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Abstract: Construction activities typically create large amounts of ground disturbance, which can
lead to increased rates of soil erosion. Construction stormwater practices are used on active jobsites
to protect downstream waterbodies from offsite sediment transport. Federal and state regulations
require routine pollution prevention inspections to ensure that temporary stormwater practices are
in place and performing as intended. This study addresses the existing challenges and limitations in
the construction stormwater inspections and presents a unique approach for performing unmanned
aerial system (UAS)-based inspections. Deep learning-based object detection principles were applied
to identify and locate practices installed on active construction sites. The system integrates a post-
processing stage by clustering results. The developed framework consists of data preparation with
aerial inspections, model training, validation of the model, and testing for accuracy. The developed
model was created from 800 aerial images and was used to detect four different types of construction
stormwater practices at 100% accuracy on the Mean Average Precision (MAP) with minimal false
positive detections. Results indicate that object detection could be implemented on UAS-acquired
imagery as a novel approach to construction stormwater inspections and provide accurate results for
site plan comparisons by rapidly detecting the quantity and location of field-installed stormwater
practices.

Keywords: construction stormwater management; inspections; unmanned aerial systems;

photogrammetry; deep learning-based object detection

1. Introduction

Temporary erosion and sediment control (E&SC) practices on construction sites pro-
vide protection for the downstream environment by minimizing the impact of sediment-
laden stormwater runoff associated with land-disturbing activities. Active construction
sites are susceptible to increased erosivity due to grading and land-disturbing activities
that often expose multiple acres of land. These disturbed areas are a potential risk to
release large amounts of sediment into existing water bodies [1]. According to the U.S.
Environmental Protection Agency (USEPA), construction sites cause an annual loss of
up to 247 tons/ha (100 tons/ac) in the U.S. [2]. Anthropogenic-associated sediment dis-
charge creates environmental and ecological risks and results in the destruction of fish
habitat, degradation of water quality, and reduces the capacity of streams, harbors, and
rivers [3,4]. Through the Clean Water Act, the National Pollutant Discharge Elimination
System (NPDES) permit regulates point and nonpoint sources of pollution and obligates
operators of construction activities to file for a Construction General Permit (CGP) [5].
NPDES regulations require routine inspections once every seven calendar days or every
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14 days within 24 h after the occurrence of a storm event to ensure construction stormwater
practices are in place and performing as intended [4]. NPDES permit reporting calls for
inspections to be documented in a formal report and stored for a period of three years
following the conclusion of the construction project.

Common construction stormwater practice deficiencies include improper placement
(i-e., installing practices in a location where the practices would not be effective), ineffective
installation technique, inadequate fastenings, and incorrect post spacing. Vulnerabilities
observed during inspection may trigger the need for design modifications, due to changing
site conditions with ongoing construction activities. Construction stormwater inspectors
detect these vulnerable areas and deficiencies to determine the need for corrective actions.
Traditionally, inspections have been performed on-foot, requiring inspectors to traverse
the entire jobsite to inspect every construction stormwater practice installed on-site. Often,
on-foot inspections and subsequent documentation are inadequate on linear and highway
construction projects due to their overall scale and challenging terrain. In addition, the
frequency of inspections can be burdensome on the limited inspection personnel that are
often tasked with several other duties on a jobsite. Identifying the location and the number
of the E&SC practices can be challenging for stormwater inspectors as construction plan
sets usually use tables or simple plan views to describe where practices should be installed.
Often, construction activities require the use of additional E&SC practices or modification
of the original SWPPP. Any changes or deviation to the SWPPP must be carefully recorded
by a qualified inspector. Proper inspection and record-keeping can be laborious in large or
linear construction sites. Current record-keeping procedures consist of paper or web-based
inspection forms, and ground-based images. Moreover, locating the same practice on the
site to inspect if corrective actions have taken place can be challenging with changing
site conditions and lack of detail in typical inspection reports and site plans. Audits by
regulatory agencies often find deficiencies in inspection and reporting, resulting in hefty
fines and stop-work orders. A need exists to provide effective installation and recording
procedures to assist inspectors in conducting comprehensive construction stormwater
inspections. An opportunity to leverage aerial inspection tools has the potential to provide
an effective approach for improving construction stormwater inspection procedures.

