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Objective: To determine the effect of small daily amounts of progressive resistance
training on rapid force development of painful neck/shoulder muscles.
Methods: 198 generally healthy adults with frequent neck/shoulder muscle pain
(mean: age 43�1 years, computer use 93% of work time, 88% women, duration
of pain 186 day during the previous year) were randomly allocated to 2- or
12 min of daily progressive resistance training with elastic tubing or to a control
group receiving weekly information on general health. A blinded assessor took
measures at baseline and at 10-week follow-up; participants performed maximal
voluntary contractions at a static 90-degree shoulder joint angle. Rapid force
development was determined as the rate of torque development and maximal
muscle strength was determined as the peak torque.
Results: Compared with the control group, rate of torque development increased
31�0 Nm s�1 [95% confidence interval: (1�33–11�80)] in the 2-min group and
33�2 Nm s�1 (1�66–12�33) in the 12-min group from baseline to 10-week follow-
up, corresponding to an increase of 16�0% and 18�2% for the two groups, respec-
tively. The increase was significantly different compared to controls (P<0�05) for
both training groups. Maximal muscle strength increased only ~5–6% [mean and
95% confidence interval for 2- and 12-min groups to control, respectively: 2�5 Nm
(0�05–0�73) and 2�2 Nm (0�01–0�70)]. No significant differences between the
2- and 12-min groups were evident. A weak but significant relationship existed
between changes in rapid force development and pain (r = 0�27, P<0�01), but not
between changes in maximal muscle strength and pain.
Conclusion: Small daily amounts of progressive resistance training in adults with fre-
quent neck/shoulder pain increases rapid force development and, to a less extent,
maximal force capacity.

Introduction

Work related musculoskeletal pain is a common problem and

represents a major socioeconomic burden in the developed

world. Several studies have found musculoskeletal pain to be

frequent in the general population (Ferrari & Russell, 2003;

Ihlebaek et al., 2007). For instance, in representative popula-

tion of more than 29 000 people the three-month prevalence

of spinal pain was 31% (Strine & Hootman, 2007). Musculo-

skeletal pain is typically associated with decreased muscle

strength (Brox et al., 1997; Itoi et al., 1997; Sjøgaard et al.,

2006). However, in daily life many types of events are charac-

terized by a limited time to develop force – for instance dur-

ing postural coordination and control strategies. Thus, in

clinical rehabilitation settings and research the ability to rap-

idly develop force – that is, the rate of force development

(RFD) – seems far more relevant as an outcome measure than

maximal force capacity.

The literature suggests a multitude of physiological factors

influencing rapid force development; from neural drive (Cut-

sem et al., 1998; Andersen & Aagaard, 2006; Holtermann

et al., 2007) to maximal muscle strength (Andersen &
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Aagaard, 2006). In patients with chronic musculoskeletal pain

however, sudden movements where force develops rapidly

may inflict a threat response (Al-Obaidi et al., 2000; Carleton

et al., 2006) and thereby limit rapid force development by

pain inhibition of motor outflow (Steingr�ımsd�ottir et al.,

2004; Andersen et al., 2008a). In a previous study, markedly

reduced muscle activation ability during the initial phase of a

maximal voluntary contraction, measured as the rate of torque

development (RTD) and rate of EMG rise, was found in

women with trapezius myalgia when comparing them to

healthy age-, gender- and job-matched controls (Andersen

et al., 2008a). In that study, maximal force capacity and rapid

force development were reduced by 18% and 54%, respec-

tively (Andersen et al., 2008a). Thus in painful conditions, it

seems that the ability to rapidly generate force is markedly

impaired (Andersen et al., 2008a), which again may affect

working capacity and daily life activities negatively. RTD may

therefore be a more sensitive measure compared to maximal

muscle strength, and more responsive to resistance training

rehabilitation strategies.

