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ABSTRACT
The clinical course for both early and late stage Bladder Cancer (BC) continues 

to be characterized by significant patient burden due to numerous occurrences and 
recurrences requiring frequent surveillance strategies, intravesical drug therapies, 
and even more aggressive treatments in patients with locally advanced or metastatic 
disease. For these reasons, BC is also the most expensive cancer to treat. Fortunately, 
BC offers an excellent platform for chemoprevention interventions with potential 
to optimize the systemic and local exposure of promising agents to the bladder 
mucosa. However, other than smoking cessation, there is a paucity of research that 
systematically examines agents for chemoprevention of bladder cancers. Adopting 
a systematic, molecular-mechanism based approach, the goal of this review is 
to summarize epidemiological, in vitro, and preclinical studies, including data 
regarding the safety, bioavailability, and efficacy of agents evaluated for bladder 
cancer chemoprevention. Based on the available studies, phytochemicals, specifically 
isothiocyanates such as sulforaphane, present in Brassicaceae or “cruciferous” 
vegetables in the precursor form of glucoraphanin are: (a) available in standardized 
formulations; (b) bioavailable- both systemically and in the bladder; (c) observed 
to be potent inhibitors of BC carcinogenesis through multiple mechanisms; and (d) 
without toxicities at these doses. Based on available evidence from epidemiological, in 
vitro, preclinical, and early phase trials, phytochemicals, specifically isothiocyanates 
(ITCs) such as sulforaphane (SFN) represent a promising potential chemopreventitive 
agent in bladder cancer.

INTRODUCTION

Bladder cancer (BC) is the fourth most common 
cancer in men in the United States and eighth most 
common cause of cancer death [1]. In 2016, an estimated 
76,000 men and women will be diagnosed with BC in 
the US and 16,000 people will die of BC [2]. Cigarette 
smoking (mainly exposure to aromatic amines) accounts 
for 50% of bladder cancers [3, 4]. Non-tobacco related 

occupational exposure to amines, 4-aminobiphenyl & 
anilines (10% of all cases), as well as phenacetin derived 
analgesics (oral pain medications) [5, 6] have also been 
known to contribute to the etiology of BC. BC originates 
primarily in the transitional cell epithelium (urothelial 
epithelium) that lines the inner surface of the bladder 
and is directly exposed to urine, which is also known as 
transitional cell carcinoma (TCC) [4]. Approximately 70-
75% of newly diagnosed BCs are non-muscle invasive 
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(NMIBC), previously referred to as “superficial” BC, 
while 25-30% of tumors upon initial diagnosis are muscle 
invasive (≥ clinical stage T2) [4]. NMIBC is typically 
treated with endoscopic transurethral resection (TUR), 
which may be followed by an intravesical therapy, 
depending on the extent of the cancer, tumor grade and 
the presence of carcinoma in situ. Given the high risk of 
recurrence and disease progression, careful surveillance 
after cancer removal by TUR via cystoscopy is currently 
the standard clinical practice. Intravesical therapies with 
Bacillus Calmette-Guerin (BCG) or chemotherapeutic 
agents (e.g., mitomycin C), delivered via a urethral 
catheter, are used to prevent or delay recurrence and 
progression after TUR [7]. Although BCG has been more 
effective than other agents, 20-40% of patients fail to 
respond [8]. Recurrence is common despite BCG treatment 
with recurrence rates for high risk T1 tumors ranging from 
16 to 40% and progression rates of 4% to 40%. [9-14]. 
Upon diagnosis of muscle invasive bladder cancer (stage 
T2), the current definitive treatment is radical cystectomy 
(surgical extirpation of the bladder) and urinary diversion. 
Overall survival is poor once distant metastasis (~15% 5 
year survival) has occurred [15] with stage being the most 
important prognostic factor of BC [16]. 

