%,
which is on the higher side of the accuracy range reported
by Zhang et al. (2015, 2016, 2019), suggesting that our
selected miRNAs can also be considered potential markers for
pan-cancer classification.

The results of SCES-FS have been further validated by survival
analysis, including Cox regression, network analysis, expression
analysis using hierarchical clustering in the form of heatmaps,
KEGG pathway analysis, GO enrichment analysis, and PPI
network analysis, as described in the following.

3.2.1. Survival Analysis
Table 4 reports the results of the Cox regression analysis, i.e.,
the Cox coefficient and hazard ratio values, for 10 cancer types
in order to evaluate the importance of the 17 selected miRNAs
with respect to these cancer types. The Cox regression analysis
was performed by integrating the miRNA expression and clinical
data to assess the effect of miRNA expression on cancer survival.
Higher Cox coefficient and hazard ratio values indicate greater
influence of the miRNA on the cancer type. For example, the
miRNA hsa-mir-375 has the highest Cox coefficient, 0.9882, and
hazard ratio, 1.7879, for the GBM cancer type. To help visualize
the importance of each miRNA to the different cancer types, a
circos plot ofTable 4 is shown in Figure 2. In the figure, a broader
band signifies a stronger association between the miRNA and
the particular cancer type. Table 5 summarizes the cancer types
that are most highly associated with the selected miRNAs. In this
table, for each miRNA, the cancer type for which that miRNA has
the highest Cox coefficient is shown, along with the associated
p-value, false discovery rate (FDR), and up- or down-regulation
of the miRNA expression in that cancer type. Similarly,
Supplementary Table 2 gives the up- and down-regulations
along with the corresponding FDR values of the selected miRNAs
for all cancer types. The up- and down-regulations of the
miRNAs are computed after evaluating the change in expression
of the selected miRNAs between tumor samples and normal
samples or the population for a particular cancer type using the
ANOVA test; this is discussed further in section 3.2.3. Here,
the change in expression is considered significant if the p<

0.05, and the up- or down-regulation is computed if the change
in population expression is positive or negative, respectively.
In summary, we find that hsa-mir-205, hsa-mir-10a, hsa-mir-
196b, hsa-mir-10b, hsa-mir-375, hsa-mir-143, hsa-let-7c, hsa-
mir-107, hsa-mir-378, hsa-mir-133a, hsa-mir-1, hsa-mir-30c, T
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FIGURE 2 | Circos plot of Cox regression analysis results: Cox coefficient values are used to graphically visualize the association of 17 miRNAs with ten cancer types;

a broader band signifies a stronger association between the miRNA and the particular cancer type.

hsa-mir-16, hsa-mir-30a, hsa-let-7i, hsa-mir-24, and hsa-mir-95
are highly associated with GBM, UCEC, OV, BLCA, COAD,
and BRCA.

3.2.2. Network Analysis
For the 17 selected miRNAs, miRTarBase (Huang et al., 2020)
was used to find their targets in order to elucidate their role
in the different cancer types. To identify the most correlated
targets, we computed the Pearson correlation between the
expression values of miRNAs and mRNAs obtained from TCGA
for the 10 cancer types and took the negative correlation value
used in Zhou et al. (2015) as indicating strong association.
The top five negatively correlated mRNAs associated with
each of the 17 miRNAs are reported in Table 6; the rest
are reported in Supplementary Material. To construct the
interaction network, the miRNAs and their targets were ranked
based on the cumulative negative correlation score and their
presence in different cancer types as indicated by the association
number. These results are reported in Supplementary Table 3.
For example, hsa-mir-16 and its target, PHYHIP, are related to
six cancer types and the cumulative negative correlation score
is −4.142. Similarly, hsa-mir-24 is correlated with C1QTNF6 in

another six cancer types, with a cumulative negative correlation
score of −3.906. The subset of such targeted mRNAs is used
to construct the interaction network shown in Figure 3. The
network reveals that the miRNAs hsa-mir-205, hsa-mir-10a, hsa-
mir-107, hsa-mir-378, and hsa-mir-16 and their targets {CYR61,
STARD8, TNFSF8}, {TTYH3, CARHSP1, LILRA2}, {CPEB3,
TGFBR3, FGF2}, {NME4, NWD1, ORAI2}, and {PHYHIP,
CPEB3, CTDSPL} play a crucial role in different types of cancer.
The red, blue, pink, dark green, light green, and black edges in
Figure 3 signify that the number of cancer types associated with
the corresponding pair of miRNA and target mRNA is 6, 5, 4, 3,
2, and 1, respectively. The targets of the miRNAs are investigated
further using KEGG pathway, GO enrichment, and PPI network
analysis in the following subsections in order to see their impact
on the different types of cancer.

3.2.3. Expression Analysis
Expression analysis was conducted using a one-way ANOVA test
in order to evaluate the statistical significance of the differential
expression of the 17 selected miRNAs. Alternative techniques
can also be used (Conesa et al., 2016; Costa-Silva et al., 2017;
Crow et al., 2019). To perform the test, the population of patients
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TABLE 5 | Cancer type most strongly associated with each selected miRNA, based on Cox coefficient.

miRNA Cox Hazard Cancer p-value FDR Regulation PubMed

coefficient ratio type (up↑ /down↓) ID

hsa-mir-205 0.9233 2.5177 GBM 5.14E-03 5.46E-03 ↓ 23054677

hsa-mir-10a 0.4881 1.6293 GBM 6.17E-24 1.87E-23 ↓ 20444541

hsa-mir-196b 0.4581 1.5811 UCEC 2.84E-48 1.21E-47 ↑ –

hsa-mir-10b 0.5080 1.6621 UCEC 4.71E-03 4.71E-03 ↓ –

hsa-mir-375 0.9882 1.7879 GBM 1.80E-14 2.36E-14 ↓ 29110584

hsa-mir-143 0.1504 1.1623 OV 3.38E-57 1.79E-56 ↓ 25304686

hsa-let-7c 0.1731 1.1890 BLCA 3.85E-38 1.31E-37 ↓ 21464941

hsa-mir-107 0.5363 1.7096 GBM 5.42E-24 1.87E-23 ↑ 24213470

hsa-mir-378 0.5511 1.7352 GBM 5.04E-20 7.79E-20 ↓ 29088758

hsa-mir-133a 0.4422 1.5561 OV 2.78E-20 4.73E-20 ↑ 24944666

hsa-mir-1 0.3702 1.3078 GBM 9.18E-08 1.04E-07 ↑ –

hsa-mir-30c 0.5053 1.6575 COAD 4.48E-17 6.34E-17 ↓ –

hsa-mir-16 0.1409 1.1513 GBM 5.42E-24 1.87E-23 ↑ 25864039

hsa-mir-30a 0.8083 2.2441 COAD 2.88E-56 9.80E-56 ↓ 22287560

hsa-let-7i 0.4383 1.5501 BRCA 1.33E-43 2.83E-43 ↑ 26378051

hsa-mir-24 0.4885 1.6298 GBM 5.42E-24 1.87E-23 ↓ 25864039

hsa-mir-95 0.2872 1.3326 GBM 6.59E-24 1.87E-23 ↑ 28155650

was divided into tumor and normal groups for a given miRNA
in a particular cancer type. As a result of ANOVA, significant
(p< 0.05) changes in expression were observed between the
tumor and normal groups for the 17 selected miRNAs. For
example, the p-values of hsa-mir-10a, hsa-mir-196b, hsa-mir-10b,
hsa-mir-375, hsa-mir-143, hsa-let-7c, hsa-mir-107, hsa-mir-378,
hsa-mir-133a, and hsa-mir-30c were 6.17E-24, 2.84E-48, 4.71E-
03, 1.80E-14, 3.38E-57, 3.85E-38, 5.42E-24, 5.04E-20, 2.78E-
20, and 4.48E-17 respectively. Additionally, box plots of the
selected miRNAs in tumor and normal samples are provided
in Supplementary Figure 3. To investigate the relationship
between the expression levels of miRNAs for each cancer type,
hierarchical clustering was performed on the tumor and normal
samples of the 17 selected miRNAs. The results are shown in
Figure 4, from which the change in expression levels of the
miRNAs between tumor and normal samples is evident. In the
cluster plots, red indicates high expression levels and green
low expression levels; black corresponds to not significantly
expressed samples.

