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ABSTRACT
Introduction  Lynch syndrome (LS) and constitutional 
mismatch repair deficiency (CMMRD) are hereditary 
cancer syndromes associated with mismatch repair (MMR) 
deficiency. Tumours show microsatellite instability (MSI), 
also reported at low levels in non-neoplastic tissues. Our 
aim was to evaluate the performance of high-sensitivity 
MSI (hs-MSI) assessment for the identification of LS and 
CMMRD in non-neoplastic tissues.
Materials and methods  Blood DNA samples from 131 
individuals were grouped into three cohorts: baseline (22 
controls), training (11 CMMRD, 48 LS and 15 controls) 
and validation (18 CMMRD and 18 controls). Custom 
next generation sequencing panel and bioinformatics 
pipeline were used to detect insertions and deletions in 
microsatellite markers. An hs-MSI score was calculated 
representing the percentage of unstable markers.
Results  The hs-MSI score was significantly higher in 
CMMRD blood samples when compared with controls in 
the training cohort (p<0.001). This finding was confirmed 
in the validation set, reaching 100% specificity and 
sensitivity. Higher hs-MSI scores were detected in biallelic 
MSH2 carriers (n=5) compared with MSH6 carriers 
(n=15). The hs-MSI analysis did not detect a difference 
between LS and control blood samples (p=0.564).
Conclusions  The hs-MSI approach is a valuable tool 
for CMMRD diagnosis, especially in suspected patients 
harbouring MMR variants of unknown significance or 
non-detected biallelic germline mutations.

Introduction
Lynch syndrome (LS; OMIM #120435), the most 
prevalent hereditary colorectal and endometrial 
cancer syndrome, is an autosomal dominant cancer-
susceptibility disease caused by inactivating hetero-
zygous germline mutations in mismatch repair 
(MMR) genes (MLH1, MSH2, MSH6 and PMS2).1 

Constitutional mismatch repair deficiency (CMMRD; 
OMIM #276300) is a rare devastating cancer 
syndrome caused by biallelic germline mutations 
in the same genes and mainly characterised by the 
development of haematological, brain and colorectal 
tumours during childhood and adolescence.2 3 Over-
lapping phenotypes have been described between LS 
and CMMRD,4 5 as well as between CMMRD and 
other cancer syndromes such as neurofibromatosis 
type 1 (NF1), polymerase proofreading-associated 
polyposis (PPAP) and Li-Fraumeni.6 7

The identification of these inherited condi-
tions has important consequences for the clinical 
management of carriers.8 9 Molecular diagnosis of 
LS and CMMRD is often hampered by the identi-
fication of variants of unknown significance (VUS) 
in about 30% of all identified MMR variants and 
by difficulties in sequencing PMS2 due to multiple 
pseudogenes, which accounts for approximately 
60% of CMMRD cases.3 6

In LS, somatic inactivation of the MMR wildtype 
allele initiates an accumulation of errors mainly in 
repetitive sequences. Consequently, LS-associated 
tumours are hypermutated (>10 mutations/Mb), 
exhibit microsatellite instability (MSI) and lose 
expression of MMR proteins.1 In CMMRD, the 
germline inactivation of both MMR alleles together 
with somatic polymerase exonuclease domain 
mutations leads to ultra-hypermutated tumours 
(>100 mutations/Mb).10 The CMMRD diagnostic 
hallmark is the loss of MMR protein expression in 
both tumour and normal tissue.3 7 However, some 
missense mutations are associated with conserved 
expression and MSI may be negative in CMMRD 
tumours, especially in non-gastrointestinal 
cancers.2 3

Besides the recently reported in vitro repair assay 
in lymphocytes,6 tools have been developed to assess 
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the degree of MSI in CMMRD normal tissues. The germline 
MSI (gMSI) assay,11 based on electropherogram analysis of three 
dinucleotide markers, has demonstrated high specificity but low 
sensitivity due to its inability to identify biallelic MSH6 mutation 
carriers. The ex vivo MSI analysis,12 based on lymphoblastoid 
cell lines, in combination with a methylation-tolerance assay, 
showed higher sensitivity for CMMRD identification. Recently, 
a next generation sequencing (NGS) approach to detect gMSI 
has shown high accuracy.13 None of these techniques are sensi-
tive enough to detect MSI in normal tissues from LS carriers. 
Nevertheless, low-level MSI has been reported in blood DNA 
from individuals with LS using laborious single-molecule anal-
yses.14 15 Notably, MMR deficiency has been detected in appar-
ently normal colonic and endometrial epithelium of LS carriers.16

We hypothesised that an assessment of MSI markers at high 
sensitivity could improve the diagnosis of cancer syndromes 
associated with MMR deficiency. Our aim was to evaluate the 
performance of high-sensitivity MSI (hs-MSI) assessment in 
normal tissues of LS and CMMRD carriers.

