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a b s t r a c t 

Chickpea ( Cicer arietinum L.) is the second most important grain legume worldwide. Recent advances in the 

sequencing of the chickpea genome has provided a new and valuable resource to aid effort s in gene discovery and 

crop trait improvement. Technical difficulties in stable chickpea transgenics and the lack of a transient expression 

system for rapid analysis of gene expression and function; however, has limited the usefulness of this genomic 

resource. As a step toward alleviating this limitation, we report here the development of a simple and efficient 

transient gene expression protocol. Using leaves from chickpea seedlings, we have established a procedure that 

enables the generation of large quantities of vital chickpea protoplasts within only a few hours. In addition, 

we have optimized a PEG-calcium-mediated transfection method to efficiently deliver exogenous DNA into the 

chickpea protoplast. The current study is the first to present a detailed step-by-step procedures for protoplast 

isolation, evaluation, transfection, and application in chickpea. In addition, we optimize the transfection efficiency 

which has not been previously reported. Our protoplast transfection approach provides a platform that will allow 

rapid high-throughput screening and systematic characterization of gene expression and function. Knowledge 

gained through such studies will benefit current effort s to improve chickpea production and quality. 

• Modified enzymatic digestion solution for higher yield and viability. 
• Optimize transfection of chickpea protoplasts. 
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Specifications table 

Subject Area: Biochemistry, Genetics and Molecular Biology 

More specific subject 

area: 

Plant Molecular Biology 

Method name: Isolation and transfection of Chickpea protoplast 

Name and reference of 

original method: 

Shu Y, Huang L, Chen M, Tao Y, Wang Z, Ma H. Establishment and optimization of systems 

for protoplasts isolation of soybean and chickpea that used in subcellular location. 

Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology. 2017;33:976–85. doi: 

10.13345/j.cjb.170086 . 

Resource availability: NA 

Method details 

Reagents 

Cellulase Onozuka R-10 (PhytoTechnology Laboratories, Shawnee Mission, KS, USA). 

Macerozyme R-10 (A mixture of Pectinase, Cellulase and Hemicellulase; PhytoTechnology 

Laboratories). 

2-(N-Morpholino)ethanesulfonic acid hydrate (MES, Sigma-Aldrich, St. Louis, MO, USA, Cat. no. 

M8250). 

D-Mannitol (Sigma-Aldrich, Cat. no. M1902). 

Polyethylene glycol 40 0 0 (PEG, Sigma-Aldrich,Cat. no. 95904). 

Potassium chloride (KCl, Sigma-Aldrich, Cat. no. P3911). 

Calcium chloride dihydrate (CaCl 2 2H 2 O, Sigma-Aldrich,Cat. no. C7902). 

Sodium chloride (NaCl, EMD, Merck, Kenilworth, N.J., USA). 

Magnesium chloride hexa-hydrate (MgCl 2 .6 H 2 O, VWR, Missouri, TX, USA, BDH-0244,). 

DL-Dithiothreitol (DTT, Sigma-Aldrich, Cat no. D0632). 

Propidium iodide (PI, Sigma-Aldrich, Cat. no P4170). 

Fluorescein diacetate (FDA, Sigma-Aldrich, Cat. no. F7378). 

Acetone (Sigma-Aldrich, Cat. no. 650501). 

Bovine serum albumin (BSA, EMD, Merck). 

Calf serum (Gibco, Thermo Fisher Scientific, Waltham, MA USA). 

Phosphate buffered saline (PBS, Gibco, Thermo Fisher Scientific). 

QIAprep Spin Miniprep Kit (QIAGEN, Germantown, MD, Cat. no. 27104). 

Reagents setup 

Enzyme solution (Digestion solution): Prepare 5 mM MES (pH 6.0) containing 1% (w/v) cellulase 

R-10, 0.8% (w/v) macerozyme R-10, 0.55 M d -Mannitol, 0.2 mM CaCl 2 , 0.5 mM DDT and 0.1% (w/v)

BSA. Warm the solution at 55 °C for 10 min to inactivate DNase and proteases, and then cool it to

room temperature before use. The enzymatic digestion solution should be freshly prepared. 