Unmanned Aerial Systems (UASs) can be defined as a system that includes unmanned
aerial vehicles (UAVs) and related sensors and equipment that connects and controls the
aircraft [6]. Various sensors, such as consumer-grade cameras, thermal cameras, hyper-
spectral cameras, and laser scanners, are compatible with UAVs [7]. UASs have quickly
flooded the inspection market as a remote sensing tool, capturing spatial data at a high
temporal resolution. Through rapidly developing technology, UASs are playing an in-
fluential and vital role in meeting the demands of various professional fields including
military, agriculture, disaster management, and construction [8]. The construction industry
in particular is a beneficiary of this technology with applications in visual observation
and documentation on construction projects. These systems have the ability to capture
a vast number of high-resolution images and process data into three-dimensional (3D)
models, which serve the construction industry in applications of surveying, monitoring,
and inspecting inaccessible locations on construction sites [9]. For example, researchers
have investigated the use of UASs for implementing structural inspections [10], conducting
site inspections for erosion and sediment control practices [11], calculating earthwork
volumes [12], developing thermography surveys [13], and determining risk factors with
proximity detection [14].

Another emerging technology is deep learning-based object detection, a computer
vision science that predicts the location of objects by using classification and localization
tasks [15]. It has been used to automate various applications such as image retrieval,
security, vehicle detection, person detection, surveillance, and machine inspection, etc. [15].
Researchers utilize deep learning-based approaches to solve a variety of problems in
civil engineering that includes structural damage detection [16], crack detection [17],
construction equipment detection [18], and automated vehicle recognition [19].
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This study implements the use of UAS inspection technology coupled with deep
learning-based object detection to provide an innovative approach to construction stormwa-
ter inspection tasks. The developed system focuses on solution creation, which consists of
data preparation, model training, validation, tests, and post-processing steps. To evaluate
the developed system, a total of 18 aerial inspections were conducted on a 19 km (12 mi)
roadway widening project on U.S. Highway 30 in Tama County, lowa. The project included
large areas of ground disturbance with thousands of temporary construction stormwater
practices installed throughout the site. Object detection was successfully performed on a
total of three types of E&SC practices: rock check dams, wattle ditch checks, and silt fence
used in both ditch checks and sediment barrier applications. Over the course of the 2019
construction season, approximately 6000 georeferenced photographs were captured with a
Zenmuse X55™ camera mounted on a DJI Inspire 2™ quadcopter. These images were
used in the data set preparation process, which used a framework of photogrammetry,
GIS, and image labeling applications. Single-shot Multibox detectors (SSD) were used as
a detection model. SSD is a mechanism where multiple objects are detected in an image
using a single look at the image by the model, unlike those of the RCNN family where
once it is used for detection and other time for proposal. The idea of the SSD is to predict
the score for different categories of objects and box offsets for a specific number of default
bounding boxes using small convolution filters applied to feature maps [20]. It also uses
the concept of non-maximum suppression in order to predict the final location and number
of objects in an image.

Image-based object detection has become prominent in the construction industry.
Arabi et al. used a modified version of the SSD-MobileNet object detector and detected
construction equipment for improving safety on sites [18]. Zhang et al. integrated deep-
learning principles with three-dimensional (3D) laser imaging technology to identify cracks
on asphalt surfaces [21]. Chakraborty et al. implemented You Only Look Once (YOLO)
and Deep Convolutional Neural Network (DCNN) on camera imagery and detected traffic
congestion [22]. Cha et al. aimed to automate structural inspection procedures of civil
infrastructures by presenting an image-based structural damage detection framework
that utilizes Faster Region-based Convolutional Neural Network (Faster R-CNN) [23].
Faster R-CNN was also adopted by Fang et al. for detecting non-hard-hat use and safety
harness detection on construction sites [24,25]. All of these research studies implemented
image-based object detection principles with different detection models to advance and
automate current applications in the construction industry. The presented study carries a
similar purpose with these studies and introduces object detection principles to a novel
application, construction stormwater inspections. Although the presented work has a
similar motivation to that of previous studies on bringing automation into the construction
industry, it utilizes a unique detector that has not been used in the prior studies. Visual
Geometry Group-16 Single Shot Detector (VGG 16- SSD) was used in this presented work
to detect temporary E&SC practices. Wu et al. follow a similar detection framework to the
presented study by using VGG 16-SSD for automatic detection of hardhats worn by the
construction personnel. The results indicated that the detection can achieve 83.89% Mean
Average Precision (MAP) for the input image size of 512x512 pixels [26]. However, this
study used Internet-derived images for model training, which is a different data set source
than the presented study.