The clinical course for both early and late stage 
BC continues to be characterized by significant patient 
burden due to numerous occurrences and recurrences 
requiring frequent surveillance strategies, intravesical drug 
therapies, and even more aggressive treatments in patients 
with locally advanced or metastatic disease Additionally, 
BC is the most expensive overall cancer to treat given its 
propensity to recur and the need for frequent treatment 
and surveillance [17, 18]. BC thus carries a significant 
patient burden as well as a healthcare cost-related burden 
underscoring the need to optimize BC care and need for 
prevention strategies especially targeting non-muscle 
invasive patients [17, 18]. Evaluation of chemoprevention 
interventions in BC patients is especially feasible given 
physiological exposure of bladder urothelial cells to 
excreted compounds, readily available pathological 
specimens for analysis, and measurable intermediate 
endpoint biomarkers [17, 19]. However, other than 
smoking cessation, there is a paucity of research that 
systematically examines agents for the chemoprevention 
of BC [20]. Smoking cessation has been shown to decrease 
recurrence and improve prognosis, yet this beneficial 
effect is only observed for long term smoking cessation ( 
> 10 years) [17, 19]. 

The objective is to review the available evidence 
from epidemiological, in vitro, pre-clinical animal and 
early clinical trials of various agents evaluated for bladder 
cancer chemoprevention with a focus on sulforaphane for 
bladder cancer chemoprevention. 

RESULTS

Current strategies for bladder cancer 
chemoprevention

Vitamins

Previous studies have focused on vitamin intake 
including, vitamin C, vitamin B6 and vitamin E and 
an essential trace element, selenium. However, the 
majority of these studies failed to indicate a promising 
agent for primary or secondary chemoprevention of 
BC [21]. Retinoids (vitamin A derivatives) and alpha 
tocopherol (vitamin E) have been studied as a putative 
chemopreventive agent in bladder cancer. In vitro studies 
suggested that rats with vitamin A deficiency were more 
likely to develop environmentally induced bladder cancer, 
and that supplementation of vitamin A could prevent 
bladder cancer development [22-25]. However, clinical 
studies do not support a chemopreventive role of retinoids, 
including the ATBC study that targeted at-risk smokers and 
assigned patients to beta-carotene, alpha tocopherol, both 
or placebo and showed no benefit in prevention of bladder 
cancer at 6 years of follow up [26]. A secondary analysis 
of the SELECT trial also failed to show a protective 
effect for vitamin E or selenium for bladder cancer [27]. 
Other studies exploring the role of retinoids for secondary 
chemoprevention also showed no benefit, and as a result 
of concerns for toxicity (increased myocardial infarction 
risk) and lack of clear benefit, one study was terminated 
prior to accrual [28-30].

Pyridoxine (B6) has been investigated in two 
randomized trials for secondary chemoprevention 
without evidence of a benefit [31, 32]. Ascorbic acid 
(vitamin C) has not been studied in randomized trials, and 
epidemiological data is not convincing with respect to its 
protective effect [33]. Mega dose multivitamins have not 
demonstrated clinical effectiveness in chemoprevention 
despite epidemiological research and clinical research 
suggesting a possible role for chemoprevention [34]. 

NSAIDS and Cox-2 inhibitors

More recent chemopreventive efforts have exposed 
the role of non-steroidal anti-inflammatory drugs, 
specifically the role of selective COX-2 inhibitors. This 
has included clinical studies with celecoxib that suggested 
a correlation between COX-2 expression and prognosis. 
One trial in nonmuscle invasive bladder cancer patients 
showed similar risk in progression and recurrence between 
celecoxib and placebo [35]. The results of an expanded 
Phase III clinical trial in non-muscle invasive bladder 
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cancer patients who responded to BCG treated with 
celecoxib or placebo are still not available. Intriguingly, 
an in vitro study using allyl isothiocyanate (AITC) with 
celecoxib produced depletion of prostaglandin E2, a 
key downstream signaling molecule of Cox-2, caspase 
activation and down regulation of vascular endothelial 
growth factor in the tumor tissues. These data show 
that AITC and celecoxib may complement each other 
in inhibiting bladder carcinogenesis, providing a novel 
combination approach for future validation in preclinical 
models for chemoprevention of bladder cancer [36].