Studies have shown an increase in RFD in healthy young

(Aagaard et al., 2002) and elderly individuals (Suetta et al.,

2004) following resistance training, which is congruent with

typical physiological adaptations observed on rapid force- and

maximal force capacity (Andersen et al., 2009). Moreover, sig-

nificant pain relief in response to specific strength training in

women suffering from chronic neck muscle pain has recently

been documented (Andersen et al., 2008b, 2012). However,

that study only included women with a clinical diagnosis of

trapezius myalgia and therefore the potential beneficial effect

of resistance training in a broader group of adults with neck/

shoulder muscle pain is relevant to investigate. Furthermore,

many adults lack time and motivation to do long-term strenu-

ous sessions of resistance training and the effectiveness of

intervention with minimal amount of resistance training

remains to be determined. The American College of Sports

Medicine (ACSM) (2009) has previously reported that both

single- and multiset resistance training approaches can lead to

maximal strength gains in the healthy individual but to our

knowledge rapid force development has not been studied in

populations suffering from musculoskeletal pain.

The aim of our study was to determine the effect of small

daily amounts of progressive resistance training on rapid force

development of painful neck/shoulder muscles.

Methods

Study design

We performed a randomized controlled trial in Copenhagen,

Denmark from August to December 2009. The study design

and the results on pain and peak torques have been reported

previously (Andersen et al., 2011). This paper presents second-

ary analysis on rapid force development, and we have

included previous results on peak torques for comparison.

In brief, a screening questionnaire went out to 1094

employees from two large office companies, and a total of

653 (60%) responded to the questionnaire. The target group

for this study was full-time office workers with soft tissue ten-

derness of the neck/shoulder. To avoid competing diseases,

exclusion criteria were a medical history of cardiovascular or

cerebrovascular events, fibromyalgia, rheumatoid arthritis, cer-

vical disc herniation, whiplash or other significant traumatic

injuries of the neck or shoulder, major chronic diseases, preg-

nancy, working less than 30 hours per week or performing

more than 2 hours per week of vigorous physical exercise.

Following initial exclusion criteria, screening employees with

self-reported neck/shoulder pain intensity of at least 2 on a scale

of 0–10 during the last 3 months, at least 30 day with pain dur-

ing the last year and self-rated tenderness of the neck/shoulder

muscles were invited for a clinical neck/shoulder examination

(n = 305) (47% of those who replied to the questionnaire) per-

formed by a physical therapist. During the clinical examination,

additional exclusion criteria were blood pressure above 160/

100, a positive foramen compression test, subacromial

impingement syndrome or severe joint pain of the shoulder,

elbow or wrist during resisted shoulder abduction. We included

employees with a history of frequent neck/shoulder pain dur-

ing the last year and examiner-verified palpable tenderness in at

least one of the examined neck/shoulder muscles (Juul-Kristen-

sen et al., 2006) in the trial (n = 198) (65% of those who were

invited for the examination).

Participants

All participants (mean age 43�1 (SD: 10�5) years; 174 women

and 24 men) were informed about the main objective and

content of the project and gave written informed consent to

participate in the study. The study was approved by the Local

Ethical Committee (HC2008103) and was registered in the

International Standard Randomized Controlled Trial Number

Register: ISRCTN60264809. Concealed random allocation to

one of the three intervention groups was performed after clin-

ical examination of all participants as previously described

(Andersen et al., 2011). Table 1 shows baseline demographics

after allocation to the three groups as well as the physiological

characteristics of the trapezius muscle.

Test procedure and dynamometry

The blinded examiner determined the participants’ muscle

strength as the maximal torque value of five attempts exerted

during maximal voluntary shoulder abduction at a static 90-

degree shoulder joint angle against a Bofors dynamometer

(Bofors Elektronik, Karlskoga, Sweden). The Bofors force

transducer was adjusted so the articulating joint line between

the radial row and the proximal row of carpal bones was

placed in the middle of the dynamometer.

The participants were instructed to press as hard and fast as

possible with verbal encouragement for approximately 3 s
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against the force transducer allowing for 20 s of rest between

trials. We sampled the signal at 100 Hz and saved it for off-

line analysis in Microsoft Excel via LabView 7.1 (National

Instruments, TX, USA). We also measured the participants’

lever arm to calculate torque around the shoulder joint:

defined as the distance from the contact area of the Bofors

dynamometer on the wrist to the acromion of the scapula.

