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Fingerprinting the spatial sources 
of fine‑grained sediment deposited 
in the bed of the Mehran River, 
southern Iran
Atefe Fatahi1,3, Hamid Gholami1,3*, Yahya Esmaeilpour1* & Aboalhasan Fathabadi2

Accurate information on the sources of suspended sediment in riverine systems is essential to 
target mitigation. Accordingly, we applied a generalized likelihood uncertainty estimation (GLUE) 
framework for quantifying contributions from three sub‑basin spatial sediment sources in the Mehran 
River catchment draining into the Persian Gulf, Hormozgan province, southern Iran. A total of 28 
sediment samples were collected from the three sub‑basin sources and six from the overall outlet. 
43 geochemical elements (e.g., major, trace and rare earth elements) were measured in the samples. 
Four different combinations of statistical tests comprising: (1) traditional range test (TRT), Kruskal–
Wallis (KW) H‑test and stepwise discriminant function analysis (DFA) (TRT + KW + DFA); (2) traditional 
range test using mean values (RTM) and two additional tests (RTM + KW + DFA); (3) TRT + KW + PCA 
(principle component analysis), and; 4) RTM + KW + PCA, were used to the spatial sediment source 
discrimination. Tracer bi‑plots were used as an additional step to assess the tracers selected in the 
different final composite signatures for source discrimination. The predictions of spatial source 
contributions generated by GLUE were assessed using statistical tests and virtual sample mixtures. 
On this basis, TRT + KW + DFA and RTM + KW + DFA yielded the best source discrimination and the 
tracers in these composite signatures were shown by the biplots to be broadly conservative during 
transportation from source to sink. Using these final two composite signatures, the estimated mean 
contributions for the western, central and eastern sub‑basins, respectively, ranged between 10–60% 
(overall mean contribution 36%), 0.3–16% (overall mean contribution 6%) and 38–77% (overall 
mean contribution 58%). In comparison, the final tracers selected using TRT + KW + PCA generated 
respective corresponding contributions of 1–42% (overall mean 20%), 0.5–30% (overall mean 12%) 
and 55–84% (overall mean 68%) compared with 17–69% (overall mean 41%), 0.2–12% (overall mean 
5%) and 29–76% (overall mean 54%) using the final tracers selected by RTM + KW + PCA. Based on the 
mean absolute fit (MAF; ≥ 95% for all target sediment samples) and goodness‑of‑fit (GOF; ≥ 99% for 
all samples), GLUE with the final tracers selected using TRT + KW + PCA performed slightly better than 
GLUE with the final signatures selected by the three other combinations of statistical tests. Based on 
the virtual mixture tests, however, predictions provided by GLUE with the final tracers selected using 
TRT + KW + DFA and RTM + KW + DFA (mean MAE = 11% and mean RMSE = 13%) performed marginally 
better than GLUE with RTM + KW + PCA (mean MAE = 14% and mean RMSE = 16%) and GLUE with 
TRT + KW + PCA (mean MAE = 17% and mean RMSE = 19%). The estimated source proportions can help 
watershed engineers plan the targeting of conservation programmes for soil and water resources.

Accelerated soil erosion by water is an environmental threat on different continents including Asia (e.g. Iran, 
China and India), North America (e.g., Canada), Europe (especially the Mediterranean regions) and  Africa1–4. 
Elevated suspended sediment loads in riverine systems resulting from the accelerated erosion due to human 
activities are a serious threat to the sustainable management of watersheds and ecosystem services therein 
 worldwide5. Consequently, identifying the sources of suspended sediment in a watershed is essential to target 

OPEN

1Department of Natural Resources Engineering, University of Hormozgan, Bandar-Abbas, Hormozgan, 
Iran. 2Department of Range and Watershed Management, Gonbad Kavous University, Gonbad Kavous, Golestan 
Province, Iran. 3These authors contributed equally: Atefe Fatahi and Hamid Gholami. *email: hgholami@
hormozgan.ac.ir; y.esmaeilpour@hormozgan.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-07882-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3880  | https://doi.org/10.1038/s41598-022-07882-1

www.nature.com/scientificreports/

mitigation and to help remedy problems such as eutrophication, and siltation of reservoirs. In particular, well-
designed policies and control measures for protecting finite soil and water resources are dependent on reliable 
and scale-appropriate information on the key sources of the sediment problem which in manifested in the form 
of both on-site and off-site  impacts5.