EGFR inhibitors and mTOR inhibitors

Also, research is being conducted with erlotinib, 
highly selective, reversible inhibitor of epidermal growth 
factor receptor (HER1/EGFR) tyrosine kinase which 
is overexpressed in more than 75% of bladder cancers 
[37]. One phase 2 clinical trial involved neoadjuvant 
administration of erlotinib in patients before undergoing 
radical cystectomy with a complete response rate in twenty 
five percent of patients. There was substantial skin toxicity 
noted especially in patients who experienced complete 
response [38]. A phase IIa randomized multi-institutional 
trial (NCT02169284) is ongoing investigating role of 
erlotinib in presurgical (RC or TURBT) patients [39] .

Additionally, research has focused on mTOR 
inhibition as a potential target for chemoprevention in 
bladder cancer [40]. Metformin, a commonly utilized 
diabetes medication has properties as an mTOR 
inhibitor and has been investigated with underwhelming 
results mostly in a retrospective fashion [41, 42]. One 
nonrandomized clinical trial comparing non muscle 

invasive BC patients taking metformin to placebo showed 
no difference in recurrence and no statistical difference 
in time to recurrence [43]. Also, in vitro research using 
Rhodiola rosea extract has shown to inhibit mTOR and 
decrease growth of bladder cancer [42]. Finally, some 
research has demonstrated a possible role of estrogen 
receptor blockade using tamoxifen in mouse model in 
modulating bladder tumorigenesis [44]. 

Soy isoflavones

Isoflavones, which are soy derivatives, have recently 
been investigated as a possible chemoprevention agent 
based on epidemiological and in vitro evidence. A recent 
trial by Messing et al., explored the use of genistein, an 
isoflavone, in pre-surgical bladder cancer patients and 
demonstrated significant inhibition of p-EGFR at dose-
specific levels, but other apoptotic and proliferative 
biomarkers were not impacted [45]. There has been an 
increase in newer research that has focused on isolation 
of (natural) bioactive compounds. Recently, Justicidin 
A, a methanol extract of Justicia procumbens, has been 
investigated in vitro as an anti-angiogenic and apoptosis-
inducing agent [46], as have pomegranate extracts [47]. 
Additionally, green tea catechins have been demonstrated 
in several in vitro and in vivo studies to have significant 
anti-carcinogenic potential [48-51]. However, these are 
early observations that have to be further validated in 
preclinical models prior to evaluation in clinical trials. 

Despite attempts at identifying other single and 
combination agents for chemoprevention, several 
epidemiological, in vitro, preclinical, and early 
phase trials have shown that the phytochemicals, 

Table 1: Clinical trials assessing sulforaphanes for cancer chemoprevention
Agent Dose/Duration Cancer Sample size Endpoints
60 mg (340 μmol) 
“stabilized SFN” 
(Prostaphane®) vs. 
Placebo [73]

6 months
(RCT)

Prostate (Rising PSA 
after prostatectomy)

N=81 Lower Log PSA 
slope in the SFN 
group (p = 0.01)
and serum PSA 
(p=<0.05) compared 
to placebo

200 μmol daily [105] 5 months Prostate (Rising PSA 
after prostatectomy)

N=20 1 of 20 patients with 
50% decline in PSA 
at 5 months

400 g broccoli/week 
vs. 400 g peas/week 
[123]

12 months Prostate (Patients 
with high-grade 
prostate intraepithelial 
neoplasia) (HGPIN),

N=22 Significant changes 
in TGFβ, Insulin 
signaling and EGF 
receptor pathways

Glucoraphanin 
(30 mg GFN 
BroccoMax™ vs. 
placebo)[76]

2-8 weeks Breast 
(Abnormal 
mammograms/pre-
biopsy)