Outcomes

For each trial, the peak torque (PT; unit Nm) and rate of tor-

que development (RTD; unit Nm s�1) were determined as the

maximal value of the torque-time and the steepest slope over

100 ms of the rising part of the torque-time curve, that is,

determined as the peak value of a moving window of 100 ms

(DTorque/DTime), respectively. The highest obtained values

for PT and RTD were selected for statistical analysis.

Interventions

This study has three arms; 2 min of progressive resistance

training performed five times a week, 12 min of progressive

resistance training performed five times a week and a control

group receiving weekly information on general health. All

three interventions were initiated simultaneously and lasted

10 weeks. The intervention activities have been described in

detail previously (Andersen et al., 2011). In brief, the 2- and

12-min groups performed shoulder abductions in the scapular

plane – also known as ‘lateral raise’ – to effectively target sev-

eral relevant neck/shoulder muscles (Andersen et al., 2008b,

2010). Physical therapists taught the participants to perform

the training exercise in a controlled manner, raising and low-

ering the arms in approximately 2 s, respectively. The 12-min

group performed 5–6 sets of 8–12 repetitions in a progressive

manner – based on general recommendations by the ACSM

(2009). Both groups performed the exercise repetitions at a

slow and controlled pace taking approximately 2 s for the

concentric phase, 0 s at the apex of the lift and 2 s for the

eccentric phase as it is commonly instructed in the fitness

industry. The 2-min group was instructed from day one to

reach complete failure during training and the participants

were encouraged to try and beat their previous best each

training session. The training load applied corresponded to 8–

12 RM and the load was increased – by the introduction of a

thicker elastic tubing – once the participants could perform

the 12 repetitions with relative ease. After an introductory

week, the training was unsupervised for the remainder of the

intervention period and the participants logged all training in

a diary. The control group received e-mail based information

once a week during the 10-week intervention period on vari-

ous aspects of general health (e.g. diet, smoking, alcohol,

physical exercise, stress management, workplace ergonomics

and indoor climate).

Statistics

Variables were analysed in accordance with the CONSORT

statement for randomized controlled trials intention-to-treat

principle. Dropouts were invited to participate in the follow-

up test to avoid selection bias. Between-group differences

were determined by analysis of variance using the mixed pro-

cedure of SAS (SAS institute, Cary, NC, version 9.2). Pearson’s

correlation was used to analyse relationships between changes

in RTD and PT to pain.

An alpha level of 5% was accepted as statistically significant.

We report baseline results as means (SD) and changes from

baseline to follow-up as means (95% confidence intervals)

unless otherwise stated.

Results

Table 1 shows that at baseline the participants in the three

groups were comparable regarding demographic and clinical

characteristics. Adherence was satisfactorily high; participants

exercised on average more than three times per week. Dropouts

were 5-, 6- and 2- participants from the 2 min, 10 min and

control group, respectively, thus leaving 185 participants to be

included in the analysis. Inter Class Coefficient (ICC) between

first and second test round was 0�89 for RTD. The ICC for PT

has previously been reported (Andersen et al., 2011).

Rate of torque development

Compared to the control group, RTD increased 31�0 Nm s�1

from 194�1 (105�5) Nm s�1 to 225�1 (119�5) Nm s�1 in the

2-min group [95% confidence interval: (1�33–11�80)] and

33�2 from 182�3 (99�4) Nm s�1 to 215�4 (121�8) Nm s�1 in

the 12-min group [95% confidence interval: (1�66–12�33)],
corresponding to an increase of 16�0% and 18�2% in the two

groups, respectively (Table 2). In the control group, RTD

decreased 1�8%, which was non-significant (P = 0�6). A sig-

nificant but weak relationship existed between changes in

Table 1 Baseline demographics and physiological characteristics of
the trapezius muscle after allocation to the three groups. Results are
mean (SD).

TG2 (n = 66) TG12 (n = 66) CON (n = 66)

Demographics
Age (year) 44�3 (10�9) 42�2 (10�8) 42�9 (9�9)
Height (cm) 171�1 (7�8) 169�5 (7�6) 169�2 (7�2)
Weight (kg) 72�4 (13�6) 68�3 (14�4) 66�6 (11�2)
Body Mass Index
(kg 9 m�2)

24�7 (4�5) 23�7 (4�7) 23�2 (3�6)

Physiological characteristics of trapezius muscle
Peak torque
(PT; Nm)

44�3 (13�0) 43�8 (13�8) 43�8 (12�9)

Rate of torque
development
(RTD; Nm 9 s�1)

194�1 (105�5) 182�3 (99�4) 206�0 (124�3)

Muscle pain (VAS;
0–10 scale)

3�5 (1�6) 3�8 (2�1) 3�5 (1�7)
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rapid force development and self-reported pain pre- to postin-

tervention (r = 0�27, P<0�01).

