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Purpose: To develop an artificial intelligence (AI)–based structure-function (SF) map
relating retinal nerve fiber layer (RNFL) damage on spectral domain optical coherence
tomography (SDOCT) to functional loss on standard automated perimetry (SAP).

Methods: The study included 26,499 pairs of SAP and SDOCT from 15,173 eyes of 8878
patients with glaucoma or suspected of having the disease extracted from the Duke
Glaucoma Registry. The data set was randomly divided at the patient level in training
and test sets. A convolutional neural network (CNN) was initially trained and validated
to predict the 52 sensitivity threshold points of the 24-2 SAP from the 768 RNFL thick-
ness points of the SDOCT peripapillary scan. Simulated localized RNFL defects of varied
locations and depths were created bymodifying the normal average peripapillary RNFL
profile. The simulated profiles were then fed to the previously trained CNN, and the
topographic SF relationships between structural defects and SAP functional losses were
investigated.

Results: The CNN predictions had an average correlation coefficient of 0.60 (P < 0.001)
with the measured values from SAP and a mean absolute error of 4.25 dB. Simulated
RNFL defects led towell-defined arcuate or paracentral visual field losses in the opposite
hemifield, which varied according to the location and depth of the simulations.

Conclusions: A CNN was capable of predicting SAP sensitivity thresholds from SDOCT
RNFL thickness measurements and generate an SF map from simulated defects.

Translational Relevance: AI-based SFmap improves the understanding of how SDOCT
losses translate into detectable SAP damage.

Introduction

Glaucoma is a progressive optic neuropathy in
which structural damage to the optic nerve and
retinal nerve fiber layer (RNFL)1 is often accompa-
nied by characteristic patterns of visual field defects.
Understanding the consequences of structural damage
on visual function (i.e., the structure-function [SF]
relationship) is essential to allow proper diagnosis of
glaucoma and discrimination from other diseases that

may affect the visual system, as well as to provide
prognostic information.

Previous attempts to map the SF relationship in
glaucoma havemostly relied on oversimplified assump-
tions or on relatively small samples. For example, in
a study by Garway-Heath et al.,2 localized RNFL
defects seen on red-free photographs were mapped to
the location of points on standard automated perime-
try (SAP) in 63 patients. The authors then built a
correspondence map of structure and function, which
has been widely used and validated in clinical practice.
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The Garway-Heath map relied on subjective detection
of visible RNFL defects on photographs. However,
experimental and clinical studies have shown that
such defects only appear when a substantial propor-
tion of the RNFL has been lost.3,4 In addition,
due to the limited number of eyes available in
the study and the difficulties in visualizing RNFL
defects in certain regions around the optic nerve,
certain topographic relationships may have been left
underappreciated.

Imaging of the RNFL with spectral-domain optical
coherence tomography (SDOCT) is able to provide
reproducible and quantitative assessment of theRNFL
to a much greater degree than what is possible by
assessing red-free RNFL photographs. Many previ-
ous studies have assessed the relationship between
SDOCT and SAP.5–7 However, given the large amount
of data provided by these tests, it can be difficult to
apply conventional statistical tools to adequatelymodel
relevant SF relationships. Recently, neural networks
and other artificial intelligence (AI) algorithms have
been shown to successfully model complex, nonlinear
relationships in data from diverse medical fields.8–12
In particular, convolutional neural networks (CNNs)
are able to take advantage of spatial information to
identify underlying relationships that may not be easily
discerned by conventional methods. A few studies
have attempted to use AI algorithms to predict visual
field results from SDOCT measurements, with good
results.13–16 In one study, Guo et al.13 showed that SAP
sensitivity thresholds could be reasonably predicted
from RNFL and ganglion cell and inner plexiform
layer thicknesses. Using SDOCT volume scans of optic
nerve head and macula, Maetschke et al.14 were able
to predict visual field global metrics, such as mean
deviation and visual field index. These studies were in
general concerned about how well the SAP sensitivity
thresholds, predefined sectors, or global metrics could
be approximated by SDOCT data but did not evalu-
ate the topographic mapping and spatial relationship
between structural and functional damage, which is by
itself another important issue.