N=27  Ki-67 (p = 0.003) 
and HDAC3 (p 
= 0.044) levels 
significantly 
decreased in 
benign tissue. GFN 
supplementation was 
associated with a 
significant decrease 
in PBMC HDAC 
activity (p = 0.04).
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isothiocyanates (ITCs), specifically sulforaphane (SFN) 
present in Brassicaceae or “cruciferous” vegetables in 
the precursor form of glucoraphanin [52-54], are: (a) 
available in standardized formulations; (b) bioavailable - 
both systemically and in the bladder; (c) observed to be 
potent inhibitors of BC carcinogenesis through multiple 
mechanisms [2]; and (d) associated with no dose-limiting 
toxicities at the proposed dose levels, thus supporting 
further development of SFN in phase I/II human studies 
targeting bladder cancer. 

Sulforaphane for bladder cancer chemoprevention

Sulforaphane (SFN), (-)-1-isothiocyanato-(4R)-
(methylsulfinyl) butane [CH3-SO-(CH2)4-NCS], is an 
isothiocyanate found in high concentrations in broccoli 
sprouts. Sulforaphane was first isolated and shown to be 
a potent anti-carcinogenic agent in 1992 by Zhang, et al. 
[54]. 

Epidemiological evidence for sulforaphane for 
bladder cancer chemoprevention

Epidemiological studies have shown a potential role 
for increased fluid intake and consumption of cruciferous 
vegetables, particularly for broccoli consumption, in 
reducing the risk of BC [55-57]. In a large prospective 
study, 39% reduction in BC risk was observed with an 
intake of 2 servings or more of broccoli compared to < 
1 serving per week (p = 0.0009) [55]. In a meta-analysis 
of ten clinical trials, cruciferous vegetable intake was 
associated with decreased risk of bladder cancer overall 
[58].

Pharmacokinetics of sulforaphane

Given the epidemiological studies which suggested 
a potential role for SFN as a chemoprevention agent, many 
studies have been conducted to elicit the pharmacokinetics 
of SFN. Broccoli accumulates significant amounts of 
the phytonutrient glucoraphanin (4-methylsulfinylbutyl 
glucosinolates), which is metabolized in vivo to the 
biologically active sulforaphane. This conversion requires 
myrosinase, which is present in the plant as well as in 
the gastrointestinal tract [53]. Upon being consumed, 
SFN is metabolized via the mercapturic acid pathway to 
form cysteinylglycine-, cysteine-, and N-acetylcysteine 
(NAC) conjugates. These metabolites are then excreted 
via the urine [59, 60]. Studies have shown that 70% of an 
initial SFN dose was able to be retrieved in urine [61, 62]. 
Urine has been shown in rat models to have significant 
concentration of SFN present as NAC conjugates with 
72% to 95% of the original SFN dose recovered in urine 
[63] Also, bladder tissue in a rat model has been shown to 

have very high concentrations of SFN after gastric lavage, 
second in visceral organ concentration only to stomach 
tissue [64]. Uptake of SFN into bladder cancer cells is 
dependent upon diffusion and rapidly conjugate with 
GSH and other intracellular proteins [65]. Several factors 
including concentration, lipophilicity, and exposure time 
influence uptake [65-67]. 