Peak torque

Compared with the control group maximal muscle strength as

measured by PT increased 2�5 Nm from 44�3 (13�0) Nm to

46�8 (14�4) Nm in the 2-min group [95% confidence inter-

val: (0�05–0�73)] and 2�2 Nm from 43�8 (13�8) Nm to 46�0
(14�3) Nm in the 12-min group [95% confidence interval:

(0�01–0�70)], corresponding to an increase of 5�7% and 5�1%
in the two groups, respectively (Table 2). The control group

had a non-significant increase in PT of 1�2% corresponding to

0�5 (3�7) Nm from 43�8 (12�9) Nm to 44�3 (13�6) Nm. No

significant relationship existed between changes in maximal

muscle strength and self-reported pain.

Discussion

Our study shows significant increases in RTD following two dif-

ferent brief high frequency training protocols in people with

neck/shoulder pain compared to controls receiving information

on general health. Changes in maximal muscle strength did also

increase, although to a less extent (5–6%). Furthermore a corre-

lation analysis showed a significant relationship between

changes in RTD, but not PT, and self-reported pain.

Previous studies have shown a positive effect on neck/

shoulder strength following typical resistance training proto-

cols (Ylinen et al., 2003; Chiu et al., 2005; Andersen et al.,

2008b) and Ylinen & Ruuska, (1994) have previously

reported a positive relationship between increases in maximal

strength and reductions in musculoskeletal pain. It is generally

recognized that significant muscle strength increases can be

obtained quite fast, and prolonged exposure to resistance

training improves neural drive (Narici et al., 1989; H€akkinen

et al., 1998; Aagaard et al., 2000) and firing frequency (Cut-

sem et al., 1998) along with a host of structural changes

including: increased anatomical cross-sectional area (CSA)

(Higbie et al., 1996; Aagaard et al., 2002; Reeves & Maganaris,

2003), increased physiological CSA of individual muscle fibres

and increased number of myosin heavy chain type IIa fila-

ments (Staron et al., 1994) as well as architectural changes of

the muscle (Reeves & Maganaris, 2003; Suetta et al., 2004).

To obtain changes in neural function following resistance

training of pain-free muscles, the typical recommendations

include loading parameters around 65% 1RM for untrained

individuals (ACSM 2009) as well as the intention of achieving

the highest possible movement velocity during each repetition

(Behm & Sale, 1993). By contrast, the instruction in our study

was to perform the exercise in a controlled manner, avoiding

jerkiness and sudden acceleration. Thus, RTD may not have

increased due to typical adaptations seen in pain-free individu-

als, but rather due to disinhibition of pain on the ability to

rapidly activate the muscles. Although a positive association

between changes in pain and RTD partially confirmed this, it

should also be noted that the correlation was relatively weak.

Our research team has previously reported the primary out-

comes of this investigation (Andersen et al., 2011) where sig-

nificant and clinically relevant reductions in neck/shoulder

pain were observed following the 2-min- and 12-min training

protocols. Together with the results of the present study

showing significant improvements in RTD of roughly 16–18%

across intervention groups confirms the theory of the impact

positive changes in pain has on muscle function.