We hypothesized that once an AI model is trained
to predict SAP sensitivity thresholds, one could obtain
topographical information of the SF relationship by
simulating RNFL defects of varying characteristics
and observing their impact on SAP results. This
would allow a more complete investigation of the
effects of structural damage seen on SDOCT on
visual function as measured by SAP. To that effect,
in this study, we developed and validated a CNN
that predicts SAP sensitivity thresholds from peripap-
illary SDOCT RNFL thickness measurements in a
large clinical cohort of patients with glaucoma and

suspected of disease. We then applied an innova-
tive simulation approach that allowed us to charac-
terize the impact of the extension and depth of
SDOCT RNFL defects on SAP results, providing
important information on the SF relationship in
glaucoma.

Methods

This was a retrospective study that used cross-
sectional data from the Duke Glaucoma Reposi-
tory, a database of electronic medical and research
records at the Vision, Imaging, and Performance
Laboratory at Duke University. The institutional
review board approved this study, and a waiver of
informed consent was granted due to the retro-
spective nature of this work. All methods adhered
to the tenets of the Declaration of Helsinki for
research involving human participants, and the study
was conducted in accordance with regulations of
the Health Insurance Portability and Accountability
Act.

Patients had a diagnosis of glaucoma or were
suspected of having glaucoma and completed at least
one SDOCT and one SAP visit within 180 days of each
other. Patients who had procedures (e.g., panretinal
photocoagulation) or other diseases that could impact
the RNFL thickness measurements from SDOCT or
visual field (e.g., retinal detachment, optic neuritis,
proliferative diabetic retinopathy, intraocular tumors,
vascular occlusions) were excluded. Patients younger
than 18 years were also excluded. An additional group
of 1827 SDOCT tests from 463 eyes of 235 healthy
individuals was included in the study to represent
the normal RNFL thickness profile in the structure-
function map.

The visual field tests were performed using SAP
with the 24-2 Swedish Interactive ThresholdAlgorithm
(Carl Zeiss Meditec, Inc., Dublin, CA, USA) proto-
col. Unreliable tests with more than 33% fixation
losses or more than 15% false-positive errors were
excluded. After excluding the two points around the
blind spot, the 52 sensitivity thresholds for each test
were extracted.

RNFL thickness was collected from peripapillary
RNFL scans, acquired using the Spectralis SDOCT
(version 5.4.7.0; Heidelberg Engineering, GmbH,
Dossenheim, Germany). The software provides
measurements of the RNFL at 768 evenly spaced
points in a circle of 3.45 mm of diameter positioned
around the center of Bruch’s membrane opening.
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Tests with a quality score lower than 15 were excluded
according to manufacturer recommendations.

CNN Algorithm

A CNN was developed to predict the 52 SAP
sensitivity threshold values from the 768 peripapillary
RNFL thickness points in SDOCT. Development and
training of the algorithm were performed in Python,
within Keras.17 The data set comprised a total of
26,499 pairs of SAP and SDOCT tests from 15,173
eyes of 8878 patients taken within an interval of 180
days. Of those, a set of 4494 pairs, from 1873 eyes
of 1017 patients who were not included in the devel-
opment of the CNN, was reserved to test the perfor-
mance of the algorithm. The remaining 22,005 pairs
were used for training and fine-tuning/validation of the
model. Importantly, all randomizations between sets
were performed at the patient level, so that no patient
was present in more than one set.

The CNN had two hidden layers with one-
dimension convolutional filters, which preserve the
spatial relationship of the input data. The convolu-
tional layers had 32 and 64 kernels of size 3. They were
followed by two fully connected layers, with 54 and 52
nodes each. A nonlinear activation function (rectified
linear unit) was applied after each hidden layer. The
last fully connected layer, of size 52 (for each sensi-
tivity threshold value in the 24-2 SAP), had an output
with a linear activation. The algorithmwas trainedwith
stochastic gradient descent, optimized by the Adam
algorithm.18 The initial learning rate was 1 × 10–3 and
the algorithm was trained for 100 epochs, in which the
weights of the epoch with the lowest mean squared
error in the validation set were recorded. Importantly,
no clinical assumptions (e.g., inferior hemiretina being
related to the superior hemifield) were added to the
model. Therefore, the topographic relationship was
exclusively gleamed from the data, without using any
previous clinical knowledge.