Today, sediment source fingerprinting (SSF) is increasingly applied to document sediment sources at multiple 
scales in differing environments. For example, SSF has been applied to quantify the provenance of riverine sus-
pended  sediment6–9, aeolian  sands10–18, atmospheric  dust19–21 and loess  deposits22. SSF is founded on measuring 
the different properties of watershed source material and target sediment samples and their comparison. To date, 
the different properties used in SSF include colour, mineralogy, geochemical elements (e.g., major, trace and rare 
earth (REE) elements), isotopic signatures and ratios (e.g., 87Sr/86Sr, δ13C and δ15N), REE indices, weathering 
indices, fallout radionuclides (FRNs) and absolute particle  size23–28.

In the last two decades, efforts exploring the uncertainties associated with both aeolian and fluvial SSF 
results has attracted increasing  attention5,7,29. The frameworks used to quantify uncertainty associated with SSF 
estimates can be divided into three groups comprising Monte Carlo simulation—the most commonly applied 
 framework1,30,31, Bayesian  approaches11,22,32,33 and generalized likelihood uncertainty estimation (GLUE)34. 
Among these three frameworks, the GLUE model has been used far less frequently and, in many cases, has been 
applied in conjunction with quantifying the provenance of aeolian, rather than fluvial,  sediments14,20–22. To the 
best of our knowledge, GLUE has not been used to quantify uncertainty associated with estimating the spatial 
sources of fluvial suspended sediment in river catchments. Despite this less frequent application of GLUE, it 
is useful to bear in mind that Bayesian modelling, as an alternative to GLUE, is more sophisticated but equally 
more demanding, since it uses different distributions and transformations (e.g., posterior and prior, Dirichlet), 
centered log ratio (CLR)35, additive log-ratio (ALR)36 and iso-metric log ratio (ILR)37) in the data structure. 
Regardless of the approach used to estimate uncertainties associated with predicted sediment source proportions, 
the uncertainties associated with the SSF approach may originate from a variety of sources, including within-
source group tracer variability, tracer selection, limited numbers of source material or target sediment samples, 
laboratory analyses, and source group  classification5,28,38.

No records of water discharge or sediment yield are available for the study area, but the mean annual runoff 
is estimated to be ca. 55 mm, and the specific sediment yield for the Hormozgan province is 1300 t  km−2  year−123. 
Both scientifically and managerially, fine sediment particles are an important vector for the transfer, dispersal and 
fate of nutrients and contaminants, whilst also causing detrimental impacts on all aquatic trophic levels includ-
ing diatoms, macroinvertebrates, macrophytes and  fish5. Given the above background, the primary goal of this 
study was to apply geochemical SSF within GLUE framework in the estimation of sub-basin spatial sediment 
source contributions in the arid Mehran River catchment in southern Iran, which drains into the Persian Gulf. 
The accuracy of GLUE predictions generated using four different sets of statistical tests for discriminating three 
sub-basin spatial sources was evaluated using 10 virtual sediment (VS) samples with known source contributions 
using the root mean square error (RMSE) and mean absolute error (MAE).

Materials and methods
Study area. The Mehran River catchment (2142  km2) with mean annual rainfall 140 mm is located in the 
western part of Hormozgan province, southern Iran (26° 42′ to 27° 16′ N, and 54° 30′ to 55° 26′ ″) (Fig. 1). The 
study area is surrounded by Bandar-e-Khamir and Bandar-e-Langeh on the eastern and western sides, respec-
tively. It can be divided into three sub-basins comprising a western sub-basin (1611  km2), a central sub-basin 
(106  km2) and an eastern sub-basin (425  km2). The river is 86 km long. Elevation ranges between − 44 m in the 
eastern part of the study area in the vicinity of the catchment outlet to 1857 m in the northwestern part. Slopes 
range between 0 to 79%. Due to existing mangrove forests in the vicinity of the outlet located on the northern 
coast of the Persian Gulf, the study catchment is earmarked as being important environmentally. Geologically, 
the study area is underlain by diverse geological units including low level piedment fan and valley terrace depos-
its, Jahrum formation (including grey and brown weathered, massive dolomite, low weathered thin to medium-
beded dolomite and massive, feature forming, and buff dolomitic limestone), Gachsaran formation (including 
anhydrite, salt, grey and red marl alternating with anhydrite, argillaceous limestone and limestone), undivided 
Asmari and Jahrum formation, Mishan formation (or low weathering gray marls alternating with bands of more 
resitant shelly limestone), Karaj formation (including well bedded green tuff and tuffaceous shale), Bakhtyari 
formation (or alternating hard of consolidated, massive, feature forming conglomerate and low-weathering 
cross-bedded sandstone), undivided Bangestan group, mainly limestone and shale, Albian to Companian, com-
prising the following formations: Kazhdumi, Sarvak, Surgah and Ilam, Aghajari formation (including brown to 
grey, calcareous, feature-forming sandstone and low weathering, gypsum- veined, red marl and siltstone), and 
Razak formation (red, grey, and green silty marls inter-bedded with subordinate silty limestone and minor sand-
stone ribs). The main channel of the Mehran River is established on Quaternary fans and terraces.