3.2.4. KEGG Pathway Analysis
In order to perform KEGG pathway analysis for the 17 selected
miRNAs in 10 cancer types, their targets were identified based
on negative correlation values as described in section 3.2.2.
Then, these target mRNAs were used in the DIANA tool
(Vlachos et al., 2015) separately to identify significant KEGG
pathways associated with the selected miRNAs in different cancer
types. The five most significant pathways for each of the 17
miRNAs according to the FDR-corrected p-value within 5%
statistical significance for the different cancer types are reported
in Table 7. The detailed pathways of the 17 miRNAs with all their
targets are presented in Supplementary Material. It can be seen
from Table 7 that the most significantly enriched pathways are

involved in various cancer types. For example, hsa-mir-205 and
hsa-mir-133a are found to be enriched in pathways relating to
hsa05206: MicroRNAs in cancer for nine cancer types. Similarly,
hsa-mir-196b is found to be enriched in the pathway of hsa05210:
Colorectal cancer for all 10 cancer types, with the FDR-corrected
p-values of BLCA, BRCA, COAD, GBM, HNSC, KIRC, LUAD,
LUSC, OV, andUCEC being 2.24E-07, 2.30E-06, 2.31E-07, 7.00E-
04, 2.36E-07, 4.54E-06, 8.48E-05, 2.38E-06, 2.24E-07, and 2.20E-
07, respectively. In addition, critical pathways such as the PI3K-
Akt signaling pathway, p53 signaling pathway, Bladder cancer,
Pancreatic cancer, Prostrate cancer, and Lung cancer are also
found for the 17miRNAs with FDR-corrected p-values within 5%
statistical significance in 10 different cancer types. The presence
of such critical pathways for the 17 selected miRNAs suggests
that these miRNAs play a significant role in various cancer types,
including the 10 types considered in this paper.

3.2.5. Gene Ontology Enrichment Analysis
Similar to the KEGG pathway analysis, GO enrichment analysis
was also performed with the targets of the selected miRNAs using
the Enrichr tool (Kuleshov et al., 2016), to assess the significance
of the roles the selected miRNAs play in different biological
activities. The results of different analyses for biological
processes, molecular functions, and cellular components
are reported in Table 8 and in Supplementary Tables 4, 5,
respectively; the details of the enrichment analysis are also
given in Supplementary Material. In Table 8, we see that
various biological process GO terms which are related to the
targets of the 17 selected miRNAs have important roles in cancer
development. For example, GO:0023051 is linked with regulation
of signaling, which is involved in the development of colorectal
cancer. Similarly, GO:0051252 is linked with regulation of
the RNA metabolic process of bladder urothelial carcinoma,
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TABLE 6 | Association of the 17 selected miRNAs and their top five targets in 10 cancer types.

BLCA BRCA COAD GBM HNSC KIRC LUAD LUSC OV UCEC

Corr. Corr. Corr. Corr. Corr. Corr. Corr. Corr. Corr. Corr.

miRNA mRNA score mRNA score mRNA score mRNA score mRNA score mRNA score mRNA score mRNA score mRNA score mRNA score

ZEB2 −7.45 E2F1 −3.29 SLC7A2 −9.95 PDLIM5 −5.28 RCAN2 −4.89 MAF −4.68 ANGPTL7 −4.15 TRPV2 −6.43 PARD6B −2.54 SLC7A2 −5.22

ZEB1 −7.05 SATB2 −2.94 TIMP1 −9.63 ZNF707 −4.61 STARD8 −4.61 VEGFA −4.58 ITM2A −3.88 ALPK3 −6.20 PLCXD2 −2.10 SRC −3.77

hsa-mir-205 SYT11 −7.02 RAB11FIP3−2.88 SESN3 −9.43 ANKRD50−4.25 ESRRG −4.60 SLC37A4 −3.83 CPEB3 −3.54 STARD8 −6.16 C11orf74 −2.08 PARD6B −3.55

RCAN2 −6.99 ZFHX3 −2.70 SAMD8 −8.99 ERBB3 −4.25 ZEB1 −4.55 FLCN −3.79 FAM19A1 −3.47 ENPP4 −6.04 FGF2 −2.05 PISD −3.23

LRRK2 −6.99 CDK1 −2.63 HOXA11 −8.78 YES1 −4.14 CTGF −4.40 FGFR1OP −3.55 CTGF −3.17 LPCAT1 −6.02 SLC39A14−1.97 BCL9L −3.13

NACC2 −5.33 E2F1 −3.93 H3F3C −9.62 SLC2A3 −5.45 PANX1 −3.16 TTYH3 −6.29 TAF1D −3.10 YOD1 −4.23 ARSK −2.11 IRGQ −5.32

CLIC4 −5.29 BIRC5 −3.76 FHL2 −9.11 KIAA1143 −5.41 CARHSP1−3.02 SCD −6.28 DVL1 −2.93 ANP32E −3.46 RIOK2 −2.04 FEM1A −4.80

hsa-mir-10a COL6A2 −5.04 PPM1G −3.69 MTR −8.99 YOD1 −5.36 FHL2 −2.79 CD3D −6.19 AHCYL2 −2.85 CHMP1B −3.37 ZBTB10 −2.03 E2F1 −4.78

RAP1A −4.79 TIMM50 −3.60 SFT2D2 −8.82 BCL6 −5.18 TFAP2A −2.67 KLHL6 −6.12 PABPC1 −2.77 HNRNPF −3.20 CHL1 −2.01 NF2 −4.77

TGFB3 −4.77 TPI1 −3.54 NF2 −8.79 DUSP3 −5.12 EBNA1BP2−2.44 COL6A2 −6.03 YAP1 −2.65 NOP16 −3.13 TRA2B −1.99 CHRNA5 −4.71

GATA6 −5.61 REEP5 −2.67 KCTD21 −9.89 MAP2K2 −5.92 PRUNE2 −3.57 HSD17B10−2.28 MEIS1 −3.96 TGFBR2 −7.15 MYC −2.45 HOXB7 −3.46

PRUNE2 −5.26 DCTN4 −2.18 ACER2 −9.74 MYC −4.55 BEST3 −3.05 CALM1 −2.16 TBRG1 −3.85 LAMB2 −5.98 MARS2 −1.97 HOXB8 −3.17

hsa-mir-196b TGFBR2 −4.74 PBX1 −2.03 BCAR3 −9.68 PRKACA −4.42 IGDCC4 −2.82 PBX1 −1.86 REEP5 −3.80 TRPC3 −5.67 GATA6 −1.91 SLC23A2 −2.95

NR4A3 −4.65 SUOX −1.81 IGF2BP3 −9.43 IARS −4.11 KLHDC8B−2.59 C14orf37 −1.43 TRPC3 −3.53 NR4A3 −5.52 ALDOA −1.78 TGFBR3 −2.88

SNX9 −4.59 TLE3 −1.78 HIST1H2BD−9.10 HMGA1 −4.07 NR4A3 −2.33 SUOX −1.41 TGFBR2 −3.32 GATA6 −5.11 GGA3 −1.63 GATA6 −2.61

TPM1 −4.58 PLK1 −7.27 INHBA −9.91 CMPK1 −6.23 RNF2 −2.50 TUBA1B −5.41 MARVELD3−3.34 LILRA2 −4.68 SDC1 −2.79 ASCL2 −3.78

SFRP1 −4.13 BUB1 −6.83 MBNL3 −9.82 PDK3 −4.45 TTYH3 −2.43 HTATIP2 −5.11 NPEPPS −2.92 AHCYL2 −4.52 INHBA −2.72 GLB1L3 −3.53

hsa-mir-10b MBNL1 −4.08 CCNA2 −6.76 OPA3 −9.61 EXOSC2 −4.29 UBE2Z −2.20 LILRB2 −4.95 TRIM2 −2.87 S1PR2 −4.17 CMPK1 −2.69 PLA2G2C −2.95

