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Terrestrial invertebrates in urban ecosystems are extremely species-rich, have many important roles in material
flow and energy circulation, and are host to many human pathogens that pose threats to human health. These
invertebrates are widely distributed in urban areas, including both out- and in-door environments. Consequently,

i?x;ertgbr?tes humans are frequently in contact with them, which provides many opportunities for them to pose human health
rbanization R ) o X X N
Zoonoses risks. However, comprehensive knowledge on human pathogen transfer via invertebrates is lacking, with research

to date primarily focused on dipterans (e.g., mosquitoes, flies). Here, we take a broad taxonomic approach and
review terrestrial invertebrate hosts (incl. mosquitoes, flies, termites, cockroaches, mites, ticks, earthworms,
collembola, fleas, snails, and beetles) of human pathogens, with a focus on transmission pathways. We also discuss
how urbanization and global warming are likely to influence the communities of invertebrate hosts and have
flow-on risks to human health. Finally, we identify current research gaps and provide perspectives on future

directions.

1. Introduction

The ecological trade-offs inherent in urban ecosystems have emerged
as one of the most challenging issues in urban planning, garnering sig-
nificant attention from policymakers, sustainability practitioners, and
conservationists. While urban green spaces are essential for providing
ecosystem services, they also present risks by harboring potential human
pathogens [1,2]. In terms of habitat diversity, urban environments offer
rich and varied habitats for invertebrates. The soils within these urban
green spaces serve as a home for a diverse array of invertebrates, playing
a crucial role in ecosystem functionality [3]. Meanwhile, it is noteworthy
that specific invertebrate species, particularly cockroaches and flies,
predominantly rely on human-generated domestic waste for their sur-
vival [4] Invertebrates are present in basically all urban areas, including
both indoor and outdoor environments. Their omnipresence results in
frequent encounters with humans [5-7]. With human population models
indicating that our urban population will reach five billion by 2030 [8],
understanding human-invertebrate interactions are increasingly
important.
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Predominantly residing in soils, invertebrates are fundamental to
sustaining urban biodiversity [9]. Their roles are diverse and essential,
including pathogen control and soil quality enhancement [10]. How-
ever, urban invertebrates also introduce significant public health
challenges by hosting pathogens detrimental to human health [11,12]
(Fig. 1). Disease transmission from these organisms occurs through
various mechanisms, including acting as mechanical vectors, biting,
and contact with excreta [13]. The subtle nature of many of these in-
teractions can often leads to people being unaware of human pathogen
exposure [14].

Despite the well-documented health risks associated with specific
invertebrates, like mosquitoes and flies, there is a noticeable gap in our
understanding of a broader range of urban invertebrate species. Recent
research has primarily focused on symbiotic microbial relationships
within invertebrates, which has resulted in insufficient research on their
role as hosts of human pathogens [15-17]. The SARS-CoV-2 pandemic
highlights the importance of understanding wildlife-human disease
contact [18], including the role invertebrates play as potential human
disease vectors. This lack of knowledge impedes the development and
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Fig. 1. Illustration of common terrestrial invertebrates and their potential interactions with humans and pets in urban settings.

implementation of effective disease control strategies, such as integrated
vector management [19].

As urban landscapes continuously evolve, due in large part to inten-
sifying urbanization, the dynamics between invertebrates, pathogens, and
humans are also undergoing significant change. This further necessitates a
greater understanding of these relationships, in the hope of more proac-
tively manage and respond to human disease outbreak risks. Here we
review urban terrestrial invertebrates and their human-associated path-
ogens. Through the adoption of a “hosts-pathogens-pathways-challenges™
framework, this study aims to present a holistic view of the current
knowledge, challenges, and potential future directions in this area.

2. Human pathogens carried by urban invertebrates

This section focuses on ten primary groups of terrestrial invertebrates
in urban ecosystems selected for their ubiquity in urban zones and sig-
nificant spatial intersection with human dwellings. Flies, often found in
residences, exhibit a density correlating with the presence of sanitation
and waste disposal facilities [20]. Mosquitoes are common in many urban
spaces, including greenspaces, homes, and public infrastructure. The
advent of urban farms has been identified as providing environments
supportive of the proliferation of mosquitoes that are well-known human
disease vectors [21]. The remaining nine groups (termites, cockroaches,
mites, ticks, springtails, fleas, earthworms, snails, and beetles) are
soil-affiliated and inhabit diverse soil ecosystems. These ecosystems range
from private gardens and community green spaces to green roofs and walls
and also include indoor potted plants and aerobiomes derived from both
indoor and outdoor soils, including dust [22]. We would like to provide a
concise and focused summary here rather than a wordy statement.
Although taxa on the genus or class level are not strong evidence of human
pathogens, we discuss it to explore the potential pathogenicity and future
direction under the limitations of our current knowledge. While no clinical
cases demonstrate the pathogenicity of soil fauna we have detected
human-associated pathogens in the gut microbiome of such fauna,
including earthworms and collembolans [23,24], finding them posing
potential sources of pathogens. The comprehensive and detailed infor-
mation, including hosts, pathogens, and diseases, is provided in Table 1
[16, 24-71] and Table 2. We highlight the urgent, novel, and neglected
human pathogens and aim to expand the knowledge boundary.

2.1. Mosquitoes

In urban settings, especially in tropical regions, mosquitoes stand out as
principal vectors for various human pathogens [72-75]. The mosquitoes
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Aedes aegypti, Aedes albopictus, and Culex pipiens complex are among the
most important vector species found in urban areas due to their adaptation
to breeding in man-made containers [76]. Mosquito-borne human diseases
like dirofilariasis, West Nile virus, yellow fever, Chikungunya virus,
dengue fever, and lymphatic filariasis have been extensively reviewed [77,
78] and are not further examined in this review.