Sampling, sample preparation and laboratory analysis. Based on the sub-basin map (Fig. 1), poten-
tial spatial sediment sources in the Mehran River catchment were classified as the western, central and eastern 
sub-basins. A total of 28 surficial samples were collected from the fine-grained materials deposited in the bed of 
the main channel of the sub-basin spatial sources, comprising eight for the western, eight for the central and 12 
for the eastern sub-basin, respectively (Fig. 2a–c). A total of six target sediment samples were collected from the 
fine-grained sediments deposited in the bed of the Mehran River main stem in the vicinity of the overall outlet 
(Fig. 2d). Samples were air dried and sieved to separate the < 63 μm fraction. The mean of the particles size for 
three sources and target sediment samples is presented in Fig. 3. The conventional < 63 μm fraction was selected 
as this is the most geochemically  active39. Aqua regia was used to digest the sieved samples and then the solu-
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tions were analysed for tracer pseudo-content using inductively coupled plasma atomic emission spectroscopy 
(ICP-OES) in the Central Laboratory of the University of Hormozgan. In total, 43 geochemical elements (Al, As, 
Ba, Be, Bi, Cu Ce, Co, Cr, Cs, Er, Fe, K, Li, Mo, Ga, Gd, Hf, Ho, In, Mg, Mn, Na, Nb, Ni,Te, Zn, P, Pb, S, Sc, Sm, 
Sn, Ta, Tb, V, W, Ag, Zr, Ca, Eu and La) were measured in the 34 source material and target sediment samples.

Discriminating the spatial sources of the target sediment samples. A wide range of methods 
including individual statistical tests such as the Kruskal–Wallis H test, stepwise discriminant function analysis, 
principle component analysis, or combined statistical procedures, are used to discriminate the potential sources 
of target sediment  samples29. Here, we used four combinations of statistical procedures. The first comprised a 
TRT (based on the minimum and maximum ranges of tracer concentrations in the source and target sediment 
samples) for tracer conservation plus the (KW test for individual tracer discriminatory power and DFA for 
composite signature discriminatory power. The second comprised a RTM (range test using mean tracer values 
in source and target sediment samples) in combination with KW and DFA. The third combination of tests 
comprised TRT, KW and PCA. The fourth combination combined RTM, KW and PCA. Tracer bi-plots was 
used for further assessment of source discrimination provided by each final composite signature and of tracer 
conservation.

Generalised likelihood uncertainty estimation (GULE). GLUE was first applied to uncertainty mod-
elling and sensitivity analysis for hydrological models  by40. In more recent years (2019 to present) GLUE model-
ling has been applied to quantify uncertainty associated with source contributions to sampled loess deposits, and 
aeolian dust and sands in Central Asia, Iran and  Australia14,20–22. Based on GLUE, we can quantify the uncertain-
ties associated with SSF results via the following five key steps:

Step 1 Application of LHS (Latin Hypercube Sampling) for the random sampling of tracer parameter sets 
(10,000 iterations). At this stage, two boundary constraints (0 ≤ xj ≤ 1; and 

∑

xj = 1 ) must be  satisfied30;
Step 2 Use of the Nash–Sutcliffe coefficient (NSC) as the likelihood  function21:

where as and ao indicate the simulated ith final tracer concentration and the measured ith final tracer concentra-
tion, respectively. amo represents the mean value of the ith measured tracer concentration in the target sediment 
sample;

(1)NSC = 1−

∑n
i=1 (ao − as)

2

∑n
i=1 (ao − amo)

2

Figure 1.  Location of the sub-basin and catchment outlet sediment sampling sites in the study area in 
Hormozgan province, Iran. The red and yellow shading in the bottom map indicate the study catchment and 
Hormozgan province, respectively. This map was generated in ArcGIS 10.4.1 (https:// www. esri. com/ en- us/ 
about/ about- esri/ overv iew).

https://www.esri.com/en-us/about/about-esri/overview
https://www.esri.com/en-us/about/about-esri/overview
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Step 3 Application of an un-mixing model as follows:

where C is an m dimensional column vector of the spatial source contributions, Ats indicates an n-dimensional 
column vector of tracer concentrations in the target sediment sample, and Bs represents an n × m dimensional 
matrix representing the mean tracer concentrations in the spatial sub-basin sources;

Step 4 Division of the tracer parameter sets into behavioural and non-behavioural types, and;
Step 5 Re-scaling of the likelihood weights for the behavioural parameter sets.
More details for GLUE modelling can be found  in14,21.