Preclinical studies using animal models have 
demonstrated bioavailability of SFN with metabolites 
distributed to all tissues, including the bladder, suggesting 
the potential for systemic benefits [68-70]. Administration 
of a freeze-dried aqueous extract of broccoli sprouts 
to rats significantly and dose-dependently inhibited 
bladder cancer development induced by N-butyl-N-
(4-hydroxybutyl) nitrosamine [71]. The incidence, 
multiplicity, size, and progression of BC were all 
inhibited by the extract, while the extract itself caused no 
histologic changes in the bladder. Moreover, inhibition 
of bladder carcinogenesis by the extract was associated 
with significant induction of phase-II enzymes such 
as glutathione S-transferase and NAD(P)H:quinone 
oxidoreductase 1 in the bladder. Over 70% of the 
isothiocyanates present in the extract were excreted in 
the urine as isothiocyanate equivalents (isothiocyanates 
+ dithiocarbamates) within 12 h after a single oral dose, 
indicating high bioavailability and rapid urinary excretion. 
Urinary concentrations in extract-treated rats were 2 
to 3 orders of magnitude higher than those in plasma, 
indicating that the bladder epithelium, the major site of 
bladder cancer development, is most exposed to orally-
dosed isothiocyanate. In a murine UMUC3 xenograft 
model, semi-purified diets containing 4% broccoli sprouts, 
or 2% broccoli sprout isothiocyanate extract, or gavaged 
pure SFN, or erucin (each at 295 μmol/kg, similar to 
dietary exposure) produced tumor weight reduction of 
42% (p = 0.02), 42% (p = 0.04), 33% (p = 0.04), and 58% 
(p < 0.0001), respectively. SFN and erucin metabolites are 
present in mouse plasma (micromolar range) and tumor 
tissue, with N-acetylcysteine conjugates as the most 
abundant [68]. 

Several clinical trials have been conducted to 
evaluate the effectiveness of SFN for chemoprevention, 
most of which have investigated bioavailability in 
healthy, disease-free subjects [72-75,125]. The method of 
ingestion in these clinical trials has varied from pure SFN, 
broccoli soups/pill forms, and broccoli as a food item. 
Glucoraphanin (GRR) in broccoli is converted to SFN 
either by plant myrosinases, or if the plant myrosinases 
have been denatured by cooking, by bacterial myrosinases 
in the human colon. SFN is passively absorbed and rapidly 
conjugated with glutathione by glutathione S-transferases 
(GSTs), then metabolized sequentially by γ-glutamyl-
transpeptidase (GTP), cysteinyl-glycinease (GCase) and 
N-acetyltransferase (NAT). The conjugates are actively 
transported into the systemic circulation where the 
mercapturic acid and its precursors are urinary excretion 
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products. Deconjugation may also occur to yield the parent 
isothiocyanate, SFN. The mercapturic acid and cysteine 
conjugate forms are the major urinary metabolites of 
SFN [76]. In interventions with glucosinolate-containing 
Brussels sprouts for 1-3 weeks, increased GST enzyme 
activity with increased GST-alpha induction was observed 
in plasma and tissues including liver, bladder, and small 
intestine [72, 77]. Bioavailability, as measured by urinary 
excretion of SFN and its metabolites (in approximately 
12-hour collections after dosing), was substantially 
greater with the SFN-rich (mean = 70%) than with GRR-
rich (mean = 5%) beverages. Inter-individual variability 
in excretion was considerably lower with SFR than with 
GRR beverage [62]. These studies have also corroborated 
the critical role of myrosinase in metabolizing SFN, 
as patients taking food sources vs. extract of SFN 
without myrosinase had a fourfold increase in urinary 
concentration [76].

Pharmacodynamics/ mechanisms of action of 
sulforaphane

Although several molecular targets in cellular and 
animal models have been identified, the most sensitive 
target for SFN is Keap1, a key sensor for the adaptive 