2.2. Flies

Urban environments frequently host flies whose population densities
often correlate with the presence of sanitation facilities, marked by clear
seasonal variations [79]. A comprehensive review by Khamesipour et al.
[80] highlighted more than 130 human pathogens, mainly carried by the
housefly (Musca domestica L.). This review extends that knowledge by
discussing additional urban fly species, offering deeper insights into
fly-borne diseases.

Sandflies (Phlebotomines) have been identified as transmitters of the
Toscana virus within the Mediterranean region [25]. It is important to note
that in rare instances, flies have been documented carrying norovirus.

Sandflies also play a crucial role as vectors for Leishmania, which is
responsible for severe diseases in humans. Various sandfly species,
including Phlebotomus kandelakii, P. perfiliewi, and P. alexandri have been
implicated in Leishmania transmission within Iran [81]. In central Tunisia,
P. perfiliewi, P. perniciosus, and P. longicuspis (of the Larrousse subgenus) are
primary vectors for Leishmania transmission. Furthermore, other fly-borne
parasites like Trypanosoma sp. have been identified, with Glossina pallid-
ipes Austen (Diptera; Glossinae) serving as a significant vector for African
trypanosomiasis in East Africa, thereby causing a substantial number of
infections in tropical regions [28]. M. domestica subsp. vicina is a carrier of
Balantidium coli cysts, Ancylostoma duodenale eggs, Enterobius vermicularis
eggs, and Strongyloides stercoralis larvae [36].

2.3. Termites

The gut microbiome of termites has garnered considerable attention
and has been thoroughly studied [15]. Konig [82] identified spore-forming
bacteria and Paenibacillus in termite guts. Further studies suggested that
several of these bacterial species could be either human pathogens or
potential pathogens. In addition, the termite gut microbiome harbors
families like Lachnospiraceae and Ruminococcaceae, which have links to
various gastrointestinal and extra-gastrointestinal diseases [83]. Notably,
Blautia and Lachnospiraceae incertae sedis, which belong to the Lachno-
spiraceae, have been identified in the gut microbiome of patients with
non-alcoholic fatty liver disease [84]. Additionally, it was found in a cohort
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Table 1
Terrestrial invertebrates in urban and their human pathogens.
Invertebrate Pathogen species Pathogen Disease Reference
Fly Escherichia coli 0157:H7 Bacteria Non-bloody diarrhea [16]
Toscana Virus Virus Febrile illnesses, neuroinvasive infections [25]
Norovirus Virus Diarrhea [26]
Leishmania Parasite Leishmaniasis [27]
Trypanosoma Parasite Trypanosomiasis [28]
Termite Bacillus cereus Bacteria Diarrheal-type food-borne diseases [29]
Brevibacillus brevis Bacteria Bloodstream infection [30]
Bacillu soleronius Bacteria Human rosacea [31]
Acinetobacter Fungi Blood, urinary tract, and lungs (pneumonia) infection [32]
Cockroach Escherichia coli Bacteria Non-bloody diarrhea [33]
Streptococcus Group D Bacteria Slow healing [33]
Klebsiella pneumoniae Bacteria Antimicrobial-resistant opportunistic infections [33]
Proteus vulgaris Bacteria Septicaemia [33]
SARS-CoV-2 Virus Pneumonia [34]
Ascaris spp., Parasite Ascariasis [35]
Trichuris spp., Parasite Trichuriasis [35]
Entamoeba spp., Parasite Diarrhea [35]
Cryptosporidium, Parasite Diarrhea [35]
Balantidium coli cysts Parasite Pulmonary infection [36]
Eggs of Ancylostoma duodenale Parasite Anemia [36]
Enterobius vermicularis Parasite Enterobiasis [36]
Larvae of Strongyloides stercoralis Parasite Strongyloides stercoralis [36]
Raillietiella hemidactyli Parasite Ocular infections [37,38]
Mite Salmonella acteria Diarrhea [39]
Bacillus thuringiensis Bacteria Diarrhea associated with food poisoning [40]
Aspergillus Fungi Invasive external otitis [41]
Entomophthorales Fungi Chronic rhinofacial disease [42]
Cladosporium cladosporioides Fungi Subcutaneous phaeohyphomycosis [43]
Hantavirus Virus Hemorrhagic fever with renal syndrome [44]
Tick Ehrlichia chaffeensis Bacteria Human monocytotropic ehrlichiosis [45]
Borrelia burgdorferi Bacteria Lyme borreliosis [45]
Francisella tularensis Bacteria Tularemia [46]
Flaviviruses Virus Acute encephalitis [47]
Nairovirus Virus Crimean-Congo Hemorrhagic Fever [48]
Earthworm Salmonella Bacteria Diarrhea [49]
Escherichia coli Bacteria Diarrhea [24]
Kluyvera Bacteria Human soft tissue infection and urinary tract infection [50]
Ochrobactrum Bacteria Septicemia [51]
Bacillus Bacteria Anthrax, local wound and eye infections and systemic diseases [36]
Collembola Stenotrophomonas Bacteria Respiratory infections [23]
Acidovorans Bacteria Immunocompetent infection [52]
Sphingomonas acteria Bloodstream infections and meningitis [53]
Methylobacterium Bacteria Infection in immunocompromised [54]
Chryseobacterium Bacteria Pneumonia and septicemia [55]
Pandoraea Bacteria Endocarditis and pneumonia [56]
Acinetobacter Bacteria Catheter-related infections [57]
Snail Buttiauxella Bacteria Surgical site infection [58]
Citrobacter Bacteria Sepsis and meningitis [58]
Kluyvera Bacteria Soft tissue and urinary tract infections [50]
Raoultella Bacteria Bacteremia [59]
Enterococcus Bacteria Resistant to common antibiotics [60]
Clostridium Bacteria Gastroenteric diseases [27]
Angiostrongus cantonensis Parasite osinophilic meningitis [61]
Fasciola hepatica Parasite Trematodiasis [62]
Fasciola gigantica Parasite Trematodiasis [63,63]
Angiostrongylus cantonensis Parasite Angiostrongyliasis cantonensis [64]
Alaria alata Parasite Schistosomiasis [65]
Beetle Bacillus Bacteria Periodontal disease [40]
Morganella Bacteria Sepsis, abscess, purple urine bag syndrome [66]
Providencia alcalifaciens Bacteria Diarrhea [67]
Proteus Bacteria Urinary tract infection, Crohn's disease [68]
Neisseria Bacteria Gonorrhea, meningitis and sepsis [69]
Serratia Bacteria Urinary tract infection, respiratory tract infection, meningitis [70]
Pseudomonas Bacteria Pneumonia, meningitis, pericarditis, and osteomyelitis [71]