PPP3CB −3.86 MELK −6.76 SLC2A3 −9.55 HNRNPF −4.28 SLC5A5 −2.15 LILRA2 −4.86 FAHD1 −2.59 PAG1 −3.95 TMED5 −2.26 GPCPD1 −2.94

SGCD −3.78 POC1A −6.70 PPP1R13B−9.35 EIF1 −4.21 FZD2 −2.09 PLK1 −4.86 ALKBH4 −2.57 FGD4 −3.74 SLC2A3 −2.14 MSTO1 −2.73

CTGF −4.17 FAM89A −6.15 SON −9.94 REEP3 −5.94 CALU −4.71 HEY1 −3.62 JAG1 −5.77 PIK3CA −4.28 DPYSL3 −2.98 KLHDC8B−4.97

FSTL3 −4.09 RHOQ −5.97 LIMD2 −9.81 BAK1 −5.02 COL12A1 −4.50 ZNF785 −3.38 KLF4 −5.58 NUP54 −3.67 CLDN1 −2.50 ASAP2 −4.73

hsa-mir-375 TNS1 −4.09 CFL2 −5.87 ATG7 −9.80 SPRED1 −4.97 EXT1 −4.28 CDCA7L −3.28 MBD2 −5.43 ARNTL2 −3.66 IL1RAP −2.06 SFT2D2 −4.48

SH3D19 −4.01 ACSL4 −5.86 JAK2 −9.58 CARD8 −4.64 CCDC88A−4.12 CARD8 −3.15 AKAP7 −5.21 JAG1 −3.58 COL12A1 −2.03 CLDN1 −4.22

SAMD4A −3.99 CELF2 −5.71 ESPNL −9.54 ZNF799 −4.58 NETO2 −4.04 NETO2 −3.13 CRIM1 −5.14 USP46 −3.46 SEC23A −1.98 TSC22D2 −4.20

OTUB1 −5.34 CENPM −5.21 NKPD1 −9.87 HIST1H2BG−4.67 SDC1 −2.79 FSD2 −2.98 TIMM8A −5.13 COX6B1 −4.67 MAT2A −2.64 FHIT −3.62

CAPZA1 −4.88 PIK3R2 −4.73 TIAL1 −9.81 ANG −4.30 RAB22A −2.43 DTNB −2.81 RAB10 −5.01 TRUB2 −4.34 SLC25A33−2.35 SNX22 −2.89

hsa-mir-143 SYNPO2L −4.88 STXBP2 −4.69 TUBD1 −9.51 RER1 −3.97 TMEM40 −2.39 TMEM120B−2.48 PRMT3 −5.00 RPS19 −4.06 RACGAP1−2.26 C4orf19 −2.85

STXBP2 −4.79 LMNB2 −4.68 PHAX −9.48 GLB1L −3.90 RAB10 −2.38 MRPS25 −2.47 PTCD3 −4.93 AKT2 −4.01 GPSM2 −2.22 RDH10 −2.39

KCNA7 −4.65 AP1S1 −4.66 TTC38 −9.44 ADCY2 −3.88 NKPD1 −2.30 QPRT −2.40 C15orf48 −4.89 OTUB1 −3.94 CAPZA1 −2.17 ZNF117 −2.32

YWHAZ −4.49 CCNF −5.94 HMGXB4 −9.81 TRIB1 −6.35 ITGA3 −5.38 RRM2 −4.23 LDHA −7.24 COX6B1 −3.43 CASP3 −2.68 TNFRSF10B−3.26

SLC20A1 −4.16 CKS2 −5.89 HES5 −9.80 ACTB −6.14 LDHA −5.05 DLX4 −4.04 EZH2 −6.88 NAA20 −3.32 E2F6 −2.44 SOD2 −3.18

hsa-let-7c EFHD2 −3.93 CCNB2 −5.84 YWHAZ −9.79 THBS1 −6.11 MT2A −4.81 TNFSF9 −3.96 HMGA1 −6.79 SF3B4 −3.17 COIL −2.35 RNF7 −2.95

MRPL12 −3.86 RRM2 −5.72 WDR3 −9.67 SLC20A1 −5.80 HMGA2 −4.77 CCNB2 −3.96 EIF4A3 −6.74 KIAA0391 −3.14 RNFT1 −2.27 CEBPB −2.64

PCGF3 −3.73 H2AFZ −5.65 LYN −9.47 FHL2 −5.54 PSMB2 −4.28 FANCI −3.79 MRPL12 −6.67 YWHAZ −3.11 GABPB1 −2.24 ICOSLG −2.49

(Continued)

F
ro
n
tie
rs

in
G
e
n
e
tic
s
|w

w
w
.fro

n
tie
rsin

.o
rg

1
1

N
o
ve
m
b
e
r
2
0
2
0
|V

o
lu
m
e
1
1
|
A
rtic

le
9
8
2

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


S
a
rka

r
e
t
a
l.

Id
e
n
tific

a
tio

n
o
f
m
iR
N
A
s
fo
r
D
ive

rse
C
a
n
c
e
r
Typ

e
s

TABLE 6 | Continued

BLCA BRCA COAD GBM HNSC KIRC LUAD LUSC OV UCEC

Corr. Corr. Corr. Corr. Corr. Corr. Corr. Corr. Corr. Corr.

miRNA mRNA score mRNA score mRNA score mRNA score mRNA score mRNA score mRNA score mRNA score mRNA score mRNA score

GLP2R −7.83 CAV1 −8.34 SMARCA5−9.64 REL −4.65 CPEB3 −5.23 FOXC1 −8.31 RS1 −8.88 RS1 −8.75 SUN2 −4.14 CPEB1 −5.76

PER1 −7.67 FGF2 −8.05 TMEM87A−9.63 PIK3R1 −3.59 CHRM1 −4.70 PLAG1 −8.24 SH3GL2 −8.86 ALDH3B1 −6.89 ERN1 −2.97 CYSLTR2 −3.71

hsa-mir-107 CPEB1 −7.62 FOXO1 −7.82 CDC42SE2−9.52 ZBTB38 −3.43 AMOT −4.09 CPEB3 −8.13 TGFBR3 −8.45 LATS2 −6.77 VCAN −2.96 FGF2 −3.41

NFIA −7.32 DST −7.71 PURA −9.42 CAV1 −3.36 TGFBR3 −3.51 SH3GL2 −8.09 CAV1 −8.26 PRKCE −6.36 PAG1 −2.85 SLC28A1 −2.91

DMPK −7.00 KLF4 −7.62 UBE2Q1 −9.04 ADORA3 −3.08 NFIA −3.36 CKMT1A −7.93 FGF2 −8.15 PAG1 −6.34 YWHAH −2.61 DAPK1 −2.73

ENO1 −5.57 PTBP1 −6.96 TMEM154−9.76 NWD1 −6.56 SERPINH1−6.16 PRKD2 −5.07 BYSL −6.95 MELK −4.10 KLHL7 −3.51 MYOZ3 −3.84

TTC4 −5.48 RABEP2 −6.75 MYADM −9.69 RTN3 −6.27 ENAH −5.83 PML −4.96 ALDOA −6.91 PRMT1 −3.81 IGDCC3 −3.48 IGSF3 −3.45

hsa-mir-378 MRPL37 −5.37 BBC3 −6.68 OPA3 −9.57 CYP2U1 −5.99 MARVELD1−5.48 LDHA −4.71 LDHA −6.78 PTOV1 −3.50 ENAH −3.25 NLGN2 −3.35

CDK4 −5.27 HIST1H2BD−6.65 UGT8 −9.55 WDR5B −5.63 FBLIM1 −5.46 ORAI2 −4.67 P4HB −6.71 ENO1 −3.27 IGSF3 −3.19 MSC −3.27

FEN1 −5.08 DCTPP1 −6.34 KCNN1 −9.54 ENPP4 −5.50 MYO1B −5.39 STOML1 −4.50 PAICS −6.70 DCTPP1 −3.19 VAMP4 −3.16 YPEL1 −3.26