W5 solution: 2 mM MES (pH 6.0), 154 mM NaCl, 125 mM CaCl 2 , and 5 mM KCl. The prepared W5

solution can be stored at 4 °C. 

MMg solution: 4 mM MES (pH 6.0), 0.4 M d -Mannitol, and 15 mM MgCl 2 . The prepared MMg

solution can be stored at room temperature. 

WI solution: 4 mM MES (pH 6.0), 0.5 M d -Mannitol, and 20 mM KCl. The prepared WI solution can

be stored at room temperature. 

PEG–calcium transfection solution: 20%, 30%, 40%, and 50% (w/v) PEG40 0 0, 0.2 M d -Mannitol, and

100 mM CaCl 2 . PEG solution should be always freshly prepared. 

Plate coating solution: 5% (v/v) sterile calf serum in 1x PBS. The solution should be stored at 4 °C.

PI solution: The stock solution is 1 mg ml −1 in H 2 O and should be stored at 4 °C. The final

concentration is 5 μg ml −1 . 

FDA solution: The stock solution is 25 mg ml −1 in acetone and should be protected from light and

stored at −20 °C. The working solution is 50 μg ml −1 . 

https://doi.org/10.13345/j.cjb.170086
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quipment 

Single edge industrial razor blades (VWR, Missouri, TX, USA, Cat no. 55411-050). 

Fluorescence microscope (Olympus CKX41, Olympus, Center Valley, PA, USA). 

Confocal laser scanning microscope (Leica SM8, Leica, Wetzlar, Germany). 

Bench Centrifuge with swinging-bucket rotor (Sovrall Legend RT, Kendro Laboratory Products,

Newtown, CT, USA). 

Centrifuge 5415 R (Eppendorf, Hamburg, Germany). 

Orbital Incubator shaker for bacterial growth (GyroMax 737, Amerex Instruments Inc, Concord, CA,

USA). 

Orbital shaker for protoplast digestion (New Brunswick Scientific, Edison, NJ). 

pH meter (Accumet AE150, Fisher Scientific). 

14-ml polystyrene round-bottomed tube (Becton, Dickinson Labware, NJ, USA). 

Cell Strainer, (70 μm nylon mesh, Fisher Scientific, Cat. no. 22363548,). 

12-well Falcon Plates (Cat. no. 351143, Corning Incorporated, Corning, NY. USA). 

Petri dishes (60 × 15 mm, cat. no. 430196, Corning Incorporated). 

Glass bottom dish (35 mm dish with 14 mm bottom well, In Vitro Scientific, Cat. no. D35-14-1-N). 

Bright-Line Hemocytometer (Sigma-Aldrich, Cat. no. Z359629). 

Microscope cover glass (VWR, Cat. no. 4836 60 67). 

Vacuum desiccator (Bel-Art Products, Pequannock, NJ, USA, Cat. no. F42027). 

Vacuum pump (Welch vacuum, Thomas Industries Inc., Skokie, IL, USA). 

rotocol 

1. Growth of the chickpea plants 

(1) 4–6 chickpea seeds (CDC Frontier) were sown on commercial soil (Pro-Line, growing mix, C/20,

olly Gardener, Oldcastle Lawn & Garden, Inc., ME, USA) in 16 cm pots and grown in the greenhouse

nder long-day growing condition (16/8 h photoperiod; light range from 686 to1400 μmolm 

−2 s −1 ) at

6/18 °C for 2–4 weeks ( Fig. 1 A). 

Critical: Healthy chickpea plants grown without biotic or abiotic stresses are important for

rotoplast isolation and high transfection efficiency. 

2. Preparation of plasmid DNA 

(1) E. coli (TOP10) transformed with pRTL2-GFP [1] , pRTL2-GFP-CXIP4 [1] , or pRTL2-AtGrxS16-GFP

[2] constructs were grown in 20 mL Luria–Bertani (LB) liquid medium supplemented with

100 μg mL −1 ampicillin. The cultures were grown in a 100 mL flask with shaking at 160 rpm at

37 °C for 14 h to an OD = 2.0. 

(2) Plasmid DNA was extracted and purified from E. coli using the QIAprep Spin Miniprep Kit

following the manufacturer’s procedure. The plasmid DNA concentration was adjusted to 0.5 μg

μL −1 for transfection. 