The detection of E&SC practices on construction sites enables inspectors and designers
to easily and accurately compare the stormwater pollution prevention plan sets with site
applications. Our literature review revealed that prior studies have not utilized object-based
detection for construction stormwater inspections. The proposed methodology brings an
innovative and novel approach to stormwater inspections on construction sites by using
deep learning-based object detection principles. The presented study demonstrates how
UAS-acquired imagery can be easily used as a dataset for object detection and provide
accurate results for construction stormwater inspections. This research provides inspectors
with implementable guidance on the use of UAS and software technology to identify E&SC
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deficiencies throughout a site. This approach advances aerial inspections by increasing the
efficiency and quality of inspection results. Moreover, this work contributes to inspection
procedures by decreasing inspection times and providing comprehensive documentation.

2. Methodology

This study compared aerial inspection methods to on-foot traditional inspections for
identifying the limitations and challenges. Aerial images were chosen as a data source
for object detection as a result of this comparison. Figure 1 illustrates the order of each
step in the methodology. Data collection was followed by a data preparation procedure,
which included the use of photogrammetry, GIS, and annotation tools. Model training
required modifications to an existing detection algorithm, VGG 16-SSD [27]. The final step
was validation and testing which included a post-processing step that merges the detected
dataset and validates the accuracy of the model.
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Figure 1. Flow chart of the methodology.

2.1. Aerial Inspections

Aerial inspections required a UAS unit that had sufficient technical capabilities for
weather conditions and the ability to use different cameras and sensors. To translate this
research into practical application, it was important to use readily available hardware
and software platforms. The DJI Inspire 2™ was preferred as a UAS system due to its
relatively inexpensive cost, 27-min battery life, and a lock-and-go gimbal feature for using
different types of cameras [28]. In addition, DJI Inspire 2™ provided a comfortable flight
experience with its capability for flying in a range of temperatures (—4 °F to 104 °F) and
its well-developed global positioning system (GPS), which assists in-flight management
and tracking [28]. Camera quality was another important consideration when developing
highly effective products with the UAS system. The Zenmuse X55 ™ camera was selected
for this study, capturing 16 MP high-resolution images with its 360-degree rotatable gim-
bal and auto-calibration features [29]. The selected UAS system included a UAYV, eight
propellers (including four spare propellers), twelve batteries, two charging hubs, battery
heat insulators, a remote controller, and an iPad Pro 10™ tablet. The second step of the
aerial inspection methodology development was to determine the appropriate automated
flight applications that were compatible with the UAS system and photogrammetry soft-
ware. Georeferenced images were captured using automated flight applications and were
exported into photogrammetry software. A mobile application, Pix4D™ Capture, was
used to configure different flight missions for different purposes, such as creating 2D maps,
3D models, and a single 3D model. Polygon- and grid-shaped flight patterns were used
for creating 2D maps, while double grid- and circular-shaped flight patterns were used
for 3D models. In this study, double grid flight missions were used to create more precise
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models due to the number of images that overlap. However, for flight efficiency, single
grid flight missions were used during flights that covered large distances over 4 ha (10 ac).
Ground Control Points (GCP) were used to support the correction of uncertainties in image
geolocation. Eight GCPs were prepared for this study by creating 0.6 m x 0.6 m (2m x
2 ft) plywood markers and painting with black and white markings. The GCP markers
were diagonally spread across the site in pairs and a Trimble R8 Real-Time Kinematic
(RTK) surveying unit was used to obtain northing, easting, and elevation information of
the GCP markers.

All flights were conducted by the Federal Aviation Administration (FAA) certified
remote pilots who received the required permissions to conduct flights in the area. During
the course of construction activities from March 2019 to October 2019, 18 flights were
conducted on the site at different locations. Each automated flight typically reached 91 m
(200 ft) flight altitude and captured over 700 images that were used to develop orthomosaic
models of the site. These images were used as datasets in the development of deep learning-
based object detection to detect temporary E&SC practices such as rock check dams, silt
fences, and wattles installed on site. In addition to automated, pre-programmed flights,
manual flights were also conducted to focus on failures or deficiencies on-site. Aerial
inspections were compared to traditional on-foot inspections to better understand the
limitations in the traditional approach. UAS-based images and ground-based images of
practices installed on-site were compared to identify the differences in the information that
can be interpreted about deficiencies and the location of the practices. This comparison
showed the differences in both perspectives and provided an understanding of how aerial
inspections provide comprehensive record keeping. Based on this comparison, aerial
imagery was chosen as a valid data source for object detection.