IGF2BP1 −3.91 MEG3 −5.74 TMEM59 −9.63 NR3C1 −4.30 PIGR −2.49 PRDM16 −7.24 FERMT2 −3.94 PRDM16 −3.79 VEGFA −2.21 PIGR −2.42

DEK −3.52 PIGR −5.39 UGT2B10 −9.30 ANGEL2 −4.28 PIAS2 −2.40 CMTM4 −6.94 ANGPT4 −3.84 MLEC −3.72 AFTPH −1.90 BCL3 −2.28

hsa-mir-133a CDK5R1 −3.49 PER2 −5.30 CDC42 −9.08 FAM160B1−3.53 RBMXL1 −2.28 KCNQ1 −6.81 ZEB1 −3.75 ANGPT4 −3.53 CIAO1 −1.79 MYPN −2.19

SUPT16H −3.43 NGFR −4.77 SEC61B −9.03 MMP14 −3.21 CIAO1 −2.23 ERBB2 −6.77 GRID1 −3.45 ARHGAP31−3.50 KRT7 −1.72 KCNQ1 −2.08

TCTEX1D2−3.37 NR3C1 −4.65 MYL12A −8.03 UBA2 −3.20 AFTPH −2.23 PNP −6.67 ZFP28 −3.30 ZEB1 −3.41 NR2C2 −1.64 NFAM1 −1.83

NCAPG −6.57 PTBP1 −5.38 BMP7 −9.88 SLC8A1 −5.20 LHX4 −3.32 VEGFA −5.09 RFC5 −5.15 EFTUD2 −4.76 IFI44 −2.33 CD63 −2.85

PTBP1 −6.33 ATP13A1 −4.69 CAST −9.73 C1orf27 −5.03 FANCI −3.32 ANGPTL4 −4.62 KIF4A −4.92 IQGAP3 −4.72 MYEF2 −1.98 PPIB −2.81

hsa-mir-1 RCC2 −6.23 OCIAD2 −4.54 CEBPA −9.72 SCYL3 −4.94 SFXN1 −3.29 NETO2 −4.58 MAD2L1 −4.88 DSG2 −3.90 TWF1 −1.91 MTHFS −2.72

UHRF1 −6.21 KIAA1522 −4.54 GOLGA7 −9.67 LZTFL1 −4.80 BRI3BP −3.27 KAT2A −4.53 MTHFD2 −4.83 EIF4G1 −3.80 FOLR1 −1.90 MACROD1−2.44

SFXN1 −6.17 RCC2 −4.51 OAT −9.63 WDR11 −4.78 NCAPD3 −3.01 HPS4 −4.44 SPC24 −4.76 SFXN1 −3.72 YTHDF2 −1.86 CRELD2 −2.24

PAM −4.93 NRBP1 −3.56 SOCS3 −9.78 MARCKSL1−5.82 SNAI2 −3.65 VIM −7.03 TOMM5 −4.76 BIRC5 −4.04 ETS1 −3.27 PSMD7 −4.26

CXCL11 −4.92 RUNX2 −3.11 ARF3 −9.49 VASH1 −5.63 SERPINE1−3.30 LHFPL2 −6.51 RPS3 −4.70 MYBL2 −4.03 MTDH −3.15 UBE2I −4.23

hsa-mir-30c SNAI2 −4.22 PRDM1 −2.94 FOXA1 −9.48 ETS1 −5.40 SLC7A5 −3.22 SH3GL1 −6.40 MRPS16 −4.43 SLC7A5 −3.91 ITGB3 −3.15 NDUFA12 −3.64

ADAM9 −3.84 CASP3 −2.92 UBE2I −9.40 DLL4 −5.37 CTSC −3.04 IFNAR2 −6.33 BIRC5 −4.33 ECT2 −3.85 RRM2 −2.99 LLPH −3.63

MGAT2 −3.79 PHTF2 −2.82 CADPS2 −8.43 SOX12 −4.96 SLC38A7 −3.03 BIRC5 −6.22 UXT −4.29 RRM2 −3.81 CASP3 −2.99 PPP2R1B −3.58

PHYHIP −8.38 DMD −8.17 ZYX −9.96 HGF −5.72 CPEB3 −5.13 DMRT2 −9.17 RS1 −8.88 DLC1 −9.04 SPRYD3 −2.93 PTPRT −6.30

NEGR1 −8.11 GNAL −8.17 CLIP2 −9.96 CCPG1 −5.68 TMEM100−4.95 C1orf226 −8.94 TGFBR3 −8.70 RS1 −8.82 ZCCHC3 −2.37 SLC6A4 −6.24

hsa-mir-16 GLP2R −8.01 PLSCR4 −8.15 CAMSAP1−9.95 IRAK3 −5.49 PDCD4 −4.56 SLC9A2 −8.89 WNT3A −8.65 NEGR1 −8.32 CCND1 −2.22 PHYHIP −5.34

GNAL −7.85 RBMS3 −8.10 TLL1 −9.93 PDXK −5.45 PDK4 −4.51 SPTBN2 −8.87 SLC6A4 −8.54 SLC6A4 −8.09 BTRC −2.19 PLSCR4 −5.18

DIXDC1 −7.73 CDC14B −7.83 KATNAL1 −9.90 PHYHIP −5.42 ZBTB16 −4.30 SLC6A4 −8.84 AGER −8.53 KDR −7.97 BAMBI −2.11 KCND3 −4.74

BAZ1B −4.25 CBX2 −4.83 NCEH1 −9.64 PIK3R2 −5.50 FSCN1 −5.26 SERPINE1−6.55 SFXN1 −6.36 KIF11 −6.08 C8orf76 −2.18 PPP2R1B −4.41

LMNB1 −4.22 CCNE2 −4.32 SBF1 −9.61 PES1 −5.43 FBXO45 −5.07 TGFBI −6.26 PHTF2 −6.34 KPNA2 −5.87 MTHFD2 −2.07 GRPEL2 −4.39

hsa-mir-30a MYBL2 −4.16 RRM2 −4.23 SFXN1 −9.31 SIX4 −5.41 YWHAZ −4.77 RUNX2 −6.24 PAICS −6.24 CDC20 −5.84 CASP3 −2.01 DCTN4 −4.16

RRM2 −4.10 C8orf76 −4.19 SOX12 −9.21 THOC5 −5.34 SLC16A1 −4.62 ITGA5 −6.15 TUBB3 −6.16 RRM2 −5.70 QRFPR −1.96 IDH1 −4.11

PAICS −3.98 MYBL2 −4.10 RTP4 −9.16 NR2F6 −5.16 TUBB3 −4.57 CARS −6.08 NUPL2 −6.14 PAICS −5.56 CBX3 −1.75 STMN1 −4.06

SYNJ2BP −4.59 CRY2 −3.32 SLC20A1 −9.29 ONECUT2−3.74 SDR42E1 −1.81 ANKRD46−7.49 QDPR −4.07 USP47 −3.18 HMGA2 −3.31 MEIS3P1 −3.39

MYOCD −4.31 MTUS1 −2.79 MSI2 −9.25 RABL2A −3.70 CD59 −1.67 PAFAH2 −7.28 AHR −3.23 GGA3 −3.10 ZCCHC3 −3.09 PBX2 −3.23

(Continued)
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with an FDR-corrected p-value of 1.30E-03, which is <0.05.
Other GO terms for biological processes, such as GO:0051171,
GO:0048519, and GO:0009653, are linked with the regulation
of nitrogen compound metabolic process, negative regulation
of biological process, and anatomical structure morphogenesis,
respectively, for different cancer types.