The performance of the CNN was evaluated
through Pearson’s correlation coefficients between
predictions and the measured sensitivities, as well
as through the mean absolute error (MAE) of the
predictions in the test set. A simple ordinary least
squares linear regression model, using the same inputs
and outputs as the CNN, was built for comparative
purposes.

To summarize the performance of the models by
regions of the SAP, we averaged the measured sensi-
tivity thresholds and the predictions by Garway-Heath
sectors.2 The sector averageswere then used to calculate
sectoral MAE and correlation coefficients from both
models.

Simulations and Structure-Function Map

Once the CNN was trained and validated, we
performed a series of simulations to investigate the
impact of structural RNFL damage on visual field
loss. The simulations consisted of modifying a normal
average peripapillary RNFL profile (i.e., the normal
average of the 768 points) (Fig. 1) by simulating defects
of varying locations and depths. The 768-point RNFL
profile was initially divided in 12 evenly spaced 30°
sectors (corresponding to clock-hour sectors). For each
sector, we then simulated defects with depths corre-
sponding to the 10th, 5th, and 1st percentiles of
RNFL thickness derived from the glaucoma popula-
tion (Fig. 1). Each simulated RNFL profile was
then input into the previously trained CNN, and we
observed the corresponding prediction of SAP sensitiv-
ity threshold values. This allowed us to obtain precise
information on the functional effect of a specific struc-
tural loss.

To enable the visualization of the visual field defect,
we generated a report similar to the original print-
out of the SAP. The predictions from the CNN were
used as sensitivity thresholds, and the total devia-
tions were the difference between predictions and the
age-corrected sensitivity thresholds based on healthy
participants. The pattern deviations were the devia-
tions from the seventh best value among the total
deviation values. The probability plots were derived
from percentiles for each point, compared with healthy
participants. Figure 2 illustrates the visual field report
generated from CNN predictions from a RNFL profile
with a simulated defect on the temporal inferior region
(270°–300°) resulting in a superior visual field defect.

Statistical Analysis

Pearson’s correlation coefficients between predic-
tions and measured values were compared with a test
of equality of correlations,19 while the absolute errors
were compared with a random-effects mixed model,20
accounting for the presence of multiple tests from the
same participant. A bootstrap resampling procedure
was used to estimate 95% confidence intervals (CIs)
for MAE and correlation coefficients.21 All statistical
analyses were performed using Stata (version 15; Stata-
Corp LP, College Station, TX, USA). The α level (type
I error) was set at 0.05.

Results

The data set comprised 26,499 pairs of SAP and
SDOCT from 15,173 eyes of 8878 participants. The
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Figure 1. Retinal nerve fiber layer profile of average of healthy participants and pointwise percentiles from patients with glaucoma and
glaucoma suspects.

Table 1. Demographic and Clinical Information of the Participants on the Study

Characteristic Training + Validation Set Test Set

Number of SAP-SDOCT pairs 22,005 4494
Number of eyes 13,300 1873
Number of participants 7861 1017
Age at testing date, y 63.3 (14.6) 63.2 (14.3)
Sex, n (%)
Female 4274 (54.4) 564 (55.5)

Race, n (%)
Caucasian 4436 (56.4) 595 (58.5)
African American 2518 (32.0) 302 (29.7)
Asian 290 (3.7) 50 (4.9)
Hispanic 115 (1.5) 14 (1.4)
Other races 502 (6.4) 56 (5.5)

Diagnosis by eye, n (%)
Glaucoma suspect 6313 (47.5) 821 (43.8)
Primary open-angle glaucoma 3916 (29.4) 611 (32.6)
Other glaucoma 3071 (23.1) 441 (23.6)

SAP mean deviation, dB –5.10 (6.8) –4.51 (6.0)
SAP pattern standard deviation, dB 4.01 (3.4) 3.87 (3.3)
SDOCT RNFL thickness, μm 78.3 (18.3) 77.5 (17.7)

Data presented as mean (standard deviation) unless otherwise noted.

demographic and clinical information of the partic-
ipants in the study are presented in Table 1. The
demographic and clinical information of the healthy
individuals whose SDOCT tests were used to derive the
normal RNFL profile are available in Supplementary
Table S1.