Assessment of GLUE performance. Two statistical measures (mean absolute fit—MAF and goodness-
of-fit—GOF)20,41–43 were applied to assess the performance of GLUE in estimating the measured tracer concen-
trations in the target sediment samples collected from the outlet of the Mehran River catchment, viz.:

(2)Ats = Bs × C

Figure 2.  Photographs showing the sediment deposits where the samples were collected from: (a) western sub-
basin; (b) central sub-basin; (c) eastern sub-basin, and; (d) the main channel of the Mehran River in the vicinity 
of the overall catchment outlet.
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where n and m are the number of tracers in the final composite signature and number of sub-basin spatial 
sources (m = 3), respectively. bi is the concentration of the final tracer (i) measured in the target sediment sample, 
xj indicates the relative contribution of source (j) to the target sediment sample, and aj,i represents the mean 
concentration of the final tracer (i) in the sub-basin spatial source (j).

The accuracy of the GLUE predictions of spatial source contributions was assessed using 10 VS  mixtures20,22,31. 
Here, the root mean square error (RMSE) and mean absolute error (MAE) were used to compare the GLUE 
predictions with known source contributions from the three sub-basin spatial sources, viz.:

where XK and XP indicate the known contribution from the sub-basin spatial sources in the VS and the corre-
sponding contribution predicted by the GLUE model, respectively. n is the number (n = 3) of sub-basin spatial 
sources.

A methodological flowchart is presented in Fig. 4.

Results and discussion
Discriminating conservative from non‑conservative tracers. The selection of a combination of final 
geochemical tracers in a so-called composite signature for source apportionment is one of the key stages in 
successful  SSF29,44,45. Based on TRT, 11 geochemical tracers (Be, Bi, Cs, Er, Fe, K, Li, Mo, Te, Zn and Cu) were 
identified as non-conservative, meaning that 33 geochemical elements ( Al, As, Ba, Ce, Co, Cr, Ga, Gd, Hf, Ho, 
Mg, Mn, Na, Nb, Ni, P, Pb, Pr, Rb, S, Sc, Sm, Sn, Ta, Tb, V, W, Ag, Zr, Ca, Eu and La) were conservative. By com-
parison, using RTM, 18 geochemical tracers (Al, As, Ba, Be, Co, Cr, Fe, Ga, K, Mo, Na, Pb, Sm, Sn, Ta, Tb, Te and 
Zn) failed the test. Logically, the results for TRT and TRM make sense since TRM is a stricter test meaning that 
more tracers typically fail this mathematical test for conservative behaviour. Due to immobility and low solubil-
ity, rare earth elements (REEs) (e.g., Ce, Gd, Ho, Sc, Sm, Tb, Eu and La) may be useful tracers for identifying 
the provenance of sediments and the formation mechanism of  rocks23,46.Tracers failing either range test were 
excluded from further statistical analysis.

Spatial sediment source discrimination. Stepwise DFA. The results of KW suggested that, among the 
32 geochemical tracers passing the TRT, 12 (Al, Ce, Hf, Mn, Nb, P, Rb, Sc, Zr, Ca, Eu and La) were significant 
(p ≤ 0.05), whist 20 geochemical elements (As, Ba, Co, Cr, Ga, Gd, Ho, Mg, Na, Ni, Pb, Pr, S, Sm, Sn, Ta, Tb, V, W 
and Ag) were not statistically significant (p ≥ 0.05). The 12 statistically significant tracers were used in stepwise 
DFA for identifying the final composite signature for discriminating the sub-basin spatial sources of the target 
sediment samples. Based on the stepwise DFA (Table 1), three geochemical tracers (Zr, Mn and P) were selected. 
The final tracers were selected based on minimizing the Wilks’ Lambda values. The values of Wilks’ Lambda 
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Figure 3.  The mean of the particles size for three sources and target sediment.
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ranged between 13.9 (for the first step with Zr as the first tracer entered into the model) and 11.3 (for the third 
step with P as the third tracer entered into the model).