In individuals not experiencing musculoskeletal pain the

physiological mechanisms controlling RTD include: neural

drive to the muscles (Narici et al., 1989; H€akkinen et al., 1998;

Aagaard et al., 2000), amount of motor neuron inhibition, rate

of EMG rise (Aagaard et al., 2002; Del & Cafarelli, 2007),

motor neuron excitability (Aagaard et al., 2002; Del & Cafarelli,

2007), firing frequency and the presence of double spikes

(Cutsem et al., 1998) but for people experiencing musculoskel-

etal pain and discomfort, rapid force development may be lim-

ited by the fear of pain (Al-Obaidi et al., 2000; Reneman et al.,

2007). Pain is a sensory and emotional experience associated

with actual or potential tissue damage and is produced by the

output of a widely distributed neural network in the brain

(Melzack, 1999). After investigating painful and adjacent upper

extremity muscles, Andersen et al., (2008c) suggested that a

feedforward mechanism limits neural drive to painful muscles

during rapid contractions as well as to its synergists, and

thereby limits RTD, due to a ‘fear of pain’ output from the

brain. Complementing this function, Andersen et al., (2008c)

also suggests that a feedback mechanism is responsible for the

impairment of painful muscles during maximal force develop-

ment coming from muscle spindles and Golgi tendon organs

Table 2 Difference from baseline to 10-week follow-up for rate of torque development (Nm 9 s�1) and peak torque (Nm). Results are mean
(95% confidence interval). 95% confidence intervals for between-group differences of TG2 to control and TG12 to control are also shown.

Outcome measure

Difference from baseline to 10-week follow-up Between-group differences

TG2 TG12 Control

TG2 to

control mean
(95% CI)

TG12 to

control mean
(95% CI)

Muscle testing
Rate of torque
development (Nm 9 s�1)

31�0 (3�08–10�62) 33�2 (3�38–11�17) �3�7 (�3�38–3�94) 34�7 (1�33–11�80) 36�9 (1�66–12�33)

Peak torque (Nm) 2�5 (0�40–0�89) 2�2 (0�35–0�86) 0�5 (0�02–0�49) 2�0 (0�05–0�73) 1�8 (0�006-0�70)
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(Moore, 1984). Given the extensive impact ‘the pain experi-

ence’ can have on body functioning (Swinkels-Meewisse et al.,

2006), it is not unlikely that people with musculoskeletal pain

and discomfort have decreased rapid force development as a

direct consequence of the painful event, and by decreasing

pain, RTD will increase as we have observed in the present

study. This suggests that a modulation of fear during resistance

training is taking place. It has been suggested that specific neu-

ral networks in the brain act as threat management systems

governing actual or perceived threats to the structural integrity

of the tissue of the body (Visser & Davies, 2010). The neural

network can generate protective sensorimotor responses such

as limb weakness or pain (Visser & Davies, 2010). In the pres-

ent study, the training intervention of 2- or 12 min of daily

resistance training using elastic tubing for either one set with

as many consecutive repetitions as possible or 5–6 sets of 8–12

repetitions performed slow and controlled does not conform

to the general consensus of heavy and rapid lifting required to

induce maximal or explosive strength gains. However, the

training frequency in both groups was, compared to the litera-

ture, quite high. Ratamess et al., (2008) have shown that expo-

sure to high frequency resistance training (4 times per week)

is superior to lower frequency strategies (3, 2 and 1 weekly

training sessions) when maximal strength capacity is the goal.

Similarly, Rhea et al., (2002) found that healthy, untrained

individuals benefitted greatly from 3 weekly sessions of resis-

tance training. Compared to the studies of Ratamess et al.,

(2008) and Rhea et al., (2002), the frequency exposure in our

study can be considered very high and may be an important

factor when providing possible explanations to the observed

increase in RTD particularly and the associated decrease in self-

perceived pain. Melzack and Wall’s gate control theory of pain

from 1965 suggested that a modulation of inputs in the dorsal

horns of the spinal cord could together with other central

adaptive mechanisms contribute to reductions in perceived

pain (Melzack, 1999). It is commonly known that articulate

and muscular tissue contain mechanoreceptors which send

proprioceptive information about joint position, speed of

movement and load to the brain (Zimny, 1988). During

movement these mechanoreceptors are stimulated and could

potentially excite inhibitory interneurons, thereby blocking the

nociceptive signal and closing the pain gate over time with fre-

quent stimulus. Ultimately, this could lead to less fear of

movement, which would cause disinhibition of motor outflow

to the working muscles.