Critical: High concentrations of purified supercoil plasmid DNA are crucial for protoplast

ransfection. Using commercial plasmid DNA purification kit, like QIAGEN kits, is recommended. 

3. Protoplast isolation from chickpea leaves 

(1) 0.5 g of fully expanded leaves was harvested from 2 to 3 week old chickpea seedlings ( Fig. 1 B).

Critical: Using leaves harvested from the middle leaf position of a young chickpea plant is key to

uccessful chickpea protoplast isolation and transfection. 

(2) Leaves (entire leaflet) were cut into 0.5–1.0 mm strips using a razor blade and transferred to a

petri dish containing 5 mL of freshly prepared digestion solution ( Fig. 1 C). 

(3) The petri dish containing the leaf strips was placed in the vacuum desiccator, connected to a

vacuum pump, and vacuumed infiltrated for 20–30 min at room temperature. 

Critical: Infiltration of leaf tissues is critical for the quick release and yield of mesophyll

rotoplasts. 
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Fig. 1. A flowchart depicting the chickpea protoplast isolation procedure. ( A ) Three week old chickpea plants. Scale bar = 5 cm. 

( B ) Harvested chickpea leaves. Scale bar = 5 mm. ( C ) Enzymatic digestion of chickpea leaves. Scale bar = 1 cm. ( D ) Isolated 

chickpea protoplasts. Scale bar = 25 μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4) Leaf strips were incubated in the digested solution at room temperature with gentle shaking

(50 rpm) under low light for 2–3 h. 

Critical: Monitor the digestion process using a light microscope ( Fig. 1 D). The released protoplasts

look spherical, while the undigested cells appear more irregular in shape. Avoid over digestion and

long incubation times. 

(5) Leaf digestion was terminated by first mixing 5 mL of W5 solution into the leaf digestion

mixture. Next, this entire mixture was gently passed through a clean 70 μm nylon mesh.

This filtering process allowed the removal of the undigested leaf tissues and debris while the

released protoplasts passed through the mesh. 

(6) The digested protoplast were transferred to 14-mL round-bottom tube using a wide-end tip 

pipet and the tube centrifuged in a swinging-bucket rotor at 100 × g for 4 min at room

temperature. 

Critical: Set centrifuge acceleration and deceleration rates at the lowest setting to minimize 

protoplast damage during the centrifugation. Using the round-bottom tube and swinging-bucket rotors 

are highly recommended. 

(7) The supernatant was slowly removed without disturbing the protoplast pellet. Then the 

protoplast pellet was gently resuspended using 10 mL of cold W5 solution. The resuspended

protoplast mixture was kept on ice for 30 min. 

Critical: During protoplast resuspension slowly add 1 mL of W5 solution first along the side of

tube and rotate the tube to release the protoplasts from the pellets before adding the additional 9 mL

of W5 solution. 

(8) Protoplast yields were determined using a hemocytometer and a light microscope. 

(9) Protoplasts viability was assessed by staining with FDA and PI fluorescent dyes. 5 μL of PI stock

solution and 4 μL of FDA stock solution were separately mixed into 1 mL of 0.55 M mannitol.

10 μL of each dye solution was then added to 20 μL of the protoplast mixture, and visualized
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using confocal microscopy. Living protoplasts stained with FDA showed a green fluorescence

while dead protoplasts stained with PI displayed a red fluorescence (nuclei). 

(10) After incubating the protoplast mixture on ice for 30 min the mixture was centrifuged at

100 × g for 4 min at room temperature and the W5 solution removed using a 1 mL pipette

without disturbing the protoplast pellets. 

(11) The protoplast pellet then was gently resuspended in MMg solution to a concentration of

1 × 10 6 protoplast mL −1 . Protoplast viability was determined as described in Step 9. 

Critical: Chickpea mesophyll protoplasts appear to be sensitive to MMg solution. Thus, it is

ighly recommended to minimize exposure to this solution by proceeding to PEG-calcium mediated

ransfection as soon as possible. 

4. PEG-calcium mediated protoplast transfection 

(1) 200 μL of protoplasts (2 × 10 5 protoplasts at 1 × 10 6 mL −1 ) were aliquoted into 14 mL round-

bottom tubes. One aliquot was set aside to serve as negative control. 