Among the 25 geochemical tracers (Bi, Ce, Cs, Er, Gd, Hf, Ho, Li, Mg, Mn, Nb, Ni, P, Pr, Rb, S, Sc, V, W, Ag, 
Zr, Ca, Cu, Eu and La) passing RTM, 12 geochemical proprieties (Bi, Cs, Er, Gd, Ho, Mg, Ni, Pr, S, V, W, and Ag) 
were not statistically significant (with p ≥ 0.05) according to KW, whereas 13 (Ce, Hf, Li, Mn, Nb, P, Rb, Sc, Zr, 
Ca, Cu, Eu and La) were significant (p ≤ 0.05). Overall, the results of stepwise DFA for tracers passing RTM + KW 
were the same as those identified using TRT + KW + DFA (Table 1, Fig. 5).

The results of the stepwise DFA are summarised in Fig. 5 and Table 2. Based on these results, a combination 
of Zr, Mn and P were able to correctly classify 89.3% of the sub-basin spatial source sediment samples (Fig. 5).

Principle component analysis (PCA). 12 (Al, Ce, Hf, Mn, Nb, P, Rb, Sc, Zr, Ca, Eu and La) and 13 (Ce, Hf, Li, 
Mn, Nb, P, Rb, Sc, Zr, Ca, Cu, Eu and La) geochemical tracers passing TRT + KW and RTM + KW (Table 3), 
respectively, were entered into the PCA. Based on Table 3 and Fig. 6, the first three PC yielded the most inter-
pretable factor pattern. The initial eigenvalues for components 1 to 3 ranged between 5.6 and 1.26 (Fig. 6a). The 
percentage of the variance explained by these components was calculated as 30.7%, 25.9% and 25.6%, respec-
tively. Based on Fig. 6c, the variance of PC1, PC2and PC3 was 29.3%, 26.6% and 23.9%, respectively, whereas the 

Figure 4.  Flowchart for the GLUE methodology applied for source fingerprinting of the target sediment 
samples collected from the Mehran River.

Table 1.  The final composite signature selected by both TRT + KW + DFA and TRM + KW + DFA for 
discriminating the three sub-basin spatial sources of the six target sediment samples collected at the outlet of 
the study area.

Step Final tracers

Wilks’ Lambda

Statistic Sig

1 Zr 13.9 0.000

2 Mn 11.7 0.000

3 P 11.3 0.000
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initial eigenvalue for these components was estimated to be 5.63, 3.46 and 1.28, respectively. Based on Fig. 6b,d, 
projection of the sample cases on the PC plane using PCA indicates that the final set of tracers, selected using a 
combination of either TRT + KW + PCA or TRM + KW + PCA, provided relatively good discrimination between 
the three sub-basin spatial sediment sources.

Bi‑plots as a further test for identify conservative tracers. Bi-plots of the 14 geochemical tracers 
(Al, Ce, Hf, Li, Nb, Rb, Sc, Ca, Cu, Eu, La, Zr, Mn and P) comprising the final composite signatures selected using 
TRT + KW + DFA, RTM + KW + DFA, TRT + KW + PCA and RTM + KW + PCA were constructed as a further 
test for geochemical tracer conservation (Fig. 7). These bi-plots confirmed the conservative behaviour of the 
final geochemical tracers during sediment mobilization and delivery to the sampling points at the outlet of the 
study catchment since the sub-basin spatial source and target sediment samples plotted in the same space on 
each plot. Plots wherein the samples do not fall in the same space indicate non-conservative behaviour of the 
geochemical tracers in question. Several studies have reported the inclusion of bi-plots for identifying conserva-
tive tracers in  SSF28,47–49.

The uncertainty ranges of the source contributions and their cumulative distributions esti‑
mated by GLUE. The uncertainty ranges (with 95% confidence limits) of the estimated source contributions 
and the their cumulative distributions for the six target sediment samples collected from the outlet of the Meh-
ran River estimated by GLUE using the signatures selected by the different combinations of the statistical tests 
are presented in Fig. 8. Using the final composite signature selected by TRT + KW + DFA and RTM + KW + DFA 
(Fig. 8a), the contributions from the western sub-basin to target sediment sample S1 were predicted to dominate 
and ranged between 42 and 72%, compared with 1 to 27% from the central sub-basin, and 19 to 35% from the 

Figure 5.  Two-dimensional scatterplot constructed based on the first and second functions of the stepwise DFA 
for the tracers selected using either TRT + KW + DFA or TRM + KW + DFA.

Table 2.  Classification results for the three sub-basin spatial sediment sources using stepwise DFA.