2.2. Data Preparation

Photogrammetry enables the development of accurate and high-resolution 3D object
models by using multi-image stitching techniques [30]. Photogrammetry applications
precisely rectify and overlap georeferenced aerial images into mosaics [31-33]. Typical
products of photogrammetry include Digital Surface Models (DSMs), contours, vector
data, and 3D models. To generate accurate products, proper data collection is required,
which calls for careful planning and consideration of flight missions along with calibration
and image triangulation [32]. This study used Pix4D™ Capture to plan automated flight
missions and enable the UAS to take georeferenced images by following a predetermined
path [34]. Post-data collection processing was conducted on a desktop computer using
PixdD™ Mapper, a software package that uses image stitching to produce 3D models by
using georeferenced aerial images. This software uses Automatic Aerial Triangulation
(AAT) and Bundle Block Adjustment (BBA) to accurately match georeferenced images [35].
AAT increases the accuracy of image stitching by using aerial triangulation as a serial
execution process, while BBA optimizes the images for 3D model reconstruction [36,37].

Georeferenced aerial images collected during flights were stitched in three processing
steps (initial processing, point cloud, and 3D mesh production and DSM, and orthomosaic
production) and a 3D map of the survey area was created. Sixteen different models of the
site were produced by using this photogrammetry processing tool for various locations of
the construction site. Seven of the processed models served for deep learning-based object
detection applications. The Pix4D™ Mapper software required initial input data prior to
initiating data processing, including information related to the camera model, image upload
coordinate system, and map type. The coordinate system used for all models was kept
consistent at lowa North NADS3, the local projection system. The images were uploaded
in jpg format and EXIF data, which specifies formats for images. Initial processing created
matches between hundreds of images and used AAT and BBA methods for optimizing the
images in a way that increased the accuracy of the orthomosaic. At the completion of the
initial processing step, quality reports were provided to show the accuracy of the image
stitching. These quality reports presented the need for increasing image location accuracy
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since each model had approximately 1.8 m (6 ft) of error in elevation, northing, or easting.
This error was calculated in the quality reports by using mean, standard deviation, and
root mean square methods in each direction (X, Y, Z). After completion of initial processing
in Pix4D™ Mapper, the sequence was interrupted for incorporating GCPs into the model.
Additional manual tie points (MTPs) were incorporated into the model. Each MTP had
at least eight images that included the selected GCP. Re-optimization was conducted to
match the model with GCPs by readjusting camera parameters. An example result of the
re-optimized model is provided in Figure 2. Arrows indicate the location of GCPs (purple)
and MTPs (green).

Figure 2. Re-optimized site model with GCPs and MTPs.

The second processing step created a densified point cloud view of the area of intent
by using additional tie points, which increased the accuracy of the model. The point cloud
represents data points related to the surface view, which are created by using the image
stitching technique. The third processing step created a DSM and an orthomosaic view
of the area of intent in tagged image file format (.tiff), which can be imported into the
geographic information system (GIS) or computer-aided design (CAD) software for further
analysis. These outputs were imported into ArcMap™ 10.5.1 by using the same coordinate
and projection system for conducting analysis on the surfaces. The imported orthomosaic
views were displayed as high-resolution scaled images and provided a dataset for site
plans and deep learning-based object detection applications.

2.2.1. Layout Preparation

GIS applications were used to create scaled layouts of orthomosaic views that were
created for various locations on the study site, capturing various types of temporary E&SC
practices in a single view. Orthomosaic files were displayed as color-mapped raster layers
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in ArcMap™ that showed detailed practices on the site models. First, orthomosaics were
displayed in the data view, which enabled editing and analyzing the data. Prior to layout
preparation, scaling accuracy was verified using measurements of known landmarks on
the orthomosaics to validate developed models.