The test set comprised 4494 pairs of SAP and
SDOCT from 1873 eyes of 1017 participants.
Pearson’s correlation coefficients between predicted
and observed sensitivity threshold values for the
52 SAP locations ranged from 0.39 to 0.66, with an
average r = 0.60 (P < 0.001; 95% CI, 0.58–0.63).
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Figure 2. Example of the SAP report generated from CNN predictions of SAP sensitivity thresholds from optical coherence tomography
RNFL thickness data. The RNFL profile used as input for the CNN had a simulated defect in the temporal inferior region (270°–300°) resulting
in a superior visual field defect.
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Table 2. Performance of the Convolutional Neural Network and the Linear Model Summarized by Garway-Heath
Sectors

CNN Linear Regression

Characteristic MAE, dB (95% CI) Pearson’s r (95% CI) MAE, dB (95% CI) Pearson’s r (95% CI)

Central 3.22 (2.03–3.42) 0.61 (0.56–0.65) 3.80 (3.61–3.99) 0.50 (0.46–0.54)
Temporal 3.77 (3.54–4.00) 0.44 (0.38–0.50) 4.16 (3.92–4.39) 0.32 (0.27–0.37)
Inferior 3.65 (3.44–3.86) 0.59 (0.55–0.64) 4.18 (3.97–4.40) 0.49 (0.44–0.53)
Inferior nasal 3.32 (3.11–3.53) 0.65 (0.62–0.69) 4.24 (4.03–4.46) 0.53 (0.49–0.56)
Superior 4.25 (4.03–4.46) 0.57 (0.52–0.62) 4.81 (4.58–5.03) 0.47 (0.42–0.51)
Superior nasal 3.68 (3.49–3.88) 0.68 (0.65–0.73) 4.56 (4.36–4.77) 0.58 (0.58–0.62)

Figure 3. MAEs and correlation coefficients between the predic-
tions from the convolutional neural network (top) and linear regres-
sion (bottom) and themeasured sensitivity thresholds for each of the
52 locations tested by standard automated perimetry. The number
inside each square represents the value for that specific location and
thegrayscale (darker colors represent lowerMAEs andhigher correla-
tions with themeasured values; lighter colors represent higher MAEs
and lower correlation coefficients) illustrate the performance.

The MAE error for each test location ranged from
3.15 to 5.53 dB, with an averageMAE of 4.25 dB (95%
CI, 4.06–4.44). The correlation coefficient between
measured values and predictions from the linear
regression model, developed for comparison purposes,
ranged from 0.28 to 0.59, with an average r = 0.52
(P < 0.001; 95% CI, 0.49–0.55) and the MAE ranged
from 3.54 to 6.08 dB, with an average of 4.96 dB
(95% CI, 4.77–5.14 dB). The CNN performed better
than the linear model by both correlation coefficients

(P < 0.001) and MAE (P < 0.001). Figure 3 shows
MAE and correlation coefficients of both models for
each location of SAP. Table 2 presents the sectoral
MAE and correlation coefficients of each model,
according to Garway-Heath sectors.2

The performance of the CNN was better for sensi-
tivity threshold values between 20 and 35 dB, which
were themost frequent values in our sample, as Figure 4
illustrates. As a consequence, the absolute error of
the CNN had higher correlation coefficients with SAP
Mean deviation (MD) (r = –0.751, P < 0.001), SAP
Pattern standard deviation (PSD) (r = 0.588, P <

0.001), and global RNFL thickness (r = –0.391, P
< 0.001). Other factors such as age and SDOCT
quality score had low correlation with the absolute
error (Supplementary Table S2).