No

Predicted group membership

TotalWestern sub-basin Central sub-basin Eastern sub-basin

Count

Western sub-basin 6 2 0 8

Central sub-basin 1 7 0 8

Eastern sub-basin 0 0 12 12

Percent

Western sub-basin 75 25 0 100

Central sub-basin 12.5 87.5 0 100

Eastern sub-basin 0 0 100 100
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eastern sub-basin. For target sediment sample S2, the corresponding respective contributions, using the same 
final composite signature, ranged between 1–51%, 0.2–21% and 48–90%. The western sub-basin contributed 
1–40% for S3, whereas the central and eastern sub-basins contributed 0.5 to 30%, and 57 to 90%, respectively. 
The ranges of the contributions from the western, central and eastern sub-basins spatial sources to S4 ranged 
between 0.9 to 41%, 5 to 30%, and 57 to 91%, respectively. The predicted contributions from the western sub-
basin to S5, ranged between 0.6–33%, whereas the corresponding contributions from the central and eastern 
sub-basins ranged between 0.7–37% and 59–90%, respectively. The predicted contributions from the western 
sub-basin to S6 ranged between 26 to 51%, whereas the contributions from the central and eastern sub-basins 
ranged between 26 to 49%, and 19 to 28%, respectively.

The results for the predicted spatial source contributions using GLUE and the final composite signature 
selected by TRT + KW + PCA (Fig. 8b) suggested that the ranges of the contributions from the western, central 
and eastern sub-basins spatial sources to S1 were 38 to 76%, 1 to 30%, and 20 to 37%, respectively. The western 
sub-basin contributed 1–52% of S2, whereas the central and eastern sub-basins contributed 0.2 to 20%, and 46 
to 91%, respectively. The corresponding respective contributions to S3 ranged between 1–41%, 0.5–39% and 
57%-91%. For target sediment sample S4, the contribution from the western sub-basin ranged between 0.8 and 
41%, whereas the corresponding contributions from the central and eastern sub-basins ranged between 0.5–30% 
and 57–91%, respectively. The ranges of the contributions from the western, central and eastern sub-basins 
spatial sources to S5 were 0.8 to 40%, 5 to 30%, and 57 to 91%, respectively. The predicted contributions from 
the western, central and eastern sub-basins to S6, ranged between 40–81%, 1–35% and 14–31%, respectively.

Finally, the results for the predicted spatial source apportionment using GLUE and the final composite 
signature selected by RTM + KW + PCA (Fig. 8c), indicated that the contribution of the western sub-basin to 
target sediment sample S1, ranged between 53–91%, whereas the corresponding contributions from the central 
and eastern sub-basins range between 0.6–22% and 1–37%, respectively. The contributions from the western 
sub-basin to target sediment sample S2 were predicted to dominate and ranged between 51 and 90%, compared 
with 0.3 to 23% from the central sub-basin, and 15 to 47% from the eastern sub-basin. The eastern sub-basin was 
predicted to be the dominant source of target sediment samples S3 (42–91%), S4 (48–90%) and S5 (57–91%), 
whereas the corresponding predicted contributions from the western and central spatial sub-basins ranged 
between 2–56%, 2–49% and 1–40%, and 0.3–17%, 3–19% and 0.4–30%, respectively. The ranges of the contri-
butions from the western, central and eastern sub-basins spatial sources to S6 were 53 to 90%, 7 to 25%, and 2 
to 32%, respectively.

Table 3.  Results of PCA based on tracers passing TRT + KW and RTM + KW.