Another possible pain reduction mechanism as mentioned

by Jay et al. (2011) in a study investigating the effects of

explosive resistance training on non-chronic muscle pain is

the desensitization of chemo nociceptive nerve endings

by local functional hyperaemia mechanisms normalizing

intramuscular metabolite concentrations. Flushing of metabo-

lite build-up might also play a roll locally in the muscles

when looking for possible explanations to reductions in self-

reported pain following light and frequent resistance training

as in the present study. Based on the above, it seems plausible

that both central modulatory effects and local muscular events

and adaptations could contribute to the altered pain experi-

ence and fear of rapid contractions thereby at least partially

explain the significant increases in rapid force development

we observed in this study.

Finally, it is interesting that there were no differences in

RTD or PT between the two training groups. Obviously this

makes the training protocol of the 2-min group the most time

efficient protocol to choose especially if we put physical train-

ing and rehabilitation into an implementation context in the

working environment. Furthermore, the lack of difference in

RTD and PT between the two training groups may suggest

that training frequency is more important than training vol-

ume for the untrained individual in a rehabilitation setting.

Our study has both strengths and limitations. A significant

strength of the present study is the high ICC between first and

second test round of both RTD and PT. A limitation is that we

did not measure fear of movement or fear avoidance behav-

iour in relation to rapid arm movement. This could have been

done either by asking the participants just before initiating the

contraction during pre- and posttesting, if they are expecting

the movement to be painful or monitoring and recording gal-

vanic skin response, heart rate, blood pressure, pupil dilation

and skin tonus and colour.

Conclusion and practical implication

We have shown that rapid force development is a more sensi-

tive measure than maximal force capacity when investigating

musculoskeletal pain of the upper extremity. The use of rapid

force development tracking in clinical rehabilitation settings

may be a more valuable assessment as quick movements,

which occur in sports and normal everyday life both, require

a rapid force capacity and is often associated with a cortical

‘fear of pain’ output, thus creating neural inhibition to the

engaging muscles. Additionally, we have also shown that a

very brief (one set), but frequent (5 day per week), training

stimulus have a positive effect on rapid force development in

people with musculoskeletal pain.

Conflict of interest

The authors have no conflicts of interest.

References

Aagaard P, Simonsen EB, Andersen JL, Mag-
nusson SP, Halkjaer-Kristensen J, Dyhre-

Poulsen P. Neural inhibition during maxi-
mal eccentric and concentric quadriceps

contraction: effects of resistance training. J
Appl Physiol (2000); 89: 2249–2257.

Aagaard P, Simonsen EB, Andersen JL, Mag-
nusson P, Dyhre-Poulsen P. Increased rate

of force development and neural drive of
human skeletal muscle following resistance

390 RFD in response to short term daily exercise of painful muscles, K. Jay et al.

© 2013 The Authors
Clinical Physiology and Functional Imaging © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine 33, 5, 386–392



training. J Appl Physiol (2002); 93: 1318–

1326.
Al-Obaidi SM, Nelson RM, Al-Awadhi S, Al-

Shuwaie N. The role of anticipation and
fear of pain in the persistence of avoidance

behavior in patients with chronic low back
pain. Spine (2000); 25: 1126–1131.

American College of Sports Medicine (ACSM).
American College of Sports Medicine posi-

tion stand. Progression models in resistance
training for healthy adults. Med Sci Sports Exerc

(2009); 41: 687–708.
Andersen LL, Aagaard P. Influence of maximal

muscle strength and intrinsic muscle con-
tractile properties on contractile rate of

force development. Eur J Appl Physiol (2006);
96: 46–52.

Andersen LL, Nielsen PK, Søgaard K, Ander-
sen CH, Skotte J, Sjøgaard G. Torque-EMG-

velocity relationship in female workers with
chronic neck muscle pain. J Biomech

(2008a); 41: 2029–2035.
Andersen LL, Kjaer M, Søgaard K, Hansen L,

Kryger AI, Sjøgaard G. Effect of two con-
trasting types of physical exercise on

chronic neck muscle pain. Arthritis Rheum
(2008b); 59: 84–91.

Andersen LL, Holtermann A, Jørgensen MB,

Sjøgaard G. Rapid muscle activation and
force capacity in conditions of chronic mus-

culoskeletal pain. Clin Biomech (Bristol, Avon)
(2008c); 23: 1237–1242.