stress response system regulated through the transcription 
factor Nrf2 (nuclear factor (erythroid-derived2)-like 
2). Keap1 is a sulfhydryl-rich protein that represses 
Nrf2 signaling by facilitating the polyubiquitination 
of Nrf2, thereby enabling its subsequent proteasomal 
degradation. Interaction of SFN with Keap1 disrupts this 
function and allows for nuclear accumulation of Nrf2 
and activation of its transcriptional program (Figure 1). 
Enhanced transcription of Nrf2 target genes provokes a 
strong cytoprotective response that enhances resistance to 
carcinogenesis and other diseases mediated by exposures 
to electrophiles and oxidants [78, 79,109]. Inhibition of 
Phase I enzymes by SFN may contribute to inhibition of 
procarcinogens and its chemopreventitive effect. The Nrf2 
transcription factor is essential for induction of phase 2 
proteins [78, 79, 109]. In in vitro and in vivo using murine 
models in oral carcinogenesis, SFN was demonstrated to 
activate the NRF2 pathway and downregulate oxidative 
damage [110-11]. SFN has also been observed to be a 
potent inducer of phase 2 detoxification enzymes [e.g., 
glutathione transferases, epoxide hydrolase, NAD(P)
H: quinone reductase, and glucuronosyltransferases], 
which may offer protection against carcinogenesis, 
mutagenesis, and other forms of toxicity elicited by 
electrophiles and reactive forms of oxygen [69, 79-82] 

Figure 1: Metabolism and mechanism of SFN for bladder cancer chemoprevention
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. SFN promotes reactive oxygen species formation by 
inhibition of Complex III within mitochondria [112] . 
Evidence suggests that SFN activation of production 
of 4-hydroxynonenal (a lipid peroxidation product) 
may be essential in the chemopreventitive mechanism. 
4-hydroxynonenal induces proteins critical to apoptosis, 
promotes cell cycle arrest, and also activates Nrf2 pathway 
[113]. Other mechanisms include down regulation of 
NFkB, resulting in induction of cell cycle arrest and 
apoptosis [83], while selectively targeting abnormal/
malignant cells [70] compared to normal BC cells [2, 
36] . Using bladder cancer cell lines, Abbaoui, et al. [68] 
demonstrated that downregulation of survivin, epidermal 
growth factor receptor (EGFR), and human epidermal 
growth factor receptor 2 (HER2/neu) induced G2/M cell 
cycle accumulation and apoptosis [68]. In osteosarcoma 
cell lines, SFN decreased cell invasion and also focal 
adhesion kinase (FAK), both of which are important in 
cancer progression [114]. SFN has been shown to inhibit 
inflammatory responses, including downregulation of 
cyclooxygenase-2 (Cox-2) and reduction of prostaglandin 
E2 levels [84, 85]. SFN likely effects immune and 
inflammatory response specifically via Toll-like receptor 
(TLR4) suppression via blockade of thiol-mediated 
conjugation in macrophages [86]. Telomere length which 
is essential for cell survival may be decreased by exposure 
to SFN [115]. 

Other studies suggest a key mechanism involving 
SFN is disruption of mitochondria. SFN has been 
shown to promote translocation of Bak, leading to loss 
of transmembrane potential, mitochondrial degradation, 
and release of cytochrome C [78, 87]. Studies using 
bladder cancer cell lines suggest an M phase arrest as 
the primary mechanism for SFN [88]. In cervical cancer 
cell lines, SFN was shown to cause G2/M arrest via 
cyclinB1 downregulation [116]. Therefore, SFN acts 
upon a multitude of growth-regulatory and inflammatory 
pathways, some of which contain oncogenic targets, to 
exert its potent anti-cancer effects. 

In vitro models in bladder cancer

In vitro studies in BC [2, 89, 90], lung [91, 121], 
prostate [92, 93], colorectal, thyroid [124], renal [113], 
ovarian [118] and leukemia cells lines [94, 95] have 
shown SFN to be a potent inhibitor of carcinogenesis 
through several molecular mechanisms [79], including 
in BC as discussed below. SFN inhibits the survival 
and proliferation of a wide array of animal and human 
BC cell lines [2, 96-98]. Also, SFN has been shown to 
be selectively more toxic to malignant urothelial cells 
(human) than normal urothelium [68]. Using BIU87 
bladder cell lines Dang et al demonstrated that SFN 
downregulated NF-KB levels and upregulated Insulin-
like growth factor-binding protein-3 (IGFBP-3) resulting 
in more apoptosis [99]. Islam et al, studied combination 

of SFN with acetazolamide in bladder cancer in vitro cell 
lines and xenografts. The authors showed diminished 
Ki-67, PHH3, and cyclin D1 and increases in cell cycle 
inhibitors p21 and p27 as well as decreases in Akt 
kinase activity [117]. Additionally, the studies noted 
downregulation of key metastatic proteins such as 
E-cadherin, N-cadherin, and vimentin. 