As with the biological processes, GO terms for molecular
functions were also found to be significant in the development
of various types of cancer, as reported in Supplementary Table 4.
For example, GO:0008134 is linked with transcription factor
binding, which plays an important role in BRCA, GBM, KIRC,
LUAD, OV, and UCEC, with respective FDR-corrected p-
values 8.10E-03, 8.31E-06, 6.80E-06, 4.70E-03, 3.76E-05, and
3.40E-03 all being <0.05. Other important GO terms such as
GO:0044877, GO:0003723, GO:0003676, and GO:0008092 are
found to be linked to protein-containing complex binding, RNA
binding, nucleic acid binding, and cytoskeletal protein binding,
respectively, for different cancer types. Supplementary Table 5

reports the significant GO terms for cellular components in
various cancer types. GO:0070013 is linked to intracellular
organelle lumen, which has FDR-corrected p-values within
the 5% significance level for seven different cancer types,
namely BLCA, BRCA, COAD, GBM, HNSC, KIRC, and LUSC.
In addition, GO:0043227, GO:0005654, and GO:0044444 are
associated with membrane-bounded organelle, nucleoplasm, and
cytoplasmic part, respectively, which are critical processes in the
progression of different types of cancer. The relationship between
these GO terms and important activities in cancer development
have also been cross-validated in other studies (Waldman et al.,
1997; Dhillon et al., 2007; He et al., 2013; Reimand et al.,
2013; McClurg and Robson, 2015). Taken together, all of these
evidences point to the potential importance of the 17 selected
miRNAs in the development of various types of cancer.

3.2.6. Protein-Protein Interaction Network Analysis
In PPI networks, a node and an edge signify the interaction
of a given protein and the protein-protein association. Here,
related proteins share common functions, although they do not
necessarily physically interact with each other. In our study, to
perform the PPI network analysis, 170 sets of targets relating to
17 miRNAs in 10 different cancer types were used to compute
the PPI networks using the STRING database (Szklarczyk et al.,
2019). Then, the 170 interaction networks were further analyzed
to rank the proteins based on the degree of their nodes and their
presence in 10 cancer types. The top 30 proteins are reported
in Table 9, while the rest are given in Supplementary Material.
For example, MYC has degrees 34, 28, 41, 85, 33, 133, 54, 25,
38, and 32 with respect to BLCA, BRCA, COAD, GBM, HNSC,
KIRC, LUAD, LUSC, OV, and UCEC, respectively. Therefore, the
total degree of MYC is 503. Similarly, other proteins have certain
degrees in different cancer types. Moreover, their presence in the
different cancer types is indicated by the association count; for
example, MYC has an association count of 10. The proteins in
Table 9 are used to construct the final consolidated PPI network
shown in Figure 5, which represents the associations between the
top 30 proteins and 10 different cancer types. The average node
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FIGURE 3 | The interaction network of miRNAs and their target genes, where yellow nodes represent miRNAs and purple nodes represent genes. The edge colors

red, blue, pink, dark green, light green, and black indicate that the corresponding miRNA-gene pair is associated with 6, 5, 4, 3, 2, and 1 cancer types, respectively.

degree in this network is 13.7, with PPI enrichment p <1.0E-
16. In Figure 5, the significant proteins are MYC, PTEN, CDK1,
BRCA1, AKT1, PIK3R1, etc. MYC is the most important protein,
known to be oncogenic for breast cancer. Similarly, AKT1 is
very significant for breast, lung, and colon cancers. PIK3R1
also plays an important role in breast cancer. The detailed list
of PPI networks is provided in Supplementary Material. In
summary, the PPI network analysis suggests that the 17 selected
miRNAs can be considered important biomarkers with respect to
diagnosis of 10 different cancer types.

3.3. Web Application for Prediction of 10
Cancer Types
A web version of the predictor4 was developed for use of the
scientific and medical communities to aid in cancer diagnosis.
The application uses the random forest and the expression of

4http://www.nitttrkol.ac.in/indrajit/projects/mirna-prediction-multicalss/

17 miRNAs to predict the occurrence of 10 different types of
cancer. The random forest was chosen as it outperformed other
classifiers in our experiments. To predict the type of cancer for
a particular patient or set of patients, the expression values of
17 miRNAs in those patients need to be uploaded in a specific
format, instructions are provided on the website. The application
will return and display the predicted cancer types for the given
set of patients.

4. CONCLUSIONS

We have proposed a statistical learning method for feature
selection that integrates clustering, classification, and regression
to find putative miRNAs by solving a multi-class classification
problem on 10 cancer types. The first part of the method is
a wrapper-based feature selection algorithm, called stochastic
covariance evolutionary strategy with forward selection (SCES-
FS), which involves stochastic neighbor embedding (SNE),
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FIGURE 4 | Hierarchical clustering results of the differentially expressed miRNAs for the BLCA, BRCA, COAD, GBM, HNSC, KIRC, LUAD, LUSC, OV, and UCEC

datasets. Red indicates high expression levels, green low expression levels, and black not significantly expressed samples.
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TABLE 7 | Five significant KEGG pathways for each of the 17 selected miRNAs in 10 cancer types.

FDR-corrected p-value

miRNA Pathway BLCA BRCA COAD GBM HNSC KIRC LUAD LUSC OV UCEC

hsa05206: MicroRNAs in cancer 2.20E-03 – 1.60E-04 1.73E-05 2.23E-02 1.02E-06 2.20E-04 1.70E-04 2.00E-03 2.40E-03

hsa05202: Transcriptional misregulation in

cancer

1.33E-02 – 1.62E-02 – – 1.11E-02 2.15E-02 – 9.20E-03 –

hsa-mir-205 hsa05219: Bladder cancer – 1.06E-02 – – – 3.54E-02 – – – 6.30E-03

hsa05205: Proteoglycans in cancer – – – 2.38E-02 – 1.73E-02 – – – 6.30E-03

hsa04520: Adherens junction 2.13E-02 – – – – – 2.80E-02 – – –

hsa05016: Huntington’s disease 1.27E-02 – – – – – – 4.64E-02 – –

hsa04218: Cellular senescence – – – – 2.90E-03 3.01E-02 – – – –

hsa-mir-10a hsa04714: Thermogenesis 1.27E-02 – – – – – – – – –

hsa04510: Focal adhesion 1.27E-02 – – – – – – – – –

hsa04213: Longevity regulating

pathway—multiple species

1.27E-02 – – – – – – – – –

hsa05210: Colorectal cancer 2.24E-07 2.30E-06 2.31E-07 7.00E-04 2.36E-07 4.54E-06 8.48E-05 2.38E-06 2.24E-07 2.20E-07

hsa01522: Endocrine resistance 2.77E-07 5.58E-07 – – 2.92E-07 5.08E-06 8.58E-05 5.75E-07 – –

hsa-mir-

196b

hsa05215: Prostate cancer 2.39E-06 3.00E-06 – – 2.51E-06 3.81E-05 – 3.09E-06 3.42E-06 –

hsa05161: Hepatitis B – 3.00E-06 – 1.52E-05 3.61E-07 – 8.58E-05 3.09E-06 5.15E-07 –

hsa04915: Estrogen signaling pathway 2.15E-06 2.88E-06 – – 2.26E-06 3.27E-05 – 2.97E-06 – –

hsa05169: Epstein-Barr virus infection – 3.28E-02 – 2.40E-03 2.90E-02 1.10E-04 – – 1.19E-02 –

hsa04550: Signaling pathways regulating

pluripotency of stem cells

– – 1.50E-03 – 1.48E-02 – – – 1.19E-02 –

hsa-mir-10b hsa05206: MicroRNAs in cancer 2.50E-03 – – – – – – – 1.19E-02 –

hsa04110: Cell cycle – 9.10E-03 – – – 2.80E-04 – – – –

hsa04914: Progesterone-mediated oocyte

maturation

– 1.34E-02 – – 4.95E-02 – – – – –

hsa01521: EGFR tyrosine kinase inhibitor

resistance

7.00E-04 1.09E-02 – – – – – – 7.50E-04 2.80E-03

hsa04550: Signaling pathways regulating

pluripotency of stem cells

4.02E-02 1.09E-02 – – – – – – – –

hsa-mir-375 hsa04066: HIF-1 signaling pathway – – 2.32E-02 – – – – 4.60E-03 – –

hsa05165: Human papillomavirus infection – – 2.32E-02 8.70E-03 – – – – – –

hsa05224: Breast cancer – – – 6.00E-03 – 1.90E-03 – – – –

hsa05230: Central carbon metabolism in

cancer

– 1.00E-03 – – 4.09E-02 – – – – –

hsa05213: Endometrial cancer – 1.00E-03 – – – – – – – –

hsa-mir-143 hsa05206: MicroRNAs in cancer – 1.00E-03 – – – – – – – –

hsa05205: Proteoglycans in cancer – 1.00E-03 – – – – – – – –

hsa05161: Hepatitis B – 1.00E-03 – – – – – – – –

(Continued)
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TABLE 7 | Continued