Andersen LL, Andersen JL, Suetta C, Kjaer M,
Søgaard K, Sjøgaard G. Effect of contrasting

physical exercise interventions on rapid
force capacity of chronically painful mus-

cles. J Appl Physiol (2009); 107: 1413–1419.
Andersen LL, Andersen CH, Mortensen OS,

Poulsen OM, Bjørnlund IBT, Zebis MK.
Muscle activation and perceived loading

during rehabilitation exercises: comparison
of dumbbells and elastic resistance. Phys Ther

(2010); 90: 538–549.
Andersen LL, Saervoll CA, Mortensen OS,

Poulsen OM, Hannerz H, Zebis MK. Effec-
tiveness of small daily amounts of progres-

sive resistance training for frequent neck/
shoulder pain: randomised controlled trial.

Pain (2011); 152: 440–446.
Andersen CH, Andersen LL, Gram B, Pedersen

MT, Mortensen OS, Zebis MK, Sjøgaard G.
Influence of frequency and duration of

strength training for effective management
of neck and shoulder pain: a randomised

controlled trial. Br J Sports Med (2012); 46:
1004–1010.

Behm DG, Sale DG. Intended rather than
actual movement velocity determines veloc-

ity-specific training response. J Appl Physiol
(1993); 74: 359–368.

Brox JI, Røe C, Saugen E, Vøllestad NK. Iso-

metric abduction muscle activation in

patients with rotator tendinosis of the

shoulder. Arch Phys Med Rehabil (1997); 78:
1260–1267.

Carleton RN, Asmundson GJG, Collimore KC,
Ellwanger J. Strategic and automatic threat

processing in chronic musculoskeletal pain:
a startle probe investigation. Cogn Behav Ther

(2006); 35: 236–247.
Chiu TTW, Lam T-H, Hedley AJ. A random-

ized controlled trial on the efficacy of exer-
cise for patients with chronic neck pain.

Spine (2005); 30: E1–E7.
Cutsem M, Duchateau J, Hainaut K. Changes

in single motor unit behaviour contribute
to the increase in contraction speed after

dynamic training in humans. J Physiol
(1998); 513: 295–305.

Del Balso C, Cafarelli E. Adaptations in the
activation of human skeletal muscle

induced by short-term isometric resistance
training. J Appl Physiol (2007); 103: 402–

411.
Ferrari R, Russell AS. Regional musculoskele-

tal conditions: neck pain. Best Pract Res Clin
Rheumatol (2003); 17: 57–70.

H€akkinen K, Kallinen M, Izquierdo M, Joke-
lainen K, Lassila H, M€alki€a E, Kraemer WJ,

Newton RU, Alen M. Changes in agonist-

antagonist EMG, muscle CSA, and force
during strength training in middle-aged and

older people. J Appl Physiol (1998); 84:
1341–1349.

Higbie EJ, Cureton KJ, Warren GL, Prior BM.
Effects of concentric and eccentric training

on muscle strength, cross-sectional area,
and neural activation. J Appl Physiol (1996);

81: 2173–2181.
Holtermann A, Roeleveld K, Vereijken B,

Ettema G. The effect of rate of force develop-
ment on maximal force production: acute

and training-related aspects. Eur J Appl Physiol
(2007); 99: 605–613.

Ihlebaek C, Brage S, Eriksen HR. Health com-
plaints and sickness absence in Norway,

1996-2003. Occup Med (Lond) (2007); 57:
43–49.

Itoi E, Minagawa H, Sato T, Sato K, Tabata S.
Isokinetic strength after tears of the supra-

spinatus tendon. J Bone Joint Surg Br (1997);
79: 77–82.

Jay K, Frisch D, Hansen K, Zebis MK, Ander-
sen CH, Mortensen OS, Andersen LL. Kettle-

bell training for musculoskeletal and
cardiovascular health: a randomized con-

trolled trial. Scand J Work Environ Health
(2011); 37: 196–203.

Juul-Kristensen B, Kadefors R, Hansen K, Bys-
tr€om P, Sandsj€o L, Sjøgaard G. Clinical signs

and physical function in neck and upper
extremities among elderly female computer

users: the NEW study. Eur J Appl Physiol

(2006); 96: 136–145.

