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Explainable artificial intelligence based analysis for
interpreting infant fNIRS data in developmental
cognitive neuroscience
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In the last decades, non-invasive and portable neuroimaging techniques, such as functional

near infrared spectroscopy (fNIRS), have allowed researchers to study the mechanisms

underlying the functional cognitive development of the human brain, thus furthering the

potential of Developmental Cognitive Neuroscience (DCN). However, the traditional para-

digms used for the analysis of infant fNIRS data are still quite limited. Here, we introduce a

multivariate pattern analysis for fNIRS data, xMVPA, that is powered by eXplainable Artificial

Intelligence (XAI). The proposed approach is exemplified in a study that investigates visual

and auditory processing in six-month-old infants. xMVPA not only identified patterns of

cortical interactions, which confirmed the existent literature; in the form of conceptual lin-

guistic representations, it also provided evidence for brain networks engaged in the pro-

cessing of visual and auditory stimuli that were previously overlooked by other methods,

while demonstrating similar statistical performance.
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Developmental cognitive neuroscience (DCN) is an inter-
disciplinary field that aims to establish links between the
structural changes in the brain, and the corresponding

changes in cognitive processes at different time points in
development1. DCN studies investigate the role of interactions
between genetic variations and environmental factors, and their
influence on typical and atypical developmental trajectories by
examining functional brain development and the increasing
specialisation of neural networks2.

Although the last two decades have seen remarkable advances
in methodologies that allow us to measure functional brain
development1,3, several challenges still undermine the progress of
DCN. The key limitations in developmental research are asso-
ciated with the limited choice of neuroimaging techniques that
can record brain activity non-invasively, and the controversy
surrounding the use of standardised and explainable analysis of
the data. For example, while magnetic resonance imaging (MRI)
may be considered the ad-hoc neuroimaging tool in adult
research, it is generally deemed unsuitable for DCN studies since
young participants are required to stay still for a substantial
amount of time in a confined, restrained environment (but see
Blasi et al.4 for an example of fMRI developmental study with
asleep infants). Similarly, although electroencephalography (EEG)
and its associated event-related potential (ERP) methods have
been historically employed to examine the psychophysiology of
human brain development5, the low spatial resolution and the
sensitivity to motion artifacts6 challenge a comprehensive inves-
tigation of the developing brain.

Given the aforementioned methodological limitations, more
recently, functional near-infrared spectroscopy (fNIRS) has
emerged as a de-facto choice for investigating infant brain
development, and its association with cognition and behaviour.
fNIRS is a non-invasive, portable, optical neuroimaging method
that allows the measurement of cerebral activity using near-
infrared (NIR) light with both good temporal (0.01s) and spatial
resolution (within 2 cm)7. fNIRS has enabled scientists to study
asleep and awake infants alike both inside the laboratory settings
and in natural environments8.

However, despite the recent increased use of fNIRS in DCN,
the lack of standard, non-canonical, and explainable frameworks
for infant fNIRS data analysis9 has limited its potential capacity to
map the results to the corresponding spatial activation and
contributions between brain regions. A deeper understanding of
cortical brain networks for the processing of perceptual stimuli in
the developing brain would shed light on the interplay between
the physical growth of the activated brain regions and the
emergence of new behavioural abilities during brain
development2. To this end, in this article, we introduce the use of
an eXplainable Artificial Intelligence (XAI) inference mechanism
for infant fNIRS data that delineates the interaction patterns
between brain regions activated in response to perceptual stimuli.

The existent inference frameworks in adult fNIRS analysis
involve the use of modelling techniques that assume that signal
data coming from all subjects share standard attributes. Typically,
these models are based on the assumption that a canonical hae-
modynamic response function generated in response to a specific
stimulus can be represented as a linear combination of several
sources (regressors)10. Similarly, priors-based modelling, such as
seed-based functional connectivity analysis, is heavily dependent
on the choice of the channels to be used as a seed11. As they
stand, the current analysis frameworks are designed for static
modelling and therefore cannot be extended to studying brain
processes undergoing continuous changes and development.
Therefore, as also highlighted in a recent review article12, it is
necessary to investigate new analytical perspectives in DCN, as
models based on adult work are not adequate to study the

developing brains. In line with the aim of the present study,
Rosenberg and colleagues12 encouraged the use of data-driven
predictive models to shed light on the neural circuits that give rise
to the development of cognition and behaviour.