Supplementary Figure S1 illustrates an example
where the CNN was able to predict the SAP accurately
from the RNFL thickness measurements. Supplemen-
tary Figure S2 illustrates a case in which the CNN
predictions had a high absolute error when compared
to the measured SAP sensitivities.

Simulation of RNFL Defects and
Structure-Function Map

Figures 5 and 6 show SAP predicted pattern
deviation plots for the different simulated RNFL
defects. TheRNFL thickness profiles are represented in
a temporal-superior-nasal-inferior-temporal fashion,
with dashed vertical lines delineating the location of the
sector where the RNFL defect was simulated. Figure 5
shows predictions from simulated defects in the
superior RNFL sectors, going from the temporal to
nasal regions. It can be seen that the simulated defects
generated corresponding inferior losses in the visual
field, as it would be expected. The pattern of visual
field loss corresponded to the location and depth of the
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Figure 4. Histogram representing the frequency of sensitivity threshold values in the test set, measured by SAP. The dashed line represents
the MAE of the predictions, grouped by bins of actual measured sensitivity threshold. The dotted horizontal line represents the average MAE
of the model.

defects. Defects in the superior temporal sectors, such
as from 30° to 60° and 60° to 90°, produced inferior
arcuate visual field defects that were more extensive as
the simulated RNFL defects got deeper. The superior
temporal defect extending from 0° to 30° generated an
inferior paracentral defect in the visual field. Interest-
ingly, the inferior paracentral defect was only evident
with defect depths in the 5th and 1st percentiles but
not with a shallower defect at the 10th percentile. Also
interesting, as the location of the simulated defects
moved nasally, such as in the defects from 90° to 120°
and 120° to 150°, the arcuate defect in the visual field
became more peripheral. Finally, for the RNFL defect
extending nasally from 150° to 180°, only a small single
abnormal point was predicted in the temporal visual
field.

The general pattern for defects simulated in the
inferior RNFL region was very similar to those for the
superior hemiretina (Fig. 6). As expected, simulated
inferior localized RNFL defects generated correspond-
ing superior visual field losses. For RNFL defects local-
ized in the nasal most regions, such as from 180° to
210° and 210° to 240°, the visual fields were essentially
normal, with just a few points abnormal in the tempo-
ral visual field. In contrast, inferior temporal RNFL
defects generated inferior arcuate defects that got more
pronounced the deeper the simulated RNFL defect
was. The inferior RNFL defect extending from 300°
to 330° generated a superior paracentral visual field
defect. Interestingly, in contrast to the corresponding
defect simulated in the superiorRNFL, such defect was
noticeable even at a relatively shallow depth of the 10th
percentile. As expected, the paracentral defect gotmore

pronounced the deeper the RNFL simulated loss was.
Also of interest, and again in contrast with the superior
RNFL, a simulated loss in the most temporal inferior
sector did not result in a noticeable visual field defect.

To make qualitative comparisons with the SF map
developed with the CNN, the linear regression model
was also used to get predictions of the simulations.
The linear model was not able to capture all the
visual defects that the CNN did, particularly for
defects simulated in the superior half of the RNFL
(e.g., sectors between 0–30°, 90–120°), as illustrated in
Supplementary Figure S3. All defects generated by the
linearmodel were present in the SFmapdevelopedwith
the CNN.

Although, by design, the simulated RNFL profiles
were manufactured, they reflect a realistic spectrum of
RNFL loss, asmany localized defects fromour training
data resembled the simulations. Figures 7 and 8 show
examples of localized defects in the temporal superior
and temporal inferior regions, respectively.