Melzack R. Pain - an overview. Acta Anaesthesiol

Scand (1999); 43: 880–884.
Moore JC. The Golgi tendon organ: a review

and update. Am J Occup Ther (1984); 38:
227–236.

Narici MV, Roi GS, Landoni L, Minetti AE,
Cerretelli P. Changes in force, cross-sec-

tional area and neural activation during
strength training and detraining of the

human quadriceps. Eur J Appl Physiol Occup
Physiol (1989); 59: 310–319.

Ratamess NA, Faigenbaum AD, Hoffman JR,
Kang J. Self-selected resistance training

intensity in healthy women: the influence
of a personal trainer. J Strength Cond Res

(2008); 22: 103–111.
Reeves ND, Maganaris CN, Narici MV. Effect

of strength training on human patella ten-
don mechanical properties of older individ-

uals. J Physiol (2003); 548(Pt 3): 971–981.
Reneman MF, Schiphorts Preuper HR, Kleen

M, Geertzen JHB, Dijkstra PU. Are pain
intensity and pain related fear related to

functional capacity evaluation performances
of patients with chronic low back pain? J

Occup Rehabil (2007); 17: 247–258.
Rhea MR, Alvar BA, Burkett LN. Single versus

multiple sets for strength: a meta-analysis to

address the controversy. Res Q Exerc Sport
(2002); 73: 485–488.

Sjøgaard G, Søgaard K, Hermens HJ, Sandsj€o L,
L€aubli T, Thorn S, Vollenbroek-Hutten MM,

Sell L, Christensen H, Klipstein A, Kadefors
R, Merletti R. Neuromuscular assessment in

elderly workers with and without work
related shoulder/neck trouble: the NEW-

study design and physiological findings. Eur J
Appl Physiol (2006); 96: 110–121.

Staron RS, Karapondo DL, Kraemer WJ, Fry
AC, Gordon SE, Falkel JE, Hagerman FC,

Hikida RS. Skeletal muscle adaptations dur-
ing early phase of heavy-resistance training

in men and women. J Appl Physiol (1994);
76: 1247–1255.

Steingr�ımsd�ottir OA, Knardahl S, Vøllestad
NK. Prospective study of the relationship

between musculoskeletal and psychological
complaints and electromyographic activity

during isometric muscular contractions in a
working population. Scand J Work Environ

Health (2004); 30: 410–420.
Strine TW, Hootman JM. US national preva-

lence and correlates of low back and neck
pain among adults. Arthritis Rheum (2007);

57: 656–665.
Suetta C, Aagaard P, Rosted A, Jakobsen AK,

Duus B, Kjaer M, Magnusson SP. Training-
induced changes in muscle CSA, muscle

strength, EMG, and rate of force develop-
ment in elderly subjects after long-term uni-

lateral disuse. J Appl Physiol (2004); 97: 1954–

1961.

391RFD in response to short term daily exercise of painful muscles, K. Jay et al.

© 2013 The Authors
Clinical Physiology and Functional Imaging © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine 33, 5, 386–392



Swinkels-Meewisse IEJ, Roelofs J, Oostendorp

RA, Verbeek ALM, Vlaeyen JWS. Acute low
back pain: pain-related fear and pain catas-

trophizing influence physical performance
and perceived disability. Pain (2006); 120:

36–43.
Visser EJ, Davies S. Expanding Melzack’s pain

neuromatrix. The Threat Matrix: a supersys-

tem for managing polymodal threats. Pain

Practice (2010); 10: 7085.
Ylinen J, Ruuska J. Clinical use of neck iso-

metric strength measurement in rehabilita-
tion. Arch Phys Med Rehabil (1994); 75: 465–

469.
Ylinen J, Takala E-P, Nyk€anen M, H€akkinen

A, M€alki€a E, Pohjolainen T, Karppi SL, Kau-

tiainen H, Airaksinen O. Active neck muscle

training in the treatment of chronic neck
pain in women: a randomized controlled

trial. JAMA (2003); 289: 2509–2516.
Zimny ML. Mechanoreceptors in articular tis-

sues. Am J Anat (1988); 182: 16–32.

392 RFD in response to short term daily exercise of painful muscles, K. Jay et al.

© 2013 The Authors
Clinical Physiology and Functional Imaging © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine 33, 5, 386–392