Figure 3 illustrates examples of exported layouts based on the orthomosaic view.
Figure 3a shows a layout that was prepared at the beginning of the construction season in
March of 2019. The image easily depicts rock check dams and silt fence, which were used
in both sediment barrier and ditch check applications during this stage in the construction
process. Figure 3b shows a different location on the site during August of 2019. During this
phase, established vegetation is visible, along with silt fence ditch checks and sediment
basins. Later, during the construction season, silt fence sediment barriers and wattle ditch
checks were observed in the same area. Therefore, another layout of the same location
was used to train the object detection model together with this layout shown in Figure
3b. As a result of layout preparation, rock check dams, wattle ditch checks, and silt fence
were determined as the temporary E&SC practices to be detected in this study due to
their frequency in the application on the site. GIS data was prepared and exported using
scaled and rectified views for use in deep learning-based object detection applications. To
develop a robust detection model, a high number of practices are needed to increase the
percentage of detection accuracy with an effective validation dataset. Validation dataset
should be formed by using at least 20-25% of the entire dataset [18]. Hence, seven different
layouts which included at least 200 (i.e., at least 20% of the original dataset) construction
stormwater practices were prepared. Layouts were exported in .jpg format with 600 dpi
resolutions.

3 ¢ 4 g
'I. wr (W

Rock Check Dam

Paepen. . e
: Vel 0
2

2 T

(b)

Figure 3. U.S. 30 highway construction site layout views: (a) 28 March 2019: (b) 18 July 2019.

2.2.2. Image Tiling and Labeling

A Single Shot Multibox Detector (55D) model was used in this study to detect construc-
tion stormwater practices visible on the UAV acquired imagery. Image tiling was required
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barriers.

to prepare images for annotation, a necessary step in training the model. SSD images are
based on 300 x 300 pixels size so tiling was done to ensure that the objects were properly
visible for detection and identification by the algorithm. Python programming language
was used for annotating images, with files formatted as .json file format. Visible target
objects were annotated using rectangular boundaries and labeled according to their names.
Annotation borders were created as close as possible to the observed stormwater practice to
increase the accuracy of the training procedure. The .json files provided information on the
annotated bounding boxes around the practices by displaying pixel values on the image.
A total of 800 labeled .json files were found to be sufficient to feed the object detection
model for it to become capable of detecting practices with accuracy. Rock check dams and
wattle ditch checks were labeled using single rectangle-shaped boxes enveloping the entire
object within. However, due to their linear shape, silt fence sediment barriers required
multiple small rectangle boxes placed as close as possible to the practice. Annotated silt
fence boxes were joined through the entire silt fence to represent a single object later in the
post-processing step by using clustering. Figure 4 shows examples from the annotation
procedure for different practice types: rock check dams, wattle check dams, and silt fence.
After the annotation step, the data set was ready for model training.

(b)

Figure 4. Annotation of temporary E&SC practices: (a) rock check dam; (b) wattle ditch check; (c) silt fence sediment

2.2.3. Model Development

Object-based image detection has been extensively studied over the past several years
and has been applied in several fields of science and engineering [38—40]. Ideally, there
are three categories of object-based image detection—You Only Look Once (YOLO) [41],
Region-Based Convolutional Neural Network (RCNN) [42], and Single Shot Multibox
Detector (SSD) [20]. SSD models have the advantage of binding both localization and
detection tasks in a single wipe across the network, resulting in significantly faster detec-
tions, making it easily deployable on lower configuration hardware. The SSD is a pure
convolutional neural network, which consists of three main processes as follows:

e  Base convolutions derived from modified VGG-16, a convolutional network for clas-
sification and detection, where the weights of the traditional VGG-16 models were
enhanced by transfer learning [27] that provided lower-level feature maps. Some of
the notable changes to the pre-trained VGG-16 network to make it adaptable to the
object detection by SSD are as follows:

The input size of the images was fixed to 300 by 300 pixels.
The third pooling layer of the VGG-16 network was converted from a floor
function to a ceil function. This was done to compute the feature map of 75 x 75
into 38 x 38 instead of the default 37 x 37 which would have made calculations
difficult at a later stage.

e To prevent the halving of the feature maps from the previous layers, the fifth
pooling layer used a 3 x 3 convolution kernel with a stride of 1, which was a
2 x 2 convolution kernel with a stride of 2 in the original study.
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e  As classification was not the primary objective of the base convolution layer, the
fully connected layer 8 (fc8) was removed and the fc6 and fc7 were replaced by
the respective convolutional layers.

e Auxiliary convolutions were added on top of the base network that provided higher-
level feature maps.

e  Prediction convolutions that used localized predictions and prediction of the classes
in these feature maps to detect the location and the type of the object(s) in the images
were finally applied.