Tracer PC1 PC2 PC3

TRT + KW + PCA

Al 0.05 − 0.02 0.97

Ce 0.94 0.26 0.03

Hf 0.23 0.75 0.01

Mn 0.05 0.11 0.84

Nb 0.29 0.71 0.30

P 0.74 0.46 0.05

Rb − 0.16 − 0.52 0.73

Sc 0.12 0.38 0.86

Zr 0.26 0.86 0.13

Ca 0.48 0.69 − 0.19

Eu 0.91 0.28 0.12

La 0.95 0.21 0.01

RTM + KW + PCA

Ce 0.94 − 0.00 0.26

Hf 0.23 − 0.00 0.76

Li − 0.28 0.88 − 0.07

Mn 0.11 0.87 0.15

Nb 0.28 0.19 0.76

P 0.73 − 0.03 0.47

Rb − 0.21 0.72 − 0.40

Sc 0.13 0.82 0.45

Zr 0.26 0.03 0.88

Ca 0.53 − 0.22 0.63

Cu 0.15 0.80 − 0.05

Eu 0.92 0.01 0.27

La 0.94 − 0.01 0.21
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Assessment of the GLUE predictions using MAF and GOF estimators. The contributions from 
the three sub-basins estimated by GLUE (with 95% confidence limits) using the four different statistical combi-
nations (TRT + KW + DFA, RTM + KW + DFA, TRT + KW + PCA and RTM + KW + PCA) including their over-
all means and the corresponding estimates of MAF and GOF are presented in Fig. 9 and Table 4. The results 
of apportionment by GLUE using TRT + KW + DFA and RTM + KW + DFA shows that the overall mean con-
tributions from the western, central and eastern sub-basins ranged between 10–60%, 0.3 to 16% and 38% to 
77%, respectively (Fig. 9a), and the overall respective mean contributions were estimated at 36%, 6% and 58% 
(Table 4). Based on the MAF (≥ 80%, exception MAF = 78% for target sediment sample S2) and GOF (≥ 95%) 
results, the GLUE procedure was able to predict the measured concentrations in the target sediment samples 
of the tracers comprising these two final composite signatures. Based on the final composite signature selected 
using TRT + KW + PCA, the range of the overall mean contributions of the western sub-basin was predicted to 
be 1–42% (with an overall mean of 20%), whereas the corresponding contributions of the central and western 
sub-basin spatial sources ranged between 0.5–30% (overall mean 14%) and 55–84% (overall mean 68%), respec-
tively (Fig. 9b). Based on MAF (> 84%) and GOF (≥ 97%), the predicted tracer values using GLUE in combina-
tion with the final composite signature selected by TRT + KW + PCA were more accurate than the predictions 
provided by GLUE with TRT + KW + DFA, RTM + KW + DFA and RTM + KW + PCA. The overall mean contri-
butions, provided by GLUE in combination with the final composite signature selected using RTM + KW + PCA, 
from the western, central and eastern sub-basin spatial sources ranged between 17–69% (overall mean 41%), 
0.2–12% (overall mean 5%) and 29–76% (overall mean 54%), respectively (Fig.  9c). Among the four differ-
ent statistical combinations, predictions provided by GLUE with RTM + KW + PCA, with a MAF = 89% and a 
GOF = 99%, had the lowest accuracy with respect to predicting the measured tracer concentrations in the target 
sediment samples.

Testing the predicted source proportions with virtual sediment (VS) mixtures. The ten VS 
samples with different known mixtures presented in Table 5 were used to evaluate the accuracy of the GLUE 
models using final composite signatures selected by different combinations of the statistical tests for discrimi-
nating the three sub-basin spatial sources. The values of the MAE for the GLUE with TRT + KW + DFA and 
RTM + KW + DFA ranged between 30% for VS7 to 2% for VS9 and VS10, whereas the corresponding values of 
the RMSE ranged between 2% for VS9 and 36% for VS7. The highest values for MAE and RMSE, or the low-

Figure 6.  (a) Scree plot output from the PCA for the spatial sediment source discrimination based on 
geochemical tracers selected by TRT + KW, (b) projection of the cases on the principal component plane using 
PCA based on geochemical tracers selected by TRT + KW, (c) Scree plot output from the PCA for the spatial 
sediment source discrimination based on geochemical tracers selected by RTM + KW, and; (d) projection of the 
cases on the principal component plane using PCA based on geochemical tracers selected by RTM + KW. S1, S2 
and S3 indicate samples collected from the spatial sources represented by the western, central and eastern sub-
basins, respectively.
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Figure 7.  The bi-plots of the geochemical tracers comprising the final composite signatures selected using 
TRT + KW + DFA, RTM + KW + DFA, TRT + DFA + PCA and RTM + DFA + PCA for discriminating the three 
sub-basin spatial sediment sources. The blue, orange, grey and gold points indicate the samples collected from 
the western, central and eastern sub-basins and the target sediment samples, respectively.
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est accuracy, was estimated for VS7 with known contributions of 60% (western sub-basin), 20% (central sub-
basin) and 20% (eastern sub-basin), compared with predicted corresponding contributions of 16% (western 
sub-basin), 61% (central sub-basin) and 23% (eastern sub-basin). Among the VS mixtures, the highest accuracy 
was returned for VS9 with known contributions of 20% (western sub-basin), 20% (central sub-basin) and 60% 
(eastern sub-basin), and predicted contributions of 20% (western sub-basin), 17% (central sub-basin) and 63% 
(eastern sub-basin). The values of the MAE and RMSE were estimated to be less than 20% for eight VS mixtures 
(VS2, VS3, VS4, VS5, VS6, VS8, VS9 and VS10) but ≥ 28% for VS1 and VS7.

Overall, based on the estimates of MAE and RMSE (< 20% for the majority of VS mixtures), GLUE provided 
accurate predictions of the spatial source contributions in the study area. Equally successful applications of 
GLUE for source fingerprinting aeolian sands and atmospheric dust, in Australia and Iran respectively, have been 
reported  by14,21. The GLUE framework can therefore return acceptable accurate estimates of source contributions 
in different environmental settings and for different types of target sediment.