study that the genera Ruminococcaceae were associated with long-term
insomnia, and cardiovascular metabolic diseases [85]. Acinetobacter,
found in the viscera of the subterranean termite Coptotermes heimi, en-
compasses Acinetobacter baumannii.

Using metagenomic methods, Litov et al. [86] examined three termite
species: Hospitalitermes bicolor, Macrotermes carbonarius, and Odontotermes
wallonensis, which all exist in Cat Tien National Park in Vietnam. This study
resulted in the assembly of four complete genomes of previously unknown

viruses, associated with the Solemoviridae, Lispiviridae, Polycipiviridae,
and Kolmioviridae families. However, the pathogenic potential of these
newly discovered viruses has yet to be determined.

2.4. Cockroaches

Cockroaches are recognized as vectors for many bacterial pathogens
that pose threats to human health. This study explains their role as
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Table 2
Various diseases caused by terrestrial invertebrates.

Pathogens Family Diseases Invertebrate Hosts Category
Bacillaceae Diarrheal-type food-borne diseases; human rosacea; diarrhoea Termite; Mite; Earthworm; Beetle Bacterium

associated with food poisoning; periodontal disease, septicaemia,

and wound infections; anthrax, local wound and eye infections;

systemic diseases
Enterobacteriaceae Non-bloody diarrhea; hemorrhagic colitis; hemolytic-uremic Termite; Springtail; Mite; Earthworm; Bacterium

syndrome; thrombotic thrombocytopenic purpura; Snail; Beetle

antimicrobial-resistant opportunistic infections; septicaemia;

diarrhea; human soft tissue infection; surgical site infection;

sepsis; meningitis; bacteremia; urinary tract infection, Crohn's

disease; respiratory tract infection, meningitis
Moraxellaceae Blood, urinary tract, and lungs (pneumonia) infection; catheter- Termite; Springtail Bacterium

related human infections
Anaplasmataceae Human monocytotropic ehrlichiosis Tick Bacterium
Ancylostomatidae Cockroach Parasite
Ascarididae Cockroach Parasite
Brucellaceae Septicemia Earthworm Bacterium
Burkholderiaceae Endocarditis and pneumonia Springtail Bacterium
Caliciviridae Diarrhea Fly Virus
Cladosporiaceae Subcutaneous phaeohyphomycosis Mite Fungi
Clostridiaceae Gastroenteric diseases Snail Bacterium
Comamonadaceae Infection in immunocompetent and immunocompromised Springtail Bacterium

Individuals
Cryptosporidiidae Cockroach Parasite
Diplostomatidae Snail Parasite
Entamoebidae Cockroach Parasite
Enterococcaceae Resistant to common antibiotics Snail Bacterium
Entomophthorales Chronic rhinofacial disease Mite Fungi
Flaviviridae Acute encephalitis Tick Virus
Flavobacteriaceae Pneumonia and septicemia in immunocompromised individuals Springtail Bacterium
Francisellaceae Tularemia Tick Bacterium
Hantaviridae Mite Virus
Methylobacteriaceae Infection in immunocompromised hosts Springtail Bacterium
Nairoviridae Crimean-Congo Hemorrhagic Fever Springtail Virus
Neisseriaceae Gonorrhea, meningitis and sepsis Beetle Bacterium
Oxyuridae Cockroach Parasite
Paenibacillaceae Human bloodstream infection Termite Bacterium
Phenuiviridae Febrile illnesses and neuroinvasive infections Fly Virus
Pseudomonadaceae Pneumonia, meningitis, pericarditis, and osteomyelitis Beetle Bacterium
Psilotrichidae Cockroach Parasite
Raillietiellidae Cockroach Parasite
Schistosomatidae Snail Parasite
Sphingomonadaceae Bloodstream infections Springtail Bacterium
Spirochaetaceae Lyme borreliosis Tick Bacterium
Streptococcaceae Slows healing during wound infection Cockroach Bacterium
Strongylidae Cockroach Parasite
Trichocomaceae Invasive and saprophytic syndromes, invasive external otitis Mite Fungi
Trichurida Cockroach Parasite
Xanthomonadacae Respiratory infections Springtail Bacterium

intermediate hosts for enteric-related parasites and enumerates the pre-
dominant bacterial, viral, and parasitic entities they harbor.

Cockroaches (Periplaneta americana, Blatella germanica, and Blatta
orientalis) harbor a range of human bacteria, including Escherichia coli,
Group D Streptococcus, Klebsiella pneumoniae, and Proteus vulgaris [33].

As for human pathogenic parasites, cockroaches (Blattella germanica,
P. americana, Parcoblatta spp., B. orientalis, Shelfordella lateralis, Peri-
planeta australasiae, Nauphoeta cinereal) carry both nonenteric and enteric
parasites, including Ascaris spp., Trichuris spp., Entamoeba spp., and
Cryptosporidium spp. [35]. In addition, studies in Egypt have shown
P. americana is a carrier of B. coli cysts, A. duodenale eggs, E. vermicularis
eggs, and Strongyloides stercoralis larvae [36]. Moreover, cockroaches,
particularly their larvae, can serve as intermediate hosts for parasites
such as Raillietiella hemidactyli (Pentastomida: Raillietiellidae), reported
as a zoonotic parasite that can cause human ocular infections [37,87].
Evidence from RT-qPCR assays suggests that cockroaches can act as
carriers for SARS-CoV-2, with the virus being detected in both the
external surfaces and gastrointestinal contents of Blattella germanica and
P. americana species [34].