Using this concept, the model was trained using the SSD technique. A multi-box
loss was developed as there were two types of predictions that were necessary for model
training. This multi-box loss encompasses losses due to regression of the bounding boxes
and the classification of classes into a single entity. The regression loss of the location loss
consisted of the L1 norm loss, while the classification loss was the sum of the Cross-Entropy
losses among the positive and hard negative losses [27]. Hard positives represent the
images that have the object in them, and hard negatives represent images that do not
contain the object in them. Mathematically, the averaged Smooth L1 norm loss between
the encoded offsets of positively matched localization boxes and their ground truths were
written as shown in Equation (1). To determine the classification loss, hard negatives and
positives were used. The number of hard negatives (Ny,) was taken to be three times that
of the hard positives (Np). The most difficult hard negatives were identified by finding the
Cross-Entropy Loss for each negatively matched prediction and then choosing those top
Nhn losses. The confidence loss can be determined as shown in Equation (1).

Lipe = #( Y Smooth Ly Loss) 1)

Mypositives positives

where

Lyoc = localization loss

Npositives = total number of positives

Smooth Ly Loss = the smoothened Ly loss between the encoded offset of the positively matched
localization box with their ground truth

The final evaluation was the algebraic sum of these two losses. This is known as the
Multibox loss and is defined in Equation (2).

1

LCO”f = f(Zpositives CE Loss + Zhard negatives CE LOSS) (2)
Mpositives

where

Leons = confidence loss
Npositives = total number of positives
CE Loss = Cross-Entropy loss

2.3. Model Training

Validation datasets were used for monitoring the under-fitting and over-fitting of the
detection model. The model training consisted of training the model using each object as a
class. The three classes consisted of rock check dams, wattle check dams, and silt fence.
The numbers of training and validation objects for rock check dams, wattle ditch checks,
and silt fence were 3,820,138, and 1073, respectively, spread across 800 images. A total of
600 of the images were used for training and 200 were used for validation. Mean Average
Precision (MAP) was used to report the accuracy of the validation set. The hyperparameters
in Vinodababu’s framework were used in the model and re-tuning was not necessary since
the existing hyperparameters were appropriate for the developed model [27]. The training
was computed using the default parameters as described in Vinodababu’s framework [27]
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(a)

with a learning rate of 0.0001, a gradient clip of 0.5, and a batch size of 2.0. It was compiled
on a Pytorch platform on an i7-8700 processor CPU and 32 GB RAM on NVIDIA GeForce
GTX 1080Ti Platform under the Windows 10 Operating System.

2.4. Validation and Testing

The results from the model produced bounding boxes around the objects that were
smaller in shape and size when compared to the dimension of the original orthomosaic
image. Hierarchical agglomerative clustering was carried out to merge detections into a
single object as per their location on the original aerial image. This was computed and a
threshold similar to Poddar et al.’s study submitted to the Journal of Intelligent Transportation
Systems, which proposed to determine the total number of objects in the image [43]. The
clustering was carried out with “city block” affinity and a ‘single’ linkage mechanism and
connectivity using the k_neighbors graph. Figure 5 illustrates the process flow chart of this
study by showing each step of the methodology. The study focused on seven significant
steps: (a) aerial image capturing with automated flights, (b) dataset preparation, (c) image
tiling, (d) annotation, (e) image merging, (f) preliminary detection, and (g) post-processing.

(b)

© 1
-

-—

(9)

Figure 5. Detection flow chart: (a) aerial image capturing; (b) mosaic view layout preparation; (c) image tiling; (d) annota-

tions; (e) image merging; (f) preliminary detection; (g) post-processing.