Discussion

In this study, we developed a CNN capable of
predicting SAP sensitivity thresholds from SDOCT
peripapillary RNFL thickness measurements, which
were then subsequently used to produce SFmaps relat-
ing functional losses to simulated RNFL defects. Such
maps provided predictions of what visual field defects
would look like for specific patterns of RNFL damage,
according to the location and depth of RNFL defects.
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Figure 5. Patterns of visual field loss predicted from the convolutional neural network when simulating RNFL defects in the superior
hemiretina. The RNFL profile is shown on the left, with dashed vertical lines showing the location of each simulated RNFL defect. For each
simulated defect in a particular location, there were three simulated depths representing the 10th (p10), 5th (p5), and 1st (p1) percentiles.
The corresponding predicted standard automated perimetry pattern deviation plots are shown on the right.
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Figure 6. Patterns of visual field loss predicted from the convolutional neural network when simulating RNFL defects in the inferior
hemiretina. The RNFL profile is shown on the left, with dashed vertical lines showing the location of the simulated RNFL defect. For each
simulated defect in a particular location, there were three simulated depths representing the 10th (p10), 5th (p5), and 1st (p1) percentiles.
The corresponding predicted standard automated perimetry pattern deviation plots are shown on the right.
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Figure 7. Example of a RNFL profile included in the test sample that closely resembled a RNFL profilewith a localized defect in the temporal
superior region of the RNFL (30°–60°). The actual RNFL thickness is represented on the left (solid line), while the dotted line represents the
simulated RNFL thickness. The corresponding visual fields are represented on the right, where (A) represents the actual visual field of the
individual, (B) represents the visual field predicted by the CNNusing the actual RNFL thickness of the individual, and (C) represents the visual
field predicted by the CNN using the simulated RNFL thickness profile. In this example, the localized defect in the temporal superior RNFL
was associated with a nasal inferior defect on the visual field. The defects present on the predictions resembled the actual visual field in
location and depth of defect.

Such maps may improve our understanding of how
SDOCT losses translate into detectable SAP defects
and help to identify cases where SAP and optical coher-
ence tomography (OCT) results are not compatible
with the range of expected patterns, as it happens
with unreliable tests or visual field losses due to other
diseases, for example.

Exploring the visual field defects predicted by the
CNN from these simulated defects, we were able to
develop a structure-function map in patients with
glaucoma. It was imperative that no previous knowl-
edge about this relationship was introduced to the
algorithm (e.g., using only the inferiorRNFL to predict
the superior SAP locations) so that all conclusions
drawn from this map would be exclusively related
to the data. Nonetheless, the patterns identified were
similar to those expected from clinical experience. In
agreement with previous maps, defects simulated on
the temporal superior and temporal inferior regions
of the RNFL resulted in visual field defects that
were arcuate in shape in the inferior and superior
hemifields, respectively. As the simulated defects moved
nasally, the corresponding arcuate visual field defects

became more peripheral, as expected from the arcuate
RNFL anatomy. However, simulated RNFL defects
on the most nasal side of the optic nerve did not
trigger significant defects on the temporal visual field.
The absence of a temporal wedge visual field defect
may be related to a relative lack of SAP points
covering the temporal region. In addition, given the
rarity of such defects in patients with glaucoma,
the relationship may not have been captured by the
CNN.

When defects of the same depth were simulated on
different regions of the RNFL, it resulted in visual
field defects of varying magnitude. As an example, for
sectors such as from 60° to 90° (temporal-superior)
and 270° to 300° (temporal-inferior), which are also
the most frequent regions of glaucomatous damage, a
large arcuate defect in the visual field was present even
when a relatively shallow defect (10th percentile) was
simulated on the RNFL. In contrast, for sectors closer
to the temporal disc, such as from 0° to 30° or from
330° to 360°, a RNFL defect in the 10th percentile
did not result in appreciable visual field loss. This is
in agreement with the work by Harwerth et al.,22 who
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Figure 8. Example of a RNFL profile included in the test sample that closely resembled a RNFL profilewith a localized defect in the temporal
inferior region of the RNFL (270°–300°). The actual RNFL thickness is represented on the left (solid line), while the dotted line represents the
simulated RNFL thickness. The corresponding visual fields are represented on the right, where (A) represents the actual visual field of the
individual, (B) represents the visual field predicted by the CNNusing the actual RNFL thickness of the individual, and (C) represents the visual
field predicted by the CNNusing the simulated RNFL thickness profile. In this example, the localized defect in the temporal inferior RNFLwas
associated with a superior arcuate defect on the visual field. The visual fields predicted by the CNN presented a defect with similar location
and depth.

investigated the magnitude of retinal ganglion cell loss
required to produce a given visual field abnormality at
different eccentricities. A paracentral loss at an eccen-
tricity of 4.2°, for example, required four times the loss
of retinal ganglion cells compared to an eccentricity of
24°. In addition, another explanation for the difficulty
in producing paracentral defects may be the relatively
sparse density of points of the 24-2 visual field test
strategy in the macular area.