2.5. Mites

Mites parasitize a wide variety of metazoans, from mollusks to ar-
thropods and vertebrates (including humans), transmitting pathogens
that may result in significant health and economic repercussions [88].

Certain mites, such as poultry red mites, are known to host Salmo-
nella, potentially causing diarrhea in affected individuals [39]. In addi-
tion, mites such as Panonychus citri, Metaseiulus occidentalis, Phytoseiulus
persimilis, Tetranychus pacificus, Tetranychus urticae, and Dermatophagoides
pteronyssinus are hosts for Bacillus thuringiensis. B. thuringiensis, used as an
insecticide in agriculture, was previously thought to be harmless to
humans. However, recent evidence suggests that the toxins it produces
have been linked to a number of human infections, including food-poi-
soning diarrhea, gum disease, bloodstream infections, and wound in-
fections [89].

Mites can serve as hosts for various fungi. As an example, Dino-
thrombium giganteum and Trombidium gigas are capable of carrying
Aspergillus spp. Additionally, Artoseius spp., Macrocheles pergrinus, and
Pergamasus crassipes may carry Entomophthorales, an entomopathogenic
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pathogens that have been shown to be pathogenic to humans [42].
Moreover, Cladosporium cladosporioides carried by Eotetranychus spp. may
lead to subcutaneous phaeohyphomycosis in rare instances [43]. Several
mite species, such as Trombiculid, Gamasid, Leptotrombidium scutellare,
and L. scutellare are hosts for hantavirus [44].

2.6. Ticks

Ticks are known to transmit a multitude of pathogens. Extensive
research has been devoted to examining their transmission of bacteria,
particularly in tropical regions [90]. However, there are a limited num-
ber of studies investigating the consequences of fungal and parasitic
diseases spread by ticks.

Ixodid ticks are capable of transmitting Ehrlichia chaffeensis, which is
considered the most significant species responsible for causing human
monocytotropic ehrlichiosis, while E. canis is the primary agent respon-
sible for canine monocytotropic ehrlichiosis. Additionally, Ixodes ricinus
complex can transmit Borrelia burgdorferi, the causative agent of Lyme
borreliosis. Haemaphysalis excavatum, Haemaphysalis marginatum, and
Haemaphysalis parva can harbor B. burgdorferi and contribute to disease in
some rare clinical cases. Furthermore, it has been demonstrated that
Francisella tularensis, a Gram-negative bacterium responsible for causing
Tularemia, can be carried by various tick species, such as American dog
tick (Dermacentor variabilis) and the lone star tick (Amblyomma ameri-
canum) [91].

Regarding viruses, we present an overview of recent research progress
in the investigation of tick-borne flaviviruses. Ixodes ticks host various
flaviviruses, at least seven of which have been identified as human path-
ogens [92]. Five of these viruses are considerable, as they cause diseases
that vary from mild febrile illnesses to acute encephalitis [47]. The viruses
that are responsible for Omsk Hemorrhagic Fever and Kyasanur forest
disease are genetically related to the tick-borne encephalitis virus, but
instead of encephalitis, they induce hemorrhagic fever [93].

2.7. Earthworms

Earthworms, such as Eisenia andrei, are known carriers of Salmonella
and E. coli, both of which can cause health problems like diarrhea and
colitis in humans [49]. A study of the gut microbiome of Eisenia fetida
under NaCl stress revealed an increased prevalence of several pathogenic
genera such as Kluyvera, Lactobacillus, and Ochrobactrum [24]. Ochro-
bactrum, which is phylogenetically close to Brucella, contains species such
as O. anthropic, that are capable of inducing septicemia. The gut of
Pheretima guillelmi harbors microbial communities consisting of Bacillus,
Microvirga, Blastococcus, Nocardioides, and Gaiella [94]. No data are
available concerning the transmission of pathogens from earthworms
and to humans.

2.8. Collembolans

To the best of our knowledge, there are no clinical cases to suggest
that the collembolans (springtails) transmit human bacteria, fungi, vi-
ruses, or parasites. However, some human-associated bacteria were
found through our further review of the reported gut microbiome of
collembolans. This section takes the two representative species, Folsomia
candida and Allonychiurus kimi, as objects to shed light on any potential
health risks associated with these organisms.

Ju et al. [23] investigated the effects of polyethylene microplastics on
the gut microbiome of F. candida. Their findings revealed a significant
increase in the relative prevalence of Stenotrophomonas, a multiresistant
pathogen associated with respiratory infections [95]. In parallel, a
remarkable study by Li et al. [96] revealed the presence of potential human
pathogenic bacteria genera in the F. candida gut microbiome, including
Acinetobacter, Acidovorans, Sphingomonas, and Methylobacterium.

A. kimi (Collembolan: Onychiuridae) plays a crucial role in assessing
the impact of pesticides and heavy metals on soil ecosystems [97]. Upon
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the investigation of its gut microbiome, several bacterial genera,
including Chryseobacterium, Pandoraea, Sphingomona, and Acinetobacter
have been identified. Recently, there has been growing interest in the
potential pathogenicity of these genera [97]. For example, Chrys-
eobacterium indologenes was formerly considered a harmless microbe but
is now associated with infections in immunocompromised patients, such
as pneumonia and septicemia [98,55]. Furthermore, there is increasing
recognition of Pandoraea spp. as opportunistic pathogens, with reported
cases of Pandoraea pnomenusa causing endocarditis and P. apista,
inducing pneumonia. In addition, Sphingomonas koreensis was first re-
ported as a human meningitis pathogen in 2015 [99].