FDR-corrected p-value

miRNA Pathway BLCA BRCA COAD GBM HNSC KIRC LUAD LUSC OV UCEC

hsa05206: MicroRNAs in cancer – 4.05E-02 1.85E-02 2.20E-04 – 1.10E-04 – – – –

hsa04115: p53 signaling pathway – – – 2.90E-03 – 1.63E-05 4.43E-02 – – –

hsa-let-7c hsa04110: Cell cycle – 6.10E-03 – – – – 4.43E-02 – – –

hsa05222: Small cell lung cancer – 4.05E-02 – – – 4.10E-04 – – – –

hsa04215: Apoptosis—multiple species – 4.05E-02 – – – – 4.43E-02 – – –

hsa05200: Pathways in cancer 2.50E-03 1.30E-03 – 1.31E-02 – – 2.40E-03 4.70E-04 7.38E-05 –

hsa01521: EGFR tyrosine kinase inhibitor

resistance

5.50E-03 1.30E-03 8.20E-03 – – – 5.20E-03 5.60E-03 3.50E-04 –

hsa-mir-107 hsa05165: Human papillomavirus infection 8.60E-03 1.30E-03 1.41E-02 – – – – 8.80E-03 2.30E-03 –

hsa04151: PI3K-Akt signaling pathway 5.50E-03 1.40E-03 – – – – – 5.60E-03 2.70E-03 –

hsa05224: Breast cancer 5.50E-03 – – – – – 5.30E-03 – – –

hsa03013: RNA transport 1.49E-02 – – – – – 3.11E-02 2.04E-02 – –

hsa03010: Ribosome – – – – – – 6.60E-04 2.04E-02 – –

hsa-mir-378 hsa01100: Metabolic pathways – – – – – – 2.56E-02 2.04E-02 – –

hsa00010: Glycolysis/Gluconeogenesis – – – – – – 2.56E-02 2.04E-02 – –

hsa05224: Breast cancer – – – – 1.25E-02 – – – – –

hsa05206: MicroRNAs in cancer 7.80E-03 5.80E-03 1.76E-05 1.60E-04 4.70E-03 2.21E-02 1.92E-05 1.40E-06 7.20E-03 –

hsa05215: Prostate cancer 7.80E-03 1.60E-04 – 3.90E-03 7.90E-04 2.21E-02 – 8.00E-04 7.20E-03 –

hsa-mir-

133a

hsa05212: Pancreatic cancer 5.50E-04 – 4.20E-03 – 5.50E-04 2.21E-02 – – 6.20E-03 –

hsa01524: Platinum drug resistance 3.30E-03 – 2.71E-02 – 1.70E-03 – – – 6.20E-03 –

hsa05205: Proteoglycans in cancer – – – 3.10E-03 – – 8.34E-05 8.00E-04 – –

hsa03030: DNA replication 1.34E-10 1.83E-07 – – 6.25E-06 7.60E-03 6.10E-09 1.16E-05 – –

hsa03430: Mismatch repair 3.80E-04 7.10E-03 – – 3.10E-04 – 4.00E-04 1.75E-02 – –

hsa-mir-1 hsa04110: Cell cycle 2.50E-04 9.20E-03 – – 2.10E-04 – 8.74E-08 – – –

hsa03015: mRNA surveillance pathway 3.64E-02 – – – – – – 1.01E-02 – –

hsa05166: HTLV-I infection 4.42E-02 – – – – – – – – –

hsa05206: MicroRNAs in cancer 1.79E-05 – 2.90E-03 – – 2.04E-05 – – 1.21E-02 –

hsa05200: Pathways in cancer – 8.81E-05 – 2.40E-03 2.07E-02 3.40E-03 – – – –

hsa-mir-30c hsa05211: Renal cell carcinoma – 2.30E-03 – 2.09E-02 6.40E-03 – 1.42E-02 – – –

hsa04141: Protein processing in

endoplasmic reticulum

– 2.30E-03 – – 1.93E-02 – 1.04E-02 2.56E-02 – –

hsa04380: Osteoclast differentiation 2.71E-02 – 5.10E-03 – – – – – 9.20E-03 –

hsa04510: Focal adhesion 1.90E-03 5.80E-03 – – – – – – – –

hsa04010: MAPK signaling pathway 1.31E-02 6.30E-03 – – – – – – – –

hsa-mir-16 hsa05200: Pathways in cancer 1.58E-02 – – – – – 7.42E-05 – – –

hsa04151: PI3K-Akt signaling pathway – 2.60E-03 – – – – – – 3.20E-03 –

hsa05206: MicroRNAs in cancer – 6.30E-03 – – – – 7.40E-04 – – –

(Continued)
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TABLE 7 | Continued

FDR-corrected p-value

miRNA Pathway BLCA BRCA COAD GBM HNSC KIRC LUAD LUSC OV UCEC

hsa04110: Cell cycle – 4.39E-06 – 3.90E-03 – 5.81E-05 2.30E-03 1.93E-06 – –

hsa05206: MicroRNAs in cancer – – – 2.10E-04 2.28E-02 6.20E-04 – 5.70E-03 – –

hsa-mir-30a hsa05203: Viral carcinogenesis – 5.50E-04 – – – 1.80E-03 – – 2.14E-02 –

hsa05130: Pathogenic Escherichia coli

infection

– 1.24E-02 – – 2.28E-02 – – 5.70E-03 – –

hsa03013: RNA transport – – – – – – 2.00E-03 5.70E-03 – –

hsa05206: MicroRNAs in cancer – – 9.80E-03 – 1.97E-02 – 1.80E-04 – – –

hsa04550: Signaling pathways regulating

pluripotency of stem cells

1.20E-03 – – – – – 6.20E-04 – – –

hsa-let-7i hsa04066: HIF-1 signaling pathway 1.20E-03 – – – – – 6.80E-04 – – –

hsa05130: Pathogenic Escherichia coli

infection

– – 1.60E-03 – 1.97E-02 – – – – –

hsa05225: Hepatocellular carcinoma 1.01E-02 – – – – – – – – –

hsa04110: Cell cycle 1.29E-06 1.57E-07 – – 9.85E-09 5.43E-05 4.19E-10 4.40E-10 – –

hsa03030: DNA replication 2.13E-07 3.59E-06 – – 1.10E-04 – 1.20E-03 1.03E-07 – –

hsa-mir-24 hsa04218: Cellular senescence – 4.00E-03 – – 1.10E-04 1.50E-04 9.90E-04 4.20E-04 – –

hsa04115: p53 signaling pathway 7.49E-05 1.30E-03 – – 8.40E-04 – 1.20E-03 – – –

hsa00240: Pyrimidine metabolism 4.50E-04 – – – – – – 4.28E-05 – –

hsa05211: Renal cell carcinoma 4.20E-03 – 4.93E-02 – – – 4.30E-03 4.10E-03 – –

hsa05220: Chronic myeloid leukemia – – 4.93E-02 – – – 2.26E-02 – – –

hsa-mir-95 hsa05219: Bladder cancer – – 4.93E-02 – – – 4.90E-03 – – –

hsa05206: MicroRNAs in cancer – – 4.93E-02 – – – 2.79E-02 – – –

hsa05203: Viral carcinogenesis – – 4.93E-02 – – – 1.67E-02 – – –
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TABLE 8 | Five significant GO biological processes for each of the 17 selected miRNAs in 10 cancer types.