Materials and methods
Patients and samples
Samples from 131 individuals were grouped into three cohorts: 
baseline, training and validation. The baseline cohort comprised 
22 healthy control samples; the training cohort included 74 
blood samples from healthy controls, patients with CMMRD 
and individuals with LS (online supplementary table S1); and the 
validation cohort comprised 36 blinded samples from individuals 
with clinical diagnosis of CMMRD3 and healthy controls, kindly 
provided by the European Consortium C4CMMRD (online 
supplementary table S2). Some samples were also analysed in a 
recent study13 (online supplementary tables S1 and S2). An oral 
mucosa sample from a patient with CMMRD (online supple-
mentary table S1), four cases with CMMRD-suspected diag-
nosis and mutation carriers of CMMRD overlapping syndromes 
were also included (online supplementary table S3). Five DNA 
samples from frozen tumours were used as controls, two classi-
fied as MSI and three as microsatellite stable (MSS), using the 
MSI Analysis System (Promega). Genomic DNA was obtained 
using standard protocols.

Assessment of MSI at high sensitivity (hs-MSI)
The analytical sensitivity of variant detection by using a molec-
ular barcoding-based NGS approach was initially assessed with 
the ClearSeq Cancer HS panel (Agilent Technologies; online 
supplementary methods).

A custom panel targeting 277 microsatellites, 91% of them 
mononucleotide repeats, was designed using HaloPlex HS tech-
nology (online supplementary figure S1, online supplementary 
methods). Sequencing of enriched regions was performed in a 
HiSeq platform at high coverage (20 000×), reaching a mean 
depth of 1312±447 reads/marker/sample after deduplication. 
A set of 231 truly monomorphic microsatellites in the base-
line were selected. Among them, 186 markers were previously 
reported as frequently mutated in tumours with high instability 
(MSI-H). A bioinformatics pipeline for microsatellite indel 
calling was customised (online supplementary figure S2, online 
supplementary methods).

To assess the hs-MSI status at each microsatellite locus, the 
instability level, corresponding to the sum of the frequencies of 
all allele lengths different from the wildtype (mutational load 
method), was calculated as (1 – wildtype allele frequency). Alter-
natively, the frequencies of each alternative microsatellite allele 

length were used (individual allele method). Whenever the insta-
bility level or frequency of alternative allele exceeded the mean 
value in baseline plus 3 SD and the highest value among the 
individual samples of the baseline, the microsatellite was consid-
ered unstable.

For both methods, an MSI score was calculated per sample, 
representing the percentage of unstable markers. hs-MSI median 
score was compared between different training set groups using 
a Wilcoxon rank-sum test (online supplementary figure S2, 
online supplementary methods).

Analysis of dinucleotide repeats
gMSI analysis of the dinucleotide markers D17S791, D2S123 
and D17S250 was performed as described.11 Analysis of D2S123 
from NGS data was described in online supplementary methods.

Results
The percentage of unstable monomorphic markers frequently 
mutated in MSI-H tumours included in the hs-MSI panel (n=186; 
mutational load method) was higher in the DNA from MSI-H 
than MSS colorectal tumours (online supplementary figure S3A). 
This MSI score was significantly higher in blood DNA samples 
from patients with CMMRD (median=23.58%) compared with 
healthy controls (median=1.10%) (p=1.24e-05) or LS blood 
samples (median=0.85%) (p=9.49e-08), without overlapping 
(figure 1A and online supplementary table S1). No evidence of 
clonal expansion was seen in haematological CMMRD samples. 
In contrast, no difference was detected between LS and control 
samples (p=0.564) (figure 1A and online supplementary table 
S1). Similar results were obtained using the whole set of mono-
morphic markers (n=231) and when an individual allele method 
was used irrespective of the absolute values of the thresholds for 
MSI detection in blood (online supplementary figure S3).

Using an independent blinded set of blood samples, the 
MSI score accurately distinguished patients with CMMRD 
(median=26.28%) from controls (median=0.57%) 
(p=2.784e-07) (figure  1B, online supplementary table S2). In 
this context, the hs-MSI approach displayed a specificity of 
100% (95% CI 89.42% to 100%) and a sensitivity of 100% 
(95% CI 88% to 100%) (online supplementary table S4). In 
agreement with the results obtained in the gMSI assay, instability 
at D2S123 dinucleotide marker was detected in biallelic MMR 
carriers except for MSH6 (online supplementary tables S1, S2 
and S5).