Figure 7.  (continued)
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Figure 8.  The cumulative distributions for the predicted contributions from the three sub-basin spatial sources 
(western sub-basin—blue line; central sub-basin—red line, and; eastern sub-basin—black line) modelled using 
GLUE based on the final composite signatures selected using the four different combinations of statistical tests.
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Study limitations
Any SSF study necessarily has inherent limitations and uncertainties. Available resources and in many cases, 
the nature of the landscape in question, inevitably serve to constrain field access and effort and sampling cam-
paigns. In this study, a conventional confluence-based approach to estimating sub-basin spatial sediment source 
 contributions50,51 was implemented using limited sampling of the spatial sources and downstream target sediment 
and the single campaign nature of these samples should be borne in mind when interpreting the results. The river 
bed sediment samples used to represent the spatial sources and the downstream target sediment were not age-
dated52–54 and so it is not possible to confirm the time period represented by the source apportionment estimates. 
Although a combination of two range tests and tracer biplots was used to help evidence tracer conservatism, it 
remains widely reported that these approaches fail to attest to the complete absence of transformation during 
sediment mobilization and routing. With regards the constituent tracers selected in the final composite signatures 
used in our work, Ca, Mn and P have been reported as being susceptible to phase changes, whereas in compari-
son, Al, Ce, Eu, La and Sc have been reported as being far less susceptible to mobility between  phases55. The 
composite signatures selected in this study are essentially statistical solutions generated by different combinations 
of tests and here it is informative to bear in mind that some studies have attempted to focus on knowledge-based 
pre-selection of  tracers56,57. Finally, VS mixtures were used as a convenient and widely  adopted58,59 means to assess 
the accuracy of the predicted spatial source proportions, since independent monitoring data for the sediment 

Figure 9.  The cumulative distributions for the overall mean contributions of the three sub-basin spatial 
sediment sources (western sub-basin—blue line, central sub-basin—red line and eastern sub-basin—black line) 
modelled using GLUE with the different combinations of the statistical tests.
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loads emitted from the tributary sub-catchments was not available. The lack of independent evidence to validate 
SSF results is common to almost all existing published studies, although a few exceptions  exist25,60.

Conclusions
The novel contribution of this study is quantification of the uncertainty and accuracy of the spatial source con-
tributions from three sub-basins of a large arid catchment in southern Iran using SSF within a GLUE framework. 
Based on MAF and GOF, all four tracer models performed well, but GLUE with the final composite signature 
selected by the more traditional statistical procedures (TRT + KW + DFA and RTM + KW + DFA) for source dis-
crimination performed slightly better than the two other models (GLUE with TRT + KW + PCA, and GLUE with 
RTM + KW + PCA). Our results for sediment source apportionment can help managers target spatial priorities 
for interventions to help decrease sediment loads and mitigate their negative effects in the Mehran study catch-
ment. On the basis of our experience with this study, we recommend applying the SSF approach within a GLUE 
framework with the traditional statistical tests for quantifying source contributions. To confirm the wider appli-
cability of our case study findings, our analyses herein should be replicated for estimating the sources of aeolian 
and fluvial sediments and the associated uncertainties and accuracies in catchments and landscapes located in 
different regions around the world experiencing severe soil erosion and sediment delivery by either water or wind.

Table 4.  The contributions of the three sub-basin spatial sources estimated by GLUE and the final composite 
signatures selected using different statistical tests and the corresponding values of MAF and GOF for 
predicting the measured geochemical tracer concentrations in the six target sediment samples (S1-S6).

Statistical tests 
combinations

Target sediment 
sample Western sub-basin Central sub-basin Eastern sub-basin MAF (%) GOF (%)

TRT + KW + DFA and 
RTM + KW + DFA

S1 56 16 28 95 100

S2 25 8 68 78 95

S3 18 12 70 88 99

S4 18 12 70 92 99

S5 14 16 70 81 96

S6 37 39 24 93 99

Overall mean 36 6 58 94 100

TRT + KW + PCA

S1 55 15 30 90 97

S2 27 7 66 84 97

S3 18 12 70 88 98

S4 18 12 70 92 99

S5 18 12 70 88 97

S6 57 19 24 98 100

Overall mean 20 12 68 95 100

RTM + KW + PCA

S1 68 11 21 79 91

S2 68 9 23 76 92

S3 30 6 64 84 97

S4 27 7 66 89 98

S5 18 12 70 84 97

S6 68 14 18 96 100

Overall mean 41 5 54 89 99
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