State-of-the-art machine learning algorithms (e.g., Support
Vector Machines (SVM), Random Forest (RF), and neural-
network-based approaches) are used for the predictive analysis of
neuroimaging data13, and are specifically employed to distinguish
between classes (stimuli) based on input data (brain responses).
However, these paradigms do not explain what particular relations
of brain activity are prototypical for different stimuli14–16. A
promising, emerging field for neural data analysis is deep
learning17. For systems neuroscience, deep learning can provide
abstractions of the brain to study neural processing and its ana-
tomical organisation from a theoretical perspective17. However, in
cognitive neuroscience, and especially with fNIRS, direct statistical
models (e.g., linear regression) are the popular choice18. This is
possibly due to the relatively limited datasets that can be experi-
mentally collected, and the need of cognitive neuroscientists to
decode and interpret the complex multivariate patterns of neu-
roimaging data using straightforward approaches. This limitation
is amplified in DCN, where data collection poses additional
challenges, such as dealing with infant participants’ compliance
with the experiment, and sample sizes are, as a consequence,
relatively smaller compared to neuroimaging studies with adults.

In this regard, another analysis paradigm, first introduced for
functional MRI data analysis with adults, and recently used to
study the infant mind with fNIRS19 is multivariate pattern ana-
lysis (MVPA)13. MVPA deciphers multiple fNIRS channels
activity simultaneously to identify informative differences in
brain regions’ activation in response to stimuli. By using N
number of dimensions, arising from N number of fNIRS chan-
nels, MVPA methods have the potential to identify associations
between brain regions, and the corresponding activation levels in
terms of distributed patterns, rather than just as measurements of
a single source. The two standard classification paradigms used to
power MVPA in fNIRS studies are the correlation-based MVPA
analysis19, and classical machine learning techniques (e.g., LDA14,
SVM15). Although MVPA provides higher sensitivity in com-
parison to univariate analysis (see Emberson et al.19; for an
example of MVPA in fMRI data, see Hebart et al.20 and Gilbert
et al.21), the methods used as a basis for MVPA (either correla-
tions or classical machine learning) do not intrinsically outline
the prototypical channel regional activation patterns related to
each stimulus and their combinations.

In order to overcome these limitations, in the present work, we
introduce an XAI learning and inference mechanism for fNIRS
MVPA that (1) is not dependent on large datasets, (2) does not rely
on a priori model, and (3) provides an explanation for its classifi-
cation process in the form of patterns of interaction between acti-
vated brain regions for the processing of perceptual stimuli. Our
eXplainable MVPA (xMVPA) is an XAI inference mechanism for
brain haemodynamics data that uses evolutionary learning
procedure22 to learn the model that drives the MVPA. The functional
patterns learnt by the xMVPA, as defined in eq. (1), are captured
directly from the input fNIRS measurements. By identifying cortical
networks activated for the processing of perceptual information, these
patterns can pinpoint the emergence of the specialisation of different
brain regions and their interactions, critically contributing to the
existent literature of neurodevelopmental trajectories.

A generic nomenclature of a pattern provided by xMVPA for
fNIRS data is elucidated in eq. (1):

IF activity is CoL in Ch. X AND activity is CoL in Ch. Y :::

THEN it corresponds to stimulus A

ð1Þ
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where CoL stands for a conceptual label that denotes the level of
activity in a given channel (Ch.), such as inactive, active, or very
active.

The inference about the stimulus eliciting the haemodynamic
response is made on the basis of the xMVPA patterns defining
cortical activation and interactions. A higher classification dex-
terity of fNIRS data by the explainable patterns of xMVPA can
verify that the model has discerned with high accuracy the
underlying activation and interactions of the brain regions in
response to the presented stimuli. xMVPA automatically per-
forms channel selection for the patterns (i.e., which channels to
include in a given pattern) and ensures the generalisation of the
inference model by limiting its complexity (i.e., the total number
of patterns and their length) as outlined in section xMVPA
learning from data.