2.9. Fleas

Flea-borne infections are emerging or re-emerging worldwide, with
an increasing incidence [100]. Due to fleas living in close association
with humans and pet hosts (such as cats and dogs), they are of significant
importance as vectors of pathogens in many parts of the world. Fleas
serve as the vectors for several diseases, including plague, tungiasis, and
rickettsial diseases [100]. The important vector species include Pulex
irritans, Ctenocephalides felsi felis, Ctenocephalides canis, Xenopsylla cheopis,
Nosopsyllus fasciatus, and Echidnophaga gallinacean. Among these, Cteno-
cephalides felis felis and C. canis may pose a high risk to humans due to
their close relationship with pets [101,102]. Fleas and their associated
zoonotic pathogens have been previously reviewed [103,104] and are
not further examined here.

2.10. Snails

Snails, integral to various ecosystems and regarded as delicacies in
numerous cultures, have been identified as carriers of diverse pathogens
potentially detrimental to human health. These mollusks act not only as
hosts but also as reservoirs, amplifying the risk of transmission of various
diseases to humans upon consumption or contact.

The gut microbiome of snails harbors many human pathogenic
genera. A study of two edible snails, Helix pomatia and Cornu aspersum,
revealed the presence of pathogenic bacteria including Buttiauxella, Cit-
robacter, Enterobacter, Kluyvera, Raoultella, Enterococcus, and Clostridium
[105]. Enterococcus faecalis and Enterococcus faecium, opportunistic
pathogens, show resistance to common antibiotics [106,60]. Moreover,
the terrestrial invasive giant African snail (Achatina fulica) has been
found to harbor various biological contaminants, including E. faecium,
Staphylococcus aureus, K. pneumoniae, A. baumannii, Pseudomonas aerugi-
nosa, and Enterobacter species (ESKAPE) with drug resistance worldwide
[107].

Snails serve as intermediate hosts for many human helminth para-
sites. For example, the giant African snail (A. fulica) is an intermediate
host for Angiostrongylus cantonensis, which causes eosinophilic meningitis
in humans [108]. Radix cucunorica also acts as an intermediate host for
Fasciola hepatica and Fasciola gigantica, with the latter being transmitted
to mammals [63]. Other snail-borne parasites include Camaena cicatri-
cosa, which transmits A. cantonensis, and Alaria alata, a globally distrib-
uted parasite that uses snails as intermediate hosts [65]. In addition,
Biomphalaria pfeifferi and Bulinus globosus are important vectors of
schistosomiasis in Africa [109].

2.11. Beetles

Among Coleoptera, Tribolium castaneum carries Bacillus thuringiensis, as
confirmed by Khan et al. [40], with its pathogenic properties previously
established. Recent studies have concentrated on the microbial commu-
nities in the gut of Coleoptera, with particular emphasis on Nicrophorus
vespilloides, which performs a crucial function in terrestrial ecosystems by
scavenging carcasses and thus promoting the recycling of organic matter.
The gut microbiome of N. vespilloides harbors Morganella, Providencia,
Proteus, Serratia, and Pseudomonas during its development [110].
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Similarly, Copris incertus, a dung beetle species, displays a varied gut
microbiome comprising Enterococcus, Bacteroides, Psycrobacter, and Cit-
robacter. These particular bacteria have been linked to human diseases and
clinical infections [111]. No data are available concerning the trans-
mission of pathogens from beetles to humans.

3. Transmission pathways

We identify three primary pathways of human disease transmission
through invertebrates based on their phenotypic and life history traits
(Fig. 2): (1) direct transmission, which is defined as the host spreading
pathogens on their surface through mechanical contact; (2) vector-borne
transmission through invertebrate bites; and (3) transmission via contact
with contaminated surfaces, feces, or urine [20,14].

3.1. Direct transmission

Invertebrate hosts commonly found in a variety of outdoor environ-
ments, such as urban parks, forests, and gardens, increase the risk of
human exposure to pathogens. Leaf litter, which is abundant under park
trees, provides an optimal habitat for various invertebrate taxa and serves
as a nexus for breeding, hibernation, and foraging [112]. While urban
forests enhance biodiversity, regulate climate, and provide recreational
space, they also harbor extensive beetle communities, as observed in
urban forests in New York and gardens in California [113,114]. Similarly,
a study in Zurich identified 18 earthworm and 39 springtail species in 85
urban gardens [3]. Enjoying the ecosystem services of these green spaces,
however, comes with inherent health risks posed by invertebrates. Urban
gray areas, characterized by intensive human activity and concentration
of resources, inadvertently support the survival of invertebrate hosts
[115]. Underground facilities provide stable temperatures, creating an
ideal environment for these hosts. The role of host biodiversity and
abundance in urban areas is increasingly recognized as an important
factor in human health risk studies [1].

Both adult and child populations face health risks from terrestrial
invertebrates during outdoor activities. For example, children may be
attracted to unique invertebrates such as giant African snails, while
adults, although less likely to interact directly with invertebrates, may
still be exposed through activities such as lawn mowing and gardening
[116]. Reducing exposure at the source is therefore critical. Efforts
should be made to restrict hosts to specific areas while promoting
biodiversity, with a focus on protecting vulnerable populations such as
children in settings such as nurseries, amusement parks, and pediatric
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hospitals. It is imperative that policymakers and stakeholders promote
legislation to protect children in the context of environmental health,
taking into account the vulnerability of children's immune systems and
their frequent exposure to outdoor activities.

Indoor environments expose individuals to a limited range of inver-
tebrate taxa, with some exceptions such as mosquitoes, flies, and mites.
For example, Leishmania-carrying sandflies have been identified in res-
idential areas in Brazil [117]. The distribution characteristics of cock-
roaches resemble those of houseflies [118]. Houseflies and cockroaches,
which are predominantly found in areas characterized by inadequate
sanitation, pose significant health risks to the inhabitants of these regions
[119]. The implementation of environmental equity policies can, there-
fore, reduce the health risks faced by low-income individuals exposed to
these invertebrate hosts [120].