FDR-corrected p-value

miRNA GO biological process BLCA BRCA COAD GBM HNSC KIRC LUAD LUSC OV UCEC

GO:0051239 regulation of multicellular organismal process 1.30E-04 – 4.34E-05 – – – – 4.70E-04 – –

GO:0023051 regulation of signaling – – 6.76E-05 – 6.10E-04 – – 4.70E-04 – –

hsa-mir-205 GO:0010646 regulation of cell communication – – 6.76E-05 – 7.30E-04 – – 4.70E-04 – –

GO:0060255 regulation of macromolecule metabolic process – – – 3.87E-07 – 7.21E-06 – – – 7.59E-05

GO:0051171 regulation of nitrogen compound metabolic

process

– – – 3.87E-07 – 2.61E-05 – – – 7.59E-05

GO:0006139 nucleobase-containing compound metabolic

process

– 8.72E-05 – – – – 2.90E-04 – 1.10E-04 –

GO:0071840 cellular component organization or biogenesis 2.33E-02 – – – 1.39E-06 – – – – –

hsa-mir-10a GO:0016043 cellular component organization 2.33E-02 – – – 7.28E-05 – – – – –

GO:0034641 cellular nitrogen compound metabolic process – 8.72E-05 – – – – – 4.60E-03 – –

GO:0010467 gene expression – 1.70E-04 – – – – – 8.00E-04 – –

GO:0048523 negative regulation of cellular process 8.93E-06 – 1.92E-07 2.60E-04 – 6.77E-05 1.30E-04 2.62E-06 1.20E-04 –

GO:0048519 negative regulation of biological process 2.58E-05 – 1.92E-07 2.60E-04 – 6.77E-05 – 5.64E-06 – –

hsa-mir-196b GO:0070482 response to oxygen levels – – – – 5.06E-06 – 4.43E-05 1.18E-05 1.20E-04 –

GO:1901700 response to oxygen-containing compound – – – – 1.00E-04 – – 1.11E-05 3.28E-05 4.54E-05

GO:0051173 positive regulation of nitrogen compound

metabolic process

2.58E-05 - 1.62E-06 – – – – – 1.10E-04 –

GO:0009653 anatomical structure morphogenesis 2.70E-04 – 3.12E-05 – – – – 1.20E-04 – –

GO:1901564 organonitrogen compound metabolic process – – – 2.80E-04 9.30E-03 9.50E-03 – – – –

hsa-mir-10b GO:0048468 cell development 2.50E-04 – 1.10E-04 – – – – – – –

GO:1903047 mitotic cell cycle process – 3.30E-03 – – 2.65E-02 – – – – –

GO:0044237 cellular metabolic process – – – 7.10E-04 – 7.00E-03 – – – –

GO:0048522 positive regulation of cellular process – 1.25E-05 5.30E-03 – – – 5.46E-07 – 5.60E-04 5.50E-03

GO:0031325 positive regulation of cellular metabolic process – 1.51E-05 7.60E-03 – – – 5.82E-06 – – –

hsa-mir-375 GO:1902533 positive regulation of intracellular signal

transduction

5.80E-03 – – – – – – – 5.60E-04 –

GO:0051173 positive regulation of nitrogen compound

metabolic process

– 1.51E-05 – – 3.61E-02 – – – – –

GO:0071840 cellular component organization or biogenesis – – 8.40E-03 – – – – – 5.60E-04 –

GO:0044237 cellular metabolic process – 2.84E-02 – – – – – – 2.30E-03 –

GO:0008152 metabolic process – 2.84E-02 – – – – – – 8.40E-03 –

hsa-mir-143 GO:1905477 positive regulation of protein localization to

membrane

– 2.84E-02 – – – – – – – –

GO:1903829 positive regulation of cellular protein localization – 2.84E-02 – – – – – – – –

GO:0006807 nitrogen compound metabolic process – 2.84E-02 – – – – – – – –

(Continued)
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TABLE 8 | Continued

FDR-corrected p-value

miRNA GO biological process BLCA BRCA COAD GBM HNSC KIRC LUAD LUSC OV UCEC

GO:0071840 cellular component organization or biogenesis – – 4.50E-03 – 6.50E-04 – – 7.68E-06 – –

GO:0016043 cellular component organization – – 5.70E-03 – 6.50E-04 – – 1.49E-05 – –

hsa-let-7c GO:0010604 positive regulation of macromolecule metabolic

process

– – – 3.95E-09 – – – 1.20E-04 1.50E-03 –

GO:0090304 nucleic acid metabolic process 4.30E-04 – – – – – – 4.41E-05 – –

GO:0051252 regulation of RNA metabolic process 1.30E-03 – – – – – – – – 2.16E-02

GO:0048522 positive regulation of cellular process 5.54E-07 5.57E-06 5.00E-03 8.70E-03 – – – 1.44E-07 1.40E-04 –

GO:0048519 negative regulation of biological process – – – 8.70E-03 9.40E-04 3.38E-02 2.88E-06 – – –

hsa-mir-107 GO:0051172 negative regulation of nitrogen compound

metabolic process

5.54E-07 – – – – – 2.31E-06 - 6.70E-05 –

GO:0048518 positive regulation of biological process 1.17E-06 1.07E-05 – – – – – 2.42E-07 – –

GO:0080090 regulation of primary metabolic process 1.31E-06 – – – – – – – – 9.80E-04

GO:0044237 cellular metabolic process – 1.07E-02 – - – – 4.46E-05 2.30E-04 – –

GO:1901576 organic substance biosynthetic process – 1.07E-02 – – – – 4.46E-05 – – –

hsa-mir-378 GO:0044249 cellular biosynthetic process – 1.07E-02 – – – – 4.46E-05 – – –

GO:0034645 cellular macromolecule biosynthetic process – 1.07E-02 – – – – – – – 1.25E-02

GO:0009058 biosynthetic process – 1.07E-02 – – – – 1.45E-05 – – –

GO:0071495 cellular response to endogenous stimulus – 4.66E-05 – – – 2.21E-05 7.70E-04 – 8.10E-03 –

GO:1901701 cellular response to oxygen-containing

compound

– 4.40E-04 – – – 3.10E-04 7.70E-04 – – –

hsa-mir-

133a

GO:0071417 cellular response to organonitrogen compound – 7.30E-04 – – 8.70E-03 3.10E-04 – – – –

GO:0048518 positive regulation of biological process – – – 5.00E-03 8.70E-03 – – – – 9.23E-05

GO:0065008 regulation of biological quality – – 1.50E-03 – – – 7.70E-04 – – –

GO:0007049 cell cycle 1.76E-09 8.75E-06 – – 6.45E-08 – 2.12E-06 4.40E-04 – 9.80E-04

GO:0051276 chromosome organization 1.52E-07 3.59E-05 – – 9.12E-07 – 5.41E-07 7.92E-05 – –

hsa-mir-1 GO:0006261 DNA-dependent DNA replication 4.12E-08 1.40E-04 – – – – 6.25E-07 – – –

GO:0022402 cell cycle process 4.03E-07 – – – 2.18E-06 – – 1.70E-03 – –

GO:0006259 DNA metabolic process – 1.70E-04 – – 5.77E-06 – 5.41E-07 – – –

GO:0010033 response to organic substance – 1.03E-02 5.58E-05 – – – – – 1.97E-05 –

GO:0060255 regulation of macromolecule metabolic process 3.20E-04 – – 1.20E-04 – – – – – –

hsa-mir-30c GO:0070887 cellular response to chemical stimulus – 1.03E-02 2.00E-03 – – – – – – –

GO:0016192 vesicle-mediated transport – 1.03E-02 – – – 3.60E-03 – – – –

GO:0002376 immune system process – 1.03E-02 – – – – 2.05E-05 – – –

GO:0051239 regulation of multicellular organismal process 4.64E-05 5.02E-08 – – – – – – – –

GO:0048731 system development 4.10E-04 – – – – – 5.33E-08 – – –

hsa-mir-16 GO:0045595 regulation of cell differentiation 4.10E-04 – – – – – 2.61E-08 – – –

GO:0050793 regulation of developmental process – 1.11E-07 – – – – 2.61E-08 – – –

(Continued)
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TABLE 8 | Continued