No correlation between MSI score and age at blood sampling 
was observed in control, LS or CMMRD samples (figure  2A, 
online supplementary figures S4 and S5). Moreover, no 
correlation with age of cancer onset was noted in CMMRD 
(figure 2B) or LS-affected patients (online supplementary figure 
S5). In contrast, when CMMRD samples were grouped by 
germline-affected gene, significant differences were observed 
between instability levels of MSH6 and MSH2 biallelic carriers 
(p=0.0014) (figure  2C). Furthermore, no dependency of MSI 
levels and germline affected gene was observed in LS samples 
(p=0.0523) (online supplementary figure S5A).

An oral mucosa DNA sample (CMMRD-01) displayed similar 
MSI score to a paired blood sample (figure  2C and online 
supplementary table S1). Conversely, high hs-MSI score was 
not detected in the blood from germline TP53, POLE/POLD1 
and NF1 mutation carriers, early-onset LS or four cases with 
a suspected but unconfirmed diagnosis of CMMRD, pointing 
to the absence of CMMRD in the latter (online supplementary 
table S3, online supplementary figure S6).
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Figure 1  hs-MSI analysis in the training and validation cohorts. 
Monomorphic microsatellite markers frequently mutated in MSI-H tumours 
(n=186) analysed using the mutational load analysis method. (A) MSI 
score in blood DNA samples from LS (median=0.85, IQR=0.55–1.65, 
range=0.00–3.33), CMMRD (median=23.58, IQR=21.33–25.49, 
range=14.84–59.22) and healthy individuals (median=1.1, IQR=0.54–
1.65, range=0.00–3.89) from the training set. Significant differences 
were observed between patients with CMMRD and negative controls 
(***p=1.24e-05), while no differences were found between patients 
with LS and negative controls (ns, non-significant, p=0.564). Dashed line 
indicates the threshold for hs-MSI detection in blood samples. (B) MSI 
score in blinded samples from the validation cohort. Patients with CMMRD 
(median=26.28, IQR=19.14–38.37, range=10.56–76.50) and negative 
controls (median=0.57, IQR=0–1.11, range=0–1.79) were discriminated 
with no overlapping (hatched area) (***p=2.784e-07). Dashed line 
indicates the threshold for hs-MSI detection. CMMRD, constitutional 
mismatch repair deficiency; hs-MSI, high-sensitivity microsatellite instability; 
LS, Lynch syndrome.

Discussion
Accurate and prompt diagnosis of CMMRD is essential for 
therapeutic decisions and surveillance recommendations.9 Here 
we report the performance of the novel hs-MSI approach for 
high-sensitivity gMSI assessment. Our hs-MSI approach based 
on the analysis of mononucleotide repeats demonstrated higher 
accuracy to discriminate between controls and CMMRD cases 
(including MSH6 biallelic carriers) than previously reported 
methods,11–13 requires low DNA input (less than 100 ng), and 
have an estimated turnaround time of 1 week (online supple-
mentary table S6). In addition, the result obtained with a 
CMMRD individual’s oral mucosa sample suggests its potential 
for the analysis of MSI in minimally invasive samples, patients 
with lymphopenia or after allogenic bone marrow transplant. 
Moreover, the hs-MSI approach is able to robustly discriminate 
between CMMRD and LS, Li-Fraumeni, NF1 and PPAP, which 
may assist in classifying cases with overlapping phenotype.4 5

The use of a control baseline eliminates the need for paired 
normal-tumour samples required in other NGS-based MSI 
analyses.17 Our method builds on the mSINGS tool18 using 
the frequencies of allele lengths different from wildtype allele 
in contrast to the absolute number of repeat lengths in control 
baseline, allowing accurate detection of low-level MSI in normal 
tissues indicating CMMRD. Recently, another NGS-based 
approach has been developed for MSI detection in blood samples 
of patients with CMMRD.13 A good correlation of MSI scores 
between both approaches was seen in shared samples provided 
by the C4CMMRD consortium (R2=0.91; online supplemen-
tary figure S7), suggesting that NGS-based hs-MSI assays can 
reliably detect CMMRD. Interestingly, our MSI score did not 
overlap between CMMRD samples and controls even in aplastic 
samples.13 The improved separation is likely due to the higher 
number of microsatellite markers analysed, although marker 
selection, bioinformatics pipeline and analysis method might 
also be involved.