3.2. Vector-borne transmission via bites

Ticks and fleas (C. felis felis and C. canis) possess the ability to insert
their feeding mouthparts into the skin of mammals, including pets, such as
dogs and cats, resulting in direct interactions [100]. As a result, these pets
can inadvertently act as vectors, facilitating the transmission of tick-borne
diseases to humans. In a study conducted in Poland, researchers identified
a variety of human health pathogens found in ticks [121]. In particular,
I. ricinus and Ixodes hexagonus, two species of clinical significance were
collected from domestic dogs and cats [121]. Ticks are widespread in many
urban areas, particularly those with green areas supporting tick hosts [5].
During outdoor excursions, pets frequently interact with these environ-
ments, providing opportunities for ticks to attach and potentially remain
dormant in the animals. Given the close relationship and frequent physical
contact between pets and their human caregivers, including behaviors
such as hugging, there is a tangible risk of transmission of these
vector-borne diseases, thereby posing a threat to human health. This close
relationship underscores the need for vigilant surveillance and preventive
measures to reduce the risk of disease transmission from pets to humans.

Flies, mosquitoes, ticks, and mites act as primary vectors in disease
transmission by bites. The risk of being bitten by these vectors is
heightened during prolonged outdoor activities or under conditions of
poor hygiene. For instance, trombiculid and gamasid mites have been
observed transmitting hantavirus to experimental mice via bites, leading
to vertical transmission to offspring [44]. Given the mammalian host, a
similar mechanism of bite transmission in humans cannot be ruled out.

In certain regions of Thailand, specifically Chiang Mai and Trat, there
have been reports indicating that black flies have the potential to act as

Surface
Contamination

Human

/' Health

Fig. 2. The influence of urbanization and climate change on terrestrial invertebrates in urban areas and their subsequent effects on human health through three

transmission pathways.



A. Xie et al.

vectors for helminth parasites that affect both humans and animals.
These parasites could lead to the emergence of human capillariasis, a rare
disease that may be caused by bites from infected black flies [122].
Additionally, B. burgdorferi, which causes Lyme borreliosis, is mainly
transmitted to humans via tick bites, including species such as I ricinus
complex, H. excavatum, H. marginatum, and H. parva [45]. This mode of
transmission highlights the importance of preventive measures and
public awareness.

3.3. Transmission via contact with feces, urine, and contaminated surfaces

The transmission of pathogens occurs through contact with inverte-
brate feces, urine, and surfaces contaminated with these excreta
require careful consideration. It is important to note the potential of feces
as a vector for SARS-CoV-2 transmission and thus the role of in-
vertebrates, such as cockroaches and flies, in facilitating the spread of
SARS-CoV-2 cannot be overlooked [123]. For example, significant
amounts of E. coli O157:H7, a common cause of diarrhea and
hemolytic-uremic syndrome was found in the feces of Coelopidae
seaweed flies. These flies, commonly found on leisure beaches, typically
feed on decaying seaweed and, as such, can serve as vectors for E. coli
0157:H7, potentially endangering individuals.

Sandflies are known to transmit Leishmania parasites to humans,
mainly through bites. However, recent studies have revealed the pres-
ence of Leishmania in their gut microbiome [81]. This discovery suggests
the possibility of the transmission of Leishmania through sandfly feces,
thereby adding to the range of illnesses identified as leishmaniasis.
Sandflies, which are often found indoors during warmer seasons, can
deposit their gut microbiomes—along with associated pathogens—on
different surfaces, including desktops, food, and household items, during
excretion. This contamination heightens the risk of pathogen trans-
mission to humans, as identified by the detection of fly feces in food
preparation areas in Maputo, Mozambique, increases the risk of both
foodborne and contact infections [20]. The findings suggest a need for
improved sanitation practices to reduce exposure to contaminated sur-
faces. Implementing strict hygiene practices can reduce the possibility of
infections arising from consuming food contaminated by fly feces [20]. It
is important to note that, unlike mechanical transmission, pathogens are
found in feces and urine can endure in an environment for prolonged
periods of time [124]. Therefore, individuals may face exposure to these
pathogens even in environments that seemingly lack invertebrates. The
scant quantity of excreta produced by invertebrates, which is often
imperceptible without magnification, adds a layer of complexity to at-
tempts to prevent contamination. This highlights the imperative of
maintaining vigilance and taking the necessary precautions, such as
sanitizing surfaces before food preparation.

4. Impact of urbanization on invertebrate-associated human
pathogens

Urbanization has heterogeneous effects on human pathogens carried
by invertebrates [125]. Urbanization influences invertebrate phenotypes
from an internal perspective and alters their living condition from an
environmental perspective. These changes are driven by the degradation
of ecological environments, increased population density, an influx of
building materials, and the urban heat island effect. Consequently, ur-
banization modifies the interactions between hosts and landscapes,
thereby altering the risk of zoonotic diseases.

4.1. Urbanization enhances the health risks of invertebrates via different
aspects

Urbanization may increase the risk of transmission for invertebrate-
associated human pathogens. Research tracking Chagas disease trans-
mission through insects in Peru showed that T. cruzi transmission pre-
dominantly occurred in highly urbanized communities [126]. The influx
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of building materials, people, and animals can create conditions that
enhance the spread of vector-borne diseases. On the other hand, urban
waste, a key source of nutrition and contamination, contributes to the
development of some invertebrate communities, such as flies and cock-
roaches [127].

Changes in land use due to urbanization can intensify the risk of
infection through various mechanisms, such as increased host abun-
dance, higher exposure frequency, and faster disease development. Soil
properties, urbanization, and landscape layout can influence earthworm
community distribution. Additionally, the age of residential structures
has a noticeable impact on earthworm abundance [128]. Rapid urbani-
zation and population growth intensify interactions between sandflies
and humans on city outskirts, which harbor diverse species compositions,
including a higher number of seasonal sandfly species. For instance,
species like Evandromyia evandroi and Brumptomyia avellari complicate
leishmaniasis transmission [129].