Animal models 

Other preclinical trials have demonstrated positive 
results using murine models with SFN for breast [100], 
skin [101], prostate [92] , oral [110], and pancreatic [70] 
cancers. Three studies have been conduct in mice and rats 
investigating the effect of SFN using a BC model. Abbaoui 
et al, using a mouse xenograft model showed G2/M phase 
arrest in models treated SFN [68]. Wang et al using 
the same murine xenograft documented tumor growth 
inhibition by 63% as well as a reduction in angiogenesis 
and an increase in immunological cellular response [103]. 
Using a rat orthotopic model, Munday et al demonstrated 
reduced incidence of BC by 61% and a decrease in tumor 
size with a delay in time to tumor progression [71]. 

Animal studies have suggested potential toxicity 
of isothiocyanates, including bladder hyperplasia [104]. 
However, this effect was likely secondary to overdosing. 
In fact, SFN have never been implicated as toxic to the 
bladder even in animal models using doses significantly 
higher than those used in clinical trials. 

Clinical trials in other cancer models

To date, data from early clinical trials with SFN 
have focused on prostate cancer chemoprevention [73, 
105, 123] with the exception of a single trial in women 
with abnormal mammograms, using a pre-biopsy window 
of opportunity for intervention with SFN [120]. The doses 
and formulations of SFN and duration of intervention, 
target populations and biomarkers/endpoints selected in 
these trials vary significantly. In one study, 60 mg (340 
μmol) “stabilized SFN” (Prostaphane®) vs. placebo [73] 
was used targeting men with biochemical recurrence of 
prostate cancer. A reduction in serum PSA was observed 
in 8/20 (40%) of prostate cancer patients with no clinical 
toxicities, compared to placebo [105].

Targeting a similar population with 200 μmol daily 
for 5 months , Alumkal et al [105]demonstrated that 1 of 
20 patients had a 50% decline in serum PSA at 5 months. 

Using 400 g broccoli/week vs. 400 g peas/week 
targeting men with high-grade prostate intraepithelial 
neoplasia) (HGPIN), Traka et al [123] showed significant 
changes in TGFβ, Insulin signaling and EGF receptor 
pathways. 

A recent double blinded randomized trial in 
women scheduled for breast cancer patients compared 
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glucoraphanin supplement (Glucoraphanin (30 mg 
GFN BroccoMax™ vs. placebo) [76] prior to women 
undergoing breast biopsy. The trial showed a significant 
difference in several relevant biomarkers including Ki-
67 and HDAC3 [120]. To our knowledge, there are no 
clinical trials that have been reported using SFN for BC 
chemoprevention. 

DISCUSSION

There are some limitations that are inherent to using 
agents that target multiple mechanistic pathways that 
contribute chemoprevention effects. A pragmatic future 
direction to chemoprevention is to utilize a broad spectrum 
approach [106] that involves using bioactive formulations 
of botanicals (as single agents or in combination with 
other botanicals or biologics) that have been shown to 
produce robust targeting of relevant and multiple, but 
well characterized molecular pathways, without clinically 
limiting toxicity - an approach that may be more effective 
than agents evaluated to date. SFN, similar to other 
botanicals, target multiple signal transduction pathways 
that make it challenging to determine exactly the interplay 
of these mechanisms in chemoprevention. Future studies 
should continue to examine specifc mechanisms as well as 
the interplay of these mechanisms involved in modulating 
bladder carcinogenesis. Further characterization of the 
chemopreventive properties of sulforaphane is critical 
to our understanding these mechanisms that may 
identify targeted pathways of sulforaphane in bladder 
carcinogenesis. In addition, these findings may identify 
and inform selection of biomarkers in evaluating efficacy 
of sulforaphane in modulating bladder carcinogenesis. 