3. Results and Discussion

Aerial inspections of temporary E&SC practices create an innovative approach in the
field of construction stormwater management. These inspections can help contractors and
owners meet environmental commitments and requirements by streamlining otherwise
tedious and resource-intensive inspection practices. The results of this study showed that
aerial inspections can capture high-quality images of implementations on-site, compared to
photographs taken during traditional on-foot inspections. The comparison between aerial
and ground acquired imagery provided a basis for understanding the limitations of the
traditional inspections. The major limitation that was observed in traditional on-foot in-
spections was the narrow camera gate in-ground perspective images. This limitation causes
difficulties in identifying the location of the practices and presents limited information on
the deficiencies. Another observed limitation was the lack of geographic information on
the ground perspective images, which disqualified them in forming a dataset for creating
site plans and applying object detection principles.
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Figure 6 demonstrates a comparison of ground aerial images captured at the same
sites. Figure 6a,c,e are ground images, and Figure 6b,d,f are aerial perspectives. The
red arrows on the aerial photographs document the location and the perspective of the
associated ground image. It can be observed from these figures above that the picture
captured with the UAS not only provides a greater vantage of the deficiencies, but it
also documents upstream issues that are causing the deficiencies. For example, Figure 6b
clearly depicts how flow exiting through the slope drains is causing gully formation along
the slope, resulting in the undermining of the installed silt fence sediment barrier. From
this image, the inspector can see the magnitude of impact on the improperly installed
slope drains and provide guidance to the contractor on extending the slope drains to the
toe of the slope to prevent erosion. Figure 6d captures the source behind the sediment
accumulation on the silt fence sediment barriers. The silt fence is receiving a significant
amount of sediment accumulation due to gully erosion that is occurring on the slope.
Figure 6e shows a gully on the slope that is resulting in sediment accumulation upstream
of the silt fence. However, it is difficult to observe the entire failure along the channel
with the on-foot camera perspective since the picture gate of the camera is limited. This
comparison validated the idea of implementing aerial construction stormwater inspections
for increasing efficiency by providing comprehensive data for record-keeping and site plan
comparison. Aerial inspections provided an opportunity to track the progression of the
construction site and individual practices by capturing weekly changes. Moreover, it was
observed that aerial inspections save time and ensure the safety of inspection personnel
since the UASs are controlled remotely by a remote pilot and a visual observer. The
comparison of the two approaches showed that UASs can reach inspection areas rapidly
and capture images from different perspectives with a wide picture gate. A comprehensive
dataset for object detection can be easily formed with UAS-based imagery.

The study presented the capability of aerial inspections for improving current in-
spection procedures by developing automated inspection steps. High-resolution images
with a wide-shot camera angle provided detailed information on the practices. Moreover,
automated flights enabled user-friendly and rapid data collection, which was used for deep
learning-based object detection in this study. Deep learning-based object detection brought
a different and innovative perspective to aerial inspections by developing a model that
can automatically detect the number, type, and location of temporary E&SC practices once
aerial images are uploaded. With the use of this tool, inspectors and designers can easily
keep track of site implementation by receiving continuous information from the site that
can be compared with original plan sets. Future advances in object-based detection may
lead to identifying failed practices or missing practices on a site. Furthermore, aerial im-
agery may be acquired using high-resolution satellite imagery, which completely removes
the need for UAS based inspections.

The results for this study were developed by using the default parameters as suggested
by Vinodababu [27]. The necessary changes to the default parameters included using each
object as a class, which were rock check dams, wattle ditch checks, and silt fece. The
model was built from a data set of 800 images. As a result of this study, a perfect score
on the MAP, which shows 100% accuracy on the results, was obtained as all the objects
were detected by the algorithm with few false positive detections. Figure 7 shows the
example validation results by comparing them with the original image. The white text
in the images shows the validation results in Figure 7b,d,f and the colored text shows
the original images that were labeled in the data preparation step in Figure 7a,c,e. The
model was trained with original annotated images and validation results were produced
by the model. It can be interpreted from this comparison that the model was successful at
detecting practices. Table 1 quantifies the precision of the detection by presenting % MAP
values for each practice.
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(f)

Figure 6. Comparison of silt fence inspection documentation: (a) overtopping failure (ground perspective); (b) overtopping

failure (aerial perspective); (c) sediment accumulation (ground perspective); (d) sediment accumulation (aerial perspective);
(e) sediment accumulation (ground perspective); (f) sediment accumulation (aerial perspective)

Table 1. Mean average precision (MAP) values for detected practices.

Detected Practices
Silt Fence Rock Check Dam Wattle Ditch Check

% Mean Average

Precision (MAP) 100 100 100
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However, the results for silt fence sediment barriers and ditch checks were showing
the detection with a vast number of small boxes, as shown in Figure 7b,d. Hence, post-
processing became necessary for detecting the practices as single objects.

o : T

Figure 7. Comparison of validation results. (a) Original image; (b) validation result; (c) original
image; (d) validation result; (e) original image; (f) validation result.
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In post-processing, the results were merged to display detection results in a single
plan view and were compared with the original layouts. Figure 8 compares post-processing
results for one of the layouts with the original layout. Figure 8a shows the training layout
that was prepared on GIS for 18 July 2019 and compares it with the post-processing result
after clustering detection results for each practice in Figure 8b. The comparison of the two
layouts in Figure 8 showed that the training layout had 6 rock check dams, 0 wattle ditch
checks, and 54 silt fence segments. The clustering results displayed 6 rock check dams,
5 wattle ditch checks, and 49 silt fence segments in the layout. This comparison shows
that rock check dam detection was highly effective. However, the algorithm considered
silt fence sediment barriers as a single silt fence, since the objects were very close to each
other. The results also detected five wattle ditch checks which were not present in the
original image in layout 18 July 2019. Two false wattle-ditch check detections occurred
on corrugated HDPE pipe used for slope drain applications. Other false wattle detection
results were due to algorithm-related issues.