Furthermore, urbanization can promote the growth and maturation of
specific vector species, potentially introducing diseases to regions pre-
viously unaffected. While schistosomiasis was once believed to be
exclusive to rural areas, recent reports suggest its presence in suburban
and urban areas, indicating its expansion [109]. Urbanization might also
enlarge the habitats suitable for Aedes larvae, hasten their growth, and
increase their survival rate, possibly elevating the prevalence of
mosquito-borne diseases in densely populated zones [130].

Land-use alterations, especially the extent of urban greening, can
impact human infections. Urban greening seems to modify the survival
range of small rodents that support tick populations [131], subsequently
influencing the occurrence of -clinical-significant tick genera like
Amblyomma, Haemaphysalis, and Ixodes. This suggests that more extensive
urban greening might elevate tick-borne disease risks [131]. Land-use
shifts during urbanization could impact food webs and result in the spill-
over of emerging infectious diseases [132]. Fly and mosquito larvae pri-
marily consume bacteria, protozoa, nematodes, diatoms, algae, and
organic waste in their habitats. Such land-use transformations might in-
fluence the growth rate of these host populations within the food web
[133].

4.2. Urban warming and the escalation of vector-borne disease risks

Global warming is one of the most urgent problems in the anthro-
pocene [134]. Global warming is manifested as an urban heat island
effect in urban areas. Here we explore the scenarios for the
urbanization-warming interface. Urban warming has the potential to
alter phenotypic traits of hosts, leading to changes in vector-borne dis-
ease transmission rates influenced by metabolism, extrinsic incubation
period, and transmission rate [135]. Changes in host phenotypes are
likely to facilitate the expansion of many vector-borne diseases, as
observed in previous studies [129]. Moreover, global warming can
enhance the metabolism of poikilothermic animals, including in-
vertebrates. The reproductive and survival rates of the invertebrates are
elevated, which consequently increases their population [136]. Warming
climate conditions have been shown to extend the activity periods of
invertebrates, notably ticks and mosquitoes, as detailed in Nabbout et al.
[137]. This phenomenon, including increased tick activity during
warmer winters, leads to longer active seasons and may heighten
human-invertebrate contact, presenting emerging public health concerns
[1371].

4.2.1. Vectors or hosts spread to more areas

A previous study indicated that, under the effects of climate warming,
the duration of malaria transmission could extend from five to six months
annually between 2051 and 2080, compared to the baseline period of
1991-2007 [138]. As a result, regions such as southern and southeastern
Europe may witness an uptick in vector stability and receptivity, owing to
increased temperature suitability for hosts [139,140]. Nevertheless, it is
crucial to note that these are predictions, and the actual trends remain
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unresolved. Historically, the eradication of mosquito-borne diseases in
Europe were more closely linked with socioeconomic advancements than
solely environmental factors [141].

On a broader scale, rising global temperatures may facilitate the
influx of tropical or subtropical diseases into mid-latitude regions. The
extrinsic incubation period of the Zika virus in mosquito hosts could be
shortened by climate warming, thereby facilitating its transmission
[142]. Such elevated temperatures have been observed to bolster the
capacity of A. albopictus to transmit the Zika virus, consequently
expanding the scope of mosquito-borne diseases to previously unaffected
mid-latitude regions [140]. The alterations in mosquito-borne disease
patterns are exemplars of a wider trend. Climatic warming is anticipated
to transform the formerly unsuitable cold areas into habitable locations
for multiple invertebrate hosts, including ticks. Forecasts reveal the po-
tential for the doubling of tick-friendly habitats in Canada and a signif-
icant expansion in southern Europe by 2080 [129]. Such variations in the
surroundings may pave the way for a surge in tick-borne illnesses in these
regions.

A comparable pattern has been observed in specific species of snails
B. globosus, which serves as an intermediary host for Schistosoma hae-
matobium, and is impacted by external temperatures because it cannot
regulate its body temperature [143]. Over the last 30 years, the average
January temperature in China has increased by 1 °C due to a century of
global warming. As a result, it is assumed that the potential distribution
boundary of B. globosus has shifted northward, which could potentially
invade China's mainland and lead to an expansion of S. haematobium.
Furthermore, other snails that are thermally tolerant may also experience
an expansion of their habitat ranges due to global warming [143]. For
example, Echinolittorina can thrive in temperatures as high as 55 °C and,
as a result of global warming, may be able to expand its range to mid-high
latitudes [144]. Given that many snails serve as disease vectors [116], an
increase in temperature is projected to expand the areas where these
diseases are prevalent.

What the expansion trend affects in urban areas still lacks large-scale
research, but some research is constructive and insightful. The invasive
African giant snails (A. fulica) have been considered emerging hazard
organisms in urban and harbor significant health risks. Furthermore,
urbanization increases risks, as relative abundance of human pathogens
in the gut microbiome if urban snails is significantly higher than in
suburban or rural [116]. Urbanization may alter the ecological niche of
existing diseases by introducing invasive species [145,146]. The increase
in alien species due to urbanization has been documented in many areas,
highlighted by the emergence of ticks from the Argas reflexus group and
Rhipicephalus sanguineus sensu lato in urban areas [147].

4.2.2. Indirect impact on critical public facilities

Urban warming could lead to a rise in the frequency and intensity of
extreme weather events, such as heavy rains and tropical storms. This
may indirectly impact vital public amenities. Furthermore, such climate
changes can affect the spread of vectors, thereby increasing the number
of infectious diseases [96]. For example, Daniel et al. [148] found a
correlation between the spread of tick-borne encephalitis and extreme
weather conditions, including flooding and abnormally high
temperatures.