The high accuracy and suitable turnaround time of the hs-MSI 
approach, similar to the recently reported in vitro MMR assay 
in lymphocytes,6 makes it a valuable CMMRD diagnostic tool. 
Since CMMRD can present with non-malignant features that 
overlap with NF1 and Legius syndrome, our approach could be 
used as a CMMRD indicator in healthy children under suspicion 
without germline mutations in NF1 or SPRED1, prior to MMR 
genes analysis, avoiding the potential pitfalls linked to the diag-
nosis of LS in a minor or VUS identification.7

The detection of MMR deficiency or elevated MSI score 
in lymphocytes may suggest pathogenicity of identified germ-
line MMR variants (online supplementary table S7). However, 
caution should be taken since other variants in cis (not yet identi-
fied) could be responsible of the phenotype. The most intriguing 
variant in our series is MLH1 c.2146G>A (p.Val716Met). The 
presence of an additional causative variant on this MLH1 allele 
in patient E was excluded by transcript analysis.13 Although it 
was classified as neutral by multifactorial analysis, its identifi-
cation in trans with a pathogenic MLH1 mutation in another 
individual with CMMRD clinical features,19 and its slightly 
decreased expression and MMR activity observed in heterolo-
gous systems (http://www.​insight-​database.​org/​classifications), 
suggest that its classification should be revisited, particularly 
since a hypomorphic nature cannot be totally excluded.

Mutations in MSH2 and MLH1 are associated with a more 
severe phenotype than MSH6 and PMS2 mutations in LS,1 and 
this may hold true also in CMMRD,3 although phenotype/
genotype correlation in the latter is complicated by its low 
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Figure 2  Characterisation of the hs-MSI observed in CMMRD samples. Monomorphic microsatellite markers (selected as frequently mutated in MSI-H 
tumours) have been analysed (n=186). (A) MSI score in CMMRD blood samples plotted against patient age at blood sampling. No correlation was observed 
(dashed line, r=−0.04, p=0.823). (B) MSI score in CMMRD blood samples plotted against age of cancer onset. No correlation was observed (dashed line, 
r=−0.15, p=0.491). (C) MSI score in CMMRD samples plotted against the germline mutated MMR gene. Samples from the same family are indicated by 
the same symbol. White dots inside symbols indicate samples from the same individual. The buccal mucosa sample is indicated by an arrow. Statistically 
significant differences between affected genes are indicated (**p<0.005). CMMRD, constitutional mismatch repair deficiency; hs-MSI, high-sensitivity 
microsatellite instability; MMR, mismatch repair; MSI-H, tumours with high instability.

prevalence and the presence of hypomorphic MMR muta-
tions.5 Even though MSI in MSH6 carriers is more precisely 
assessed in mononucleotide than dinucleotide repeats, higher 
instability levels were detected in MSH2 biallelic carriers than 
MSH6 carriers in our hs-MSI approach. Although the limited 
sample size precludes any conclusion, the MSI level may reflect 
the intrinsic MSH6 protein repair capacity of the particular type 
of markers included in the panel or could be related to disease 
expressivity. In contrast, no apparent differences by affected 
gene were observed in CMMRD lymphocytes’ MMR assay,6 
which assesses the repair of a 3’-nicked G-T mismatch. Interest-
ingly, with this method intermediate results of MMR activity and 
complementation were identified in some individuals, suggesting 
variant hypomorphic nature.6 The analysis of hs-MSI in these 
cases would be of particular interest.

In contrast to the absence of significant instability seen in LS 
samples using the hs-MSI approach, previous works described 
low-level MSI in blood samples by small-pool PCR15 and clone 
analysis.14 Although those markers were included in our custom 
panel design, none of them could be analysed due to insufficient 
coverage, with the exception of D2S123, which did not show 
instability in LS samples (online supplementary table S5). To 
improve the sensitivity of MSI assessment, the use of probes with 
double unique molecular identifiers tagging double-strands20 
may potentially reduce the error rate and increase the sensitivity 
in MSI detection.

In conclusion, the high performance of the hs-MSI approach 
in detecting MSI in non-neoplastic tissue from patients with 
CMMRD is a valuable diagnostic tool which has potential in 
pretest selection of healthy paediatric patients, as well as in 
discrimination between CMMRD and other clinically related 
syndromes. Further evaluation in larger prospective series, 
including other target tissues and different disease progression 
stages, is needed to validate the hs-MSI approach in CMMRD 
diagnostic routine.
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