FDR-corrected p-value

miRNA GO biological process BLCA BRCA COAD GBM HNSC KIRC LUAD LUSC OV UCEC

GO:2000026 regulation of multicellular organismal

development

– 1.29E-07 – – – – – – 1.50E-03 –

GO:0071840 cellular component organization or biogenesis – – – – 1.30E-04 – 6.20E-03 1.02E-06 – 2.04E-02

GO:1903047 mitotic cell cycle process – 1.99E-02 – – – – 6.20E-03 8.40E-06 – –

hsa-mir-30a GO:0090304 nucleic acid metabolic process – – – 6.20E-04 – – – – – 2.73E-02

GO:0071310 cellular response to organic substance – – – – – 1.90E-03 – – 3.20E-03 –

GO:0006260 DNA replication – – – – – – – 6.33E-06 – 2.04E-02

GO:0080090 regulation of primary metabolic process – – – – – – 1.35E-02 2.20E-03 – –

GO:2000727 positive regulation of cardiac muscle cell

differentiation

1.05E-02 – – – – – – – – –

hsa-let-7i GO:1904705 regulation of vascular smooth muscle cell

proliferation

1.05E-02 – – – – – – – – –

GO:0071900 regulation of protein serine/threonine kinase

activity

1.05E-02 – – – – – – – – –

GO:0061061 muscle structure development 1.05E-02 – – – – – – – – –

GO:0007049 cell cycle 1.13E-13 1.08E-08 – – 2.65E-11 – 1.14E-08 1.16E-13 – 2.32E-09

GO:0000278 mitotic cell cycle 1.72E-13 1.08E-08 – – 4.26E-13 7.08E-05 2.78E-10 1.17E-12 – –

hsa-mir-24 GO:1903047 mitotic cell cycle process 1.16E-11 4.56E-08 – – 1.04E-10 7.08E-05 6.94E-10 1.17E-12 – –

GO:0022402 cell cycle process 3.15E-11 – – – 5.20E-11 9.55E-05 2.75E-07 9.89E-13 – –

GO:0044772 mitotic cell cycle phase transition 2.15E-10 4.56E-08 – – – 4.86E-10 1.51E-11 – –

GO:0060255 regulation of macromolecule metabolic process 3.22E-06 2.03E-05 8.31E-07 6.89E-05 1.30E-03 5.67E-06 2.05E-05 1.88E-06 1.03E-05 9.40E-04

GO:0080090 regulation of primary metabolic process 3.22E-06 2.03E-05 8.31E-07 – – – 5.80E-05 2.99E-06 1.19E-05 9.40E-04

hsa-mir-95 GO:0051171 regulation of nitrogen compound metabolic

process

3.22E-06 2.03E-05 8.31E-07 – – 9.97E-06 5.80E-05 2.99E-06 1.19E-05 –

GO:0050789 regulation of biological process 9.66E-07 – 1.93E-07 6.89E-05 1.30E-03 9.97E-06 – – 4.16E-06 –

GO:0065007 biological regulation 3.22E-06 – 8.31E-07 6.89E-05 1.30E-03 – – – 1.19E-05 9.40E-04
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Sarkar et al. Identification of miRNAs for Diverse Cancer Types

TABLE 9 | Association of top 30 proteins in 10 cancer types for the 17 selected miRNAs through their targets.

Node degree of protein in 10 cancer types Total

degree

Association

count

TF BLCA BRCA COAD GBM HNSC KIRC LUAD LUSC OV UCEC

MYC 34 28 41 85 33 133 54 25 38 32 503 10

VEGFA 23 10 15 53 23 18 36 36 48 39 301 10

AKT1 17 59 50 16 54 32 0 16 17 8 269 9

RRM2 17 28 0 11 21 23 30 32 10 10 182 9

CDK1 23 31 10 13 21 0 21 30 0 24 173 8

CDKN1A 20 19 17 15 15 18 20 17 8 10 159 10

UHRF1 18 29 1 7 21 23 25 14 0 5 143 9

CHEK1 24 22 0 0 21 0 24 28 0 22 141 6

H2AFX 32 16 9 0 10 0 16 21 8 24 136 8

MCM10 20 22 0 0 19 11 20 23 0 18 133 7

POLD1 33 26 0 0 15 14 16 30 0 0 134 6

IL6 11 12 7 29 8 0 15 15 14 16 127 9

RHOA 11 15 9 0 0 8 30 18 22 12 125 8

PCNA 20 26 0 0 0 0 25 40 0 17 128 5

DTL 13 18 0 3 12 13 13 23 10 16 121 9

CCNF 6 18 5 14 7 18 18 14 19 0 119 9

BRCA1 27 12 0 0 25 12 7 25 12 0 120 7

CDC42 8 0 22 17 0 13 12 23 0 19 114 7

PTEN 15 10 7 9 3 0 25 25 18 0 112 8

YWHAZ 5 12 13 9 27 4 11 13 7 3 104 10

PAICS 7 19 0 5 9 0 23 27 1 4 95 8

PIK3R1 7 19 7 7 10 0 16 8 9 5 88 9

UBA52 11 0 8 10 0 16 18 16 0 8 87 7

CTGF 11 12 10 8 5 4 16 13 5 0 84 9

KIF4A 17 15 0 0 10 8 15 11 10 0 86 7

MTOR 9 8 9 0 9 14 7 9 8 8 81 9

UBE2C 13 13 0 0 11 8 12 15 0 11 83 7

KIF2C 16 15 0 0 11 0 16 12 9 0 79 6

KIF18B 11 11 0 0 11 8 11 12 0 11 75 7

CHAF1B 10 13 0 4 12 0 12 9 5 2 67 8

covariance matrix adaptation evolutionary strategy (CMA-ES),
forward selection (FS), and a classification technique. Features
are reordered using SNE by performing clustering of highly
correlated features. From the result of the clustering, a subset of
features is randomly selected to performmulti-class classification
on 10 cancer types. Although the features are randomly selected,
the underlying classification task is treated as an optimization
problem for CMA-ES in order to find the features automatically.
Thereafter, a final set of features/miRNAs is obtained using
forward selection. The results of the first part of SCES-FS have
been compared with the results of some well-known feature
selection methods, including ESVM-RFE, LASSO, NSGA-II-
SE, MOGA, SVM-nRFE, SVM-RFE, CMIM, ICAP, SCAD, JMI,
CIFE, mRMR, FSCOX, DISR, SNRs, and RankSum, as well as the
result with all features, in terms of classification accuracy. The
SCES-FS method selected 17 putative miRNAs associated with
10 cancer types and achieved higher classification accuracy than
the other methods. Using the 17 selected miRNAs, a web-based
multi-class cancer predictor application has been developed.

These selected miRNAs are used in the second part of the
proposed method, which employs Cox regression analysis
to examine their importance with respect to survival of
particular types of cancer. The analysis uses data on expression
of the 17 selected miRNAs together with clinical data. A
high Cox coefficient value signifies the importance of an
miRNA for a particular cancer type. For example, it is
found that hsa-mir-375 has the highest Cox coefficient,
0.9882, for the glioblastoma multiform cancer type. Similar
results were obtained for other miRNAs, associated with
different cancer types. The up- and down-regulations of
the 17 selected miRNAs have been computed based on the
ANOVA test. Furthermore, network analysis, expression
analysis using hierarchical clustering, KEGG pathway analysis,
GO enrichment analysis, and PPI network analysis have
been performed to assess the biological significance of
the selected miRNAs. The network analysis revealed the
association of different cancer types with each pair of
miRNA and its target mRNA. The hierarchical clustering
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FIGURE 5 | PPI network of top 30 proteins associated with 10 cancer types, with p-value< 1.0E-16 and average node degree 13.7.

analysis demonstrated the effective changes in expression
levels of the miRNAs between tumor and normal samples.
Both the KEGG and GO enrichment analyses reveals the
significant pathways and biological functions in different
cancer types. Moreover, using PPI networks, key cancer
regulators such as MYC, VEGFA, AKT1, CDKN1A, RHOA,
and PTEN are identified. All these evidences suggest that our
selected miRNAs play key roles in the development of 10
different types of cancer. A future research direction is the
integration of multi-omics data for finding effective regulators
pan-cancer biomarkers.
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