(2) 10 or 20 μL of plasmid (5 or 10 μg) was gently mixed into each aliquot of protoplasts. 

Critical: The size of plasmid DNA construct impacts the transfection efficiency. Smaller size

onstructs have a better transfection efficiency than larger size constructs. Thus, the amount of

lasmid DNA used should be optimized empirically. 

(3) 210 or 220 μL of freshly prepared PEG-Calcium solution was slowly added down the side of the

tube and then gently rotated to mix well. 

Critical: The concentration of PEG-calcium solution should be optimized empirically. 

(4) The transfection reaction was incubated in the dark at room temperature for 15 min. 

Critical: The incubation time should be optimized empirically. 

(5) After incubation, 950 μL of W5 solution was slowly added to each tube, and then gently mixed

well. 

(6) The tubes were centrifuged at 100 × g for 4 min at room temperature. After centrifugation the

supernatant then was carefully removed using a pipette. 

(7) The transfected protoplast pellets then were gently resuspended in 1 mL of WI solution. 

5. Protoplast incubation and harvest 

(1) One mL of 5% (v/v) sterile calf serum was added into each well of a 12-well tissue culture plate

to coat the surface and prevent the protoplasts from sticking to the plate surface. After a 1 min

incubation the coating solution was aspirated. 

(2) The protoplasts from each tube was transferred to each well of the culture plate. The plate was

covered and the lid sealed with the surgical tape. 

(3) The protoplasts were incubated at room temperature for 12–18 h in the dark. 

Critical: Chickpea mesophyll protoplasts in WI solution can live for at least 24 h. In general, longer

ncubation times (16–18 h) usually yields stronger fluorescent signals. 

(4) The protoplasts then were collected by transferring the protoplast solution to 14 mL round-

bottom tubes and centrifuging at 100 × g for 4 min at room temperature. 

(5) Most of the supernatant was removed and the protoplasts resuspended in the residual

supernatant harvested using a wide-end pipette. 

6. Imaging of fluorescent signals 

(1) 50 μL of transfected protoplasts were transferred to a glass bottom dish and covered with a

glass coverslip. 

(2) The fluorescence signals were detected at 510 nm (excitation at 488 nm) for GFP or FDA,

582 nm (excitation at 543 nm) for PI, and 660 nm (excitation at 633 nm) for chlorophyll using

Leica SM8 confocal laser-scanning microscope. 
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Fig. 2. Protoplast viability during preparation and transfection. ( A ) Major steps for protoplast transfection. (B-D) Protoplast 

staining with FDA and PI. Living protoplasts stained green (FDA) while dead protoplasts were stained red (PI, arrows). Scale 

bar = 250 μm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method validation 

Reliable transient expression systems have proven invaluable in the study of gene expression, 

gene function, protein localization, and protein–protein interactions. Such expression systems are 

especially important in plants, such as chickpea, that lack a simple and efficient method of stable plant

transformation. Thus, we report here the establishment of a fast and reliable protocol for transient

gene expression in chickpea. With the recent advances in chickpea genome sequencing [3 , 4] such a

protocol is needed to help expedite effort s in gene discovery and crop trait improvements. 

Protoplast isolation 

Young fully expanded leaves ( Fig. 1 A and B) were selected as source tissue for chickpea protoplast

preparations. Leaf pieces were digested with a mixture of cell wall degrading enzymes resulting in

the release of large quantities of mesophyll protoplasts (1.36 ±0.2 × 10 7 protoplasts) from just a few

hundred mg of source tissue ( Fig. 1 D and Fig. 2 ). Protoplasts isolated from more mature leaves (more

than 4 weeks) is possible, however, use of this older source tissue resulted in lower protoplast yields

compared to preparations conducted utilizing younger source leaves (data not shown). 