Investigating central visual field defects andmacular
glaucomatous damage, Hood et al.23–25 described the
macular vulnerability zone (MVZ), a region that would
approximately correspond to the sector between 300°
and 330° in the inferior RNFL thickness profile. They
associated defects on the MVZ to superior paracen-
tral visual field defects. Accordingly, in our work, when
defects were simulated in the sector from 300° to 330°,
the CNN predicted a visual field with a correspond-
ing paracentral superior defect, which supports their
findings. Because of the relative anatomic positions
of the optic nerve and macula, RNFL damage to the
corresponding superior sector (30°–60°) actually tends
to cause peripheral arcuate visual field defects inferi-

orly, rather than paracentral macular defects. As can
be seen in Figure 7, a paracentral inferior visual field
defect is actually caused by damage to the RNFL in
the more temporal sector located from 0° to 30°.

Previous studies have also used machine learn-
ing to predict SAP thresholds from OCT measure-
ments, with various approaches. Several attempts used
previous clinical knowledge to improve their predic-
tions.13,15,16,26–32 As an example, Guo et al.13 reported
a root mean square error of 5.42 dB when predicting
pointwise SAP sensitivity thresholds using RNFL and
ganglion cell layer measurements as inputs. In their
model, the use of selected regions presented better
results than a naive approach that used all peripapil-
lary RNFL. Other studies relied on different types of
OCT inputs to get predictions of SAP.7,33–37 Christo-
pher et al.37 achieved best performance when using en
face images to predict SAP global metrics and sectoral
averages. It should be noted, however, that our main
purpose was to use the CNN to develop an SF map.
For that reason, it was imperative that no previous
clinical knowledge was included in the development
of the CNN, so that all conclusions were gleamed
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exclusively from the data. It was also necessary that
artificial RNFL defects could be simulated in the
inputs, which was possible using the peripapillary
RNFL thickness but would not be feasible for en face
images or volumes.

This study has limitations. First, the ability to gener-
ate visual field defects from simulated RNFL defects
is clearly dependent on the ability of the CNN to
accurately learn to predict SAP thresholds. It is possible
that patterns uncommon in the data, such as tempo-
ral wedges, were ignored by the network during the
learning process. Second, the simulated defects used to
develop the SF map can occasionally result in RNFL
profiles that are not represented in our data set. There-
fore, the simulations are not guaranteed to be reflec-
tive of clinical cases. In addition, as Figure 4 illustrates,
the accuracy of the network to predict SAP sensi-
tivity thresholds decreased considerably for thresh-
olds below 15 dB. This may be a result of the fact
that values below this level were much less common
in our data, although attempts to oversample such
abnormalities in our data did not improve the network
performance (data not shown). Another reason for
the decreased accuracy may be the large variability of
individual SAP points once the sensitivity falls below
15 dB. In fact, previous studies have shown that once
the sensitivity threshold reaches 15 dB, the variabil-
ity may get as high as the measured threshold value
itself.38,39 Finally, although the test set included images
from a large population and was independent of the
training/validation sample, it would be advantageous
to evaluate the CNN using a test set from a new
population.

In conclusion, we developed an AI-based mapping
of structural OCT RNFL damage to SAP visual
field loss in glaucoma. The derived map provides
insights into the functional impact of RNFL defects
of varying location and depth on OCT. Application of
this algorithm may aid in the interpretation of OCT
and SAP results in clinical practice and to assess the
prognostic significance of RNFL defects in glaucoma.
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