The effective operation of drainage systems is a crucial strategy for
controlling vector-borne diseases, especially those transmitted by ticks
and mosquitoes [149]. In Europe, the occurrence of mosquito-borne
diseases such as West Nile virus and malaria has declined, partly due
to extensive land drainage projects from the past [150]. However,
extreme rainfall events, which are becoming more frequent due to
climate change, have the potential to compromise the effectiveness of
urban drainage systems. This can result in urban flooding, causing
stagnant water to accumulate on streets and sewage to backflow. These
conditions provide a suitable environment for the breeding of in-
vertebrates hosts, such as mosquitoes and flies, which in turn elevate the
risk of transmitting diseases to humans [149]. The current state of affairs
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requires the improvement and adaptation of public healthcare facilities
and infrastructure to effectively mitigate the hazards associated with the
changing climate and safeguard public health.

5. Discussion
5.1. Integrated management approaches for urban invertebrates

To effectively address the challenges posed by urban invertebrates, a
multifaceted strategy is essential. This strategy encompasses the appli-
cation of biological and ecological control methods, which have
demonstrated efficacy in diverse ecosystems. The widespread use of in-
secticides, while common, face limitations due to health risks to humans
and the development of drug resistance in host species [151]. Efforts to
eradicate ticks have often been unsuccessful due to the emergence of
acaricide resistance [152].

In recent years, the use of biological control methods in managing
urban invertebrates has garnered increasing attention. The life stages of
these invertebrates, influenced by their exposure to different habitats,
occupy unique ecological niches. Utilizing natural predators for inter-
vention is particularly promising in this context. For example, controlling
mosquito populations through deploying tadpoles, which prey on mos-
quito larvae, has proven effective [153]. Additionally, the application of
gene-modified organisms in mosquito control represents an innovative
approach. Yet, the deployment of such methods necessitates careful
consideration of their legal and ethical implications [154].

It is important to note, however, that strategies focusing primarily on
extermination are suitable for only a limited range of taxa, specifically
those like mosquitoes, flies, and ticks, which are directly addressed in our
study. Achieving a harmonious balance within socio-economic-
ecological frameworks are essential for the management of most taxa.
The role of invertebrate hosts in maintaining ecological balance,
although not fully defined quantitatively, is underscored by the “dilution
effect”. This concept emphasizes the significance of preserving biodi-
versity as a means to mitigate the health risks associated with vector-
borne diseases [1]. Our overarching aim is to establish a consistent
approach that integrates ecological considerations with public health
perspectives.

5.2. Enhancing pathogen surveillance and control

Effective surveillance of pathogens within urban ecosystems is
essential for public health safety. The application of molecular and bio-
informatics tools significantly enhance our capabilities for early detec-
tion and identification of potential pathogens carried by invertebrates.
Pathogen databases have emerged as powerful tools for early monitoring.
The Molecular Based Pathogen Database (MBPD) presents a compre-
hensive resource supporting “one-health” practices [10]. Similarly,
ZOVER, a virus database with a focus on invertebrate vectors, offers
crucial information for pathogen tracking [12]. Given the increasing
prevalence of emerging infectious diseases, the ongoing updating and
maintenance of such databases is critical.

However, the process of pathogen monitoring is not without its legal
challenges, particularly when it involves accessing private properties. A
promising solution to this obstacle is citizen science. This approach
actively involves the public in scientific research as both data collectors
and analyzers, thereby circumventing certain legal limitations. For
example, a citizen science yielded valuable data on termite distributions
[155]. The rise of citizen science as a methodology is proving indis-
pensable in gathering extensive data within legal frameworks, enhancing
our understanding of pathogen dynamics in urban settings [156].

5.3. Strengthening urban planning and public health policies

Urban planning is crucial in mitigating the spread of diseases trans-
mitted by invertebrates [157]. The strategic development of green
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spaces, effective water management systems, and infrastructure that
inhibit vector breeding and proliferation are vital. Green spaces not only
enhance urban biodiversity but also contribute to the “dilution effect”,
where increased biodiversity results in a lower risk of human disease due
to the prevalence of less competent hosts [1]. We advocate for the
adoption of an Urban One Health approach, which integrates the man-
agement of urban systems with effective control of zoonotic diseases
[158]. Implementing policies and practices that integrate public health
considerations into urban design is paramount in reducing the risks
associated with urban invertebrates [20].

5.4. Collaborative efforts in urban ecosystem health

Urbanization presents a paradox in disease ecology, balancing be-
tween urban health challenges and benefits for individual and commu-
nity health outcomes. The dynamics of zoonotic diseases, including those
that are vector-borne, within urban social-ecological systems are shaped
by intricate interactions among human and environmental factors [158].
Addressing the multifaceted challenges presented by urban invertebrates
require collaboration among ecologists, urban planners, public health
officials, and community members [159]. Public education and engage-
ment initiatives are essential in raising awareness about urban ecosystem
health and the significant roles individuals can play in risk mitigation.

6. Conclusion

This comprehensive review synthesizes the human pathogens asso-
ciated with significant terrestrial invertebrate species in urban environ-
ments. We elucidate how these pathogens threaten the health of urban
populations through established pathways. Our focus then shifts to the
potential effects of pressing global issues. We examine the impacts of
urbanization on invertebrate hosts, vectors, and associated human
pathogens, providing insights into the dynamic relationship between
these factors. Our review then emphasizes the complex trade-offs
inherent in urban development, highlighting the essential need for
careful management of these trade-offs. Addressing these challenges
necessitates cross-sectoral collaboration and active stakeholder engage-
ment, aiming to develop policies that effectively integrate health and
environmental considerations. We have identified numerous areas where
further evidence is needed to optimize the management of urban eco-
systems, considering both ecological integrity and human health risks.
Our review aims to serve as a valuable reference for ecologists, public
health experts, city planners, and policymakers, providing fundamental
knowledge to guide future research, policy development, and public
health interventions.
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