Additionally, bladder cancer represents a very 
genetically heterogeneous cancer with more than 
fifteen oncogenes identified and more than 20 tumor 
suppressor genes with varying frequencies [107], As such, 
chemopreventive agents that are effective in some types 
of bladder cancers, may not be as effective in others. It 
is also recognized that these agents may have specific 
effects at different stages of tumor progression. This 
certainly seems to be true of NRF2 activation in many 
types of cancer including lung cancer, where advanced 
disease is actually associated with the accumulation of 
genetic alterations in KEAP1 and NF2EL2 that promote 
constitutive activation. (TCGA also identified similar 
NF2EL2 mutations in muscle-invasive bladder cancers) 
[121]. Thus, data obtained from any agent, including 
SFN, which is evaluated for a specific stage of tumor, 
may not be generalizable for all stages of tumor [108]. 
Future studies should include early phase trials including 
heterogenous patient populations, including non-muscle 
invasive and muscle-invasive BC patients, potentially 
block randomized to examine effectiveness in various 
stages of bladder tumorogenesis, Additionally, the 

effectiveness as well as the biological effects of these early 
trials should include bladder tumor cells as well as the 
normal appearing urothelium adjacent to bladder neoplasia 
since these data may inform strategies for preventing 
the field cancerization effect seen in progressive, high 
grade superficial bladder cancer. Thus, by using a well 
rationalized, systematic approach, rigorous experimental 
design that addresses challenges and limitations are 
critical to evaluating agents for cancer chemoprevention 
in early phase trials, prior to advancing to phase III trial.

To date, data from early clinical trials with SFN 
have focused on prostate cancer chemoprevention 
[73,105,123] with the exception of a single trial in 
women with abnormal mammograms, using a pre-
biopsy window of opportunity for intervention with SFN 
[120]. The doses and formulations of SFN and duration 
of intervention, target populations and biomarkers/
endpoints selected in these trials vary significantly. Other 
than smoking cessation, there is a paucity of research 
that systematically examines specific agents relevant for 
chemoprevention of bladder cancers. Despite extensive 
knowledge of potential targets of SFN (Nrf2 induction 
and downregulation of NF-kB), and resulting modulation 
of intermediate endpoint biomarkers (apoptosis and 
proliferation) relevant to bladder carcinogenesis, these 
agents have not been evaluated in clinical trials for 
bladder cancer chemoprevention. Future clinical trials 
should be informed from the promising pharmacokinetics 
and pharmacodynamics evidence that exists from current 
in vitro and preclinical studies to inform design of early 
phase chemoprevention trials target men and women with 
non-muscle invasive as well as invasive bladder cancers. 

The clinical course for both early and late stage 
BC continues to be characterized by significant patient 
burden due to numerous occurrences and recurrences 
requiring frequent surveillance strategies, intravesical 
drug therapies, and even more aggressive treatments 
in patients with locally advanced or metastatic disease. 
Based on available evidence from epidemiological, in 
vitro, preclinical, and early phase trials, phytochemicals, 
specifically isothiocyanates (ITCs) such as sulforaphane 
(SFN) represent a promising potential chemopreventative 
agent in bladder cancer. These studies will ultimately 
inform development of chemoprevention interventions in 
both early (non-muscle invasive) and late invasive stage 
BC patients. 

MATERIALS AND METHODS

MEDLINE (Ovid), EMBASE (Ovid), AMED 
(Ovid), CINAHL (EBSCO) and the Cochrane Library 
databases were searched for epidemiological studies, in 
vitro, in vivo and phase I-II clinical trials on the topic 
of bladder cancer chemoprevention with a focus on 
sulforaphane in bladder cancer chemoprevention. Only 
clinical trials investigating sulforaphane for cancer 
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chemoprevention that were completed and results 
published in the identified databases were located. 
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