Silt fence

,-io # ™= Rock Check Dam

= Silt fence
=== RoOCk Check Dam

120 # = Wattle Ditch Check

Figure 8. Post-processing results. (a) Training layout—18 July 2019; (b) result—18 July 2019.

Figure 9a shows the silt fence post-processing results for the 18 July 2019 layout and
Figure 9b shows the silhouette plot for the result represented in Figure 9a. Each unique silt
fence segment was represented with a different color in Figure 9a. The average silhouette
score shown in Figure 9b [44] was calculated by increasing the number of clusters from
2.0 onwards. Silhouette analysis was used to identify the separation distances between
the clusters by scoring them in a range of [-1, 1]. The silhouette plot in Figure 9b displays
the closeness of the cluster to the neighboring clusters. A lower average silhouette score
means that the clusters are not well represented whereas a negative value of the same
indicates that the members might be assigned to a wrong cluster. To determine the clusters,
hierarchical clustering was adopted using ‘city block” affinity among each member of a
cluster, that is, with a ‘single’ linkage by adopting k-neighbors graph connectivity [44]. In
Figure 9b, it can be observed that the average silhouette score shows a significant drop
beyond 20 clusters. As per the domain knowledge of the locality and visual inspection, the
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largest drop in the average silhouette score beyond 20 clusters is taken as the total number
of objects (silt fence sediment barriers or ditch checks) for the image.
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Figure 9. Post-processing result for silt fence segments. (a) Silt fence clustering result-18 July 2019; (b) silhouette score plot.

4. Conclusions

UAS technology is increasingly being leveraged to provide rapid solutions across
diverse disciplines due to its unique ability to capture visuals that are compatible with dif-
ferent applications such as photogrammetry, GIS, and deep learning. UAS is also expanding
its usage in the construction industry by showing impressive progress for various purposes
such as inspecting, monitoring, and surveying. This study compared aerial inspection
images with on-foot inspection images. This comparison highlighted the opportunity to
use UAS in inspections of E&SC practices with aerial perspective advantages, and efficiency
in conducting inspections, all while meeting permit requirements. Aerial inspections have
the capability to become an important data source for construction stormwater inspection.
Remote pilots can stay at one location and capture significant amount of data from the
site in an effective way. Although there are technical limitations such as low battery life
and inoperable weather conditions, UASs can improve inspection implementation proce-
dures and documentation with the use of appropriate equipment and technology. Future
advances may lead to being able to use this technology as a fully autonomous tool.

The main goal of this study was to implement construction stormwater inspections by
using UAS technology and providing various outputs for use of inspectors and designers
with the integration of deep learning-based object detection. The results of the study
emphasized the benefits of using deep learning-based object detection as a state-of-the-art
technique for conducting efficient construction stormwater inspections.
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In this study, deep learning-based object detection proved the capacity of aerial
inspections to become an innovative approach by detecting temporary E&SC practices on
a construction site. The SSD successfully identified rock check dams, wattle ditch checks,
and silt fence on the images with complete accuracy. The post-processing step in this work
enabled the display of detection results in the original layout, which provided the number
and type of practices for plan set comparison with actual site applications. This study
recommends further studies to focus on improve and optimize the post-processing tool.
Furthermore, the determination of the length of the practices can be another contribution
to this study to determine pay items and quantities. These pay items and quantities may
include information on the length of geotextile fabric and the number of t-posts and other
materials required to install silt fence sediment barriers and ditch checks. The model
can be further refined by feeding it with additional data from different locations and
providing a user-friendly interface for inspectors that detects practices with streamlined
technical steps. Deficiencies to E&SC practices can be detected in future studies by training
the code with more images that include typical deficiency types for each practice. This
innovative approach will increase efficiency by saving time and resources required to
conduct inspections while providing a greater amount of data for design and decision
making. Moreover, it will widen the perspective of inspections and designs with its
numerous useful features if it becomes applicable in the construction industry.
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