Protoplast viability 

Viability of the isolated chickpea protoplasts was monitored at different steps in the transfection

process ( Fig. 2 A). The two dyes, FDA and PI, were utilized to distinguish between viable and nonviable

protoplasts, respectively [5] . Viability of the protoplasts released from the digestion of the source

leaves was determined to be 91.4 ± 0.9% after washing and resuspension in W5 solution ( Fig. 2 B). This

finding is similar to the percentages reported in protoplast preparation conducted in other legumes 

[6–9] . In preparation for transfection the protoplast were next re-suspended in MMg solution. Staining

of this cell population revealed a 73% viable protoplast population ( Fig. 2 C). Upon completion of the

transfection procedure vital staining indicated that about 60% of the protoplasts remained intact and 

viable ( Fig. 2 D). This observed decline in protoplast viability at each step in the transfection process

has been similarly reported [5] . 
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Fig. 3. Efficiency of chickpea protoplast transfection. Chickpea protoplasts were transfected with 10 μg of pRTL2-GFP using 

different concentrations (20%, 30%, 40%, and 50%) of PEG. Confocal images visualizing GFP fluorescence (left), chloroplasts auto- 

fluorescence (middle) and the two fluorescent signals merged (right). The transfection efficiency was assessed by the number of 

GFP fluorescent protoplasts. Fluorescent signals of GFP fusion proteins were imaged 16 h after transfection. Scale bars = 250 μm. 
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Fig. 4. Subcellular localization of protein markers. ( A ) Nuclear localization of CXIP4-GFP fusion protein in chickpea protoplasts. 

( B ) Chloroplast localization of GrxS16-GFP fusion in chickpea protoplasts. Fluorescent signals of GFP fusion proteins were 

imaged 16 h after transfection. Scale bars = 10 μm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protoplast transfection 

It has been reported that the concentration of PEG used in protoplast transfection is a critical

factor in determining transfection efficiency [10–13] . Thus, using a GFP expression construct driven

by the 35S CAMV promoter (pRTL2-GFP) [1] , we assessed the efficiency of chickpea transfection using

different concentrations of PEG (from 20% to 50%). Previous reports demonstrated that greater than a

50% transfection rate was achieved in soybean and Medicago protoplasts [8 , 9] using 20% PEG while

in other legumes such as common bean ( Phaseolus vulgaris ), the use of a 40% PEG solution was found

to result in the highest transfection efficiency [6] . Optimization of chickpea protoplast transfection;

however, has yet to be reported. As shown in Fig. 3 , we determined that the use of a 30% PEG solution

resulted in the highest transfection efficiency in chickpea with more than a 50% transfection efficiency.

In addition, we determined that the amount of plasmid DNA used for protoplast transfection also

influenced the transfection efficiency. The use of 10 μg of plasmid DNA ( Fig. 3 ) resulted in higher

transfection efficiency than 5 μg of plasmid DNA (S1 Fig). This finding of higher transfection efficiency

with larger amounts of plasmid DNA is consistent with the findings reported in a study using soybean

protoplasts [9] . 

Subcellular protein localization 

To determine whether the prepared chickpea protoplasts were suitable for subcellular localization 

studies, nuclear and plastid target marker proteins were expressed in the prepared protoplasts. As 

shown in Fig. 4 , transfection of the chickpea protoplasts with a construct encoding a GFP fusion to

CXIP4 was successfully expressed and targeted to the nucleus of the chickpea cell. CXIP4 has been

shown to contain a nuclear localization signal [1 , 2] and this gene is conserved in different plants (S2

Fig). Transfection of a construct encoding a GFP fusion to GrxS16 resulted in a marker protein localized

to the chloroplast within the chickpea cell. GrxS16 proteins from different plants all contain a plastid

targeting transit peptide [1 , 2] and are also conserved among plants (S2 Fig). Although heterologous

expression systems have proven useful in a number of protein localization studies there have been

instances of mislocalization and therefore misinformation [14–16] . Thus, use of homologous systems 

are preferred whenever possible. Overall, the findings from this study demonstrate that this transient 

gene expression protocol is suitable for conducting protein localization studies in chickpea. 
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onclusions 

Transient expression systems have proven useful in rapid high-throughput screening and

ystematic characterization of genes and proteins in many plants. Such transient expression systems

re especially important in plants where stable transformation protocols are time consuming and/or

nefficient. It is our hope that the transient chickpea expression system presented in this report will

e employed as a tool to help harness the increasing amounts of available genomic data and will

e applied toward efforts to expedite gene discovery and crop trait improvements in this important

egume. 
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