In the present work, we applied the xMVPA inference
mechanism for the explainable classification analysis of infant
fNIRS data obtained from an earlier study by Emberson et al.19.
In this study, fNIRS was used to record 6-month-old infants’
haemodynamic responses to auditory (a toy sound) and visual
stimuli (a dynamic red smiley face). The xMVPA obtained six
prototypical patterns of brain activation providing new evidence
for cortical networks engaged in the processing of visual and
auditory stimuli. These patterns give a comparable classification
accuracy to the state-of-the-art machine learning algorithms used
for MVPA. In addition, xMVPA provides an accessible expla-
nation of its inference, describing the prototypical patterns of
functional activation for each stimulus in straightforward terms
(if-then rules).

Results
The xMVPA identifies informative activation patterns by com-
bining the input neuroimaging data from all fNIRS channels of
interest into a multivariate matrix. Here, we constructed the
multivariate matrix by calculating the mean of the oxygenated
haemoglobin (HbO2) signal from each of the 10 channels (see
Fig. 1a) in the time-window 4−7 s, following stimulus presenta-
tion for each trial (see Fig. 1b). In between the trials, a jittered
video of dimmed fireworks was displayed. A grid search was
undertaken to find the optimal time window of 4−7 s. In line
with previous infant fNIRS studies23, and as reported by
Emberson et al.19, we equally focus on examining the
HbO2 signals. Nevertheless, there will be no changes in our
proposed xMVPA method for using either or both of the
dimensions of the fNIRS signals to construct the multivariate
matrix.

Moreover, results of the proposed xMVPA on deoxygenated
haemoglobin (deoxy-Hb) signals are provided in subsection 2.1 of
the Supplementary File. Deoxy-Hb functional patterns are illu-
strated in Supplementary Figs. 1 and 2, and a performance
comparison with other alternative decoding methods is presented
in Supplementary Table 1. In addition, results of the application
of xMVPA on an adult fNIRS dataset on mental arithmetic are
provided in subsection 2.2 of the Supplementary File. The
decoding accuracy is contrasted with the results reported in the
dataset’s article24 in Supplementary Table 2 and resultant pat-
terns are elucidated in Supplementary Table 3 and Fig. 3.

The ethics approval for the experiment is provided by the
Institutional Review Board of the University of Rochester, and
informed consent is obtained from the caregivers of the infants19.
More details on the experiment reproducibility and statistics are
provided in section “Statistics and reproducibility”. The reader is
referred to the earlier study by Emberson et al.19 for more details
on the experimental setup, data collection, sample, control,
exclusion, and the subsequent pre-processing steps.

The numerical neuroimaging data in the multivariate matrix is
then translated into CoLs of brain activation defined as inactive,
active, and very active to represent the average activity level of
each channel for the time-window considered. A flow chart
outlining the steps for generating a multivariate pattern matrix
with CoLs is presented in Fig. 1c. The data instances in the
multivariate matrix characterised by the CoLs for each trial are
subsequently used to train the xMVPA for explainable classifi-
cation results of the infant data in response to the visual and
auditory stimuli. More details of the proposed xMVPA inference
mechanism are provided in the section “Methods”: a MVPA
method via XAI (xMVPA).

xMVPA revealed six functional patterns of interactions
between cortical regions using the publicly available DCN dataset
of auditory versus visual stimulus processing25. The patterns form
the inference model for xMVPA as they predict the stimulus (or
class) for the brain activity instances (or data instances). These
explainable patterns are listed below:

The six patterns provided by xMVPA that outline the brain
regions’ activation and interaction for processing visual and
auditory information are given below:

Pattern P1 : IF Ch1 is Active AND Ch2 is Active AND Ch4 is Active

THEN stimulus is Visual with dominance score 0:581

Pattern P2 : IF Ch4 is Active AND Ch6 is Inactive AND Ch8 is Very Active

THEN stimulus is Visual with dominance score 0:019

Pattern P3 : IF Ch1 is Inactive AND Ch8 is Active

THEN stimulus is Auditory with dominance score 0:434

Pattern P4 : IF Ch4 is Inactive AND Ch5 is Active

THEN stimulus is Auditory with dominance score 0:406

Pattern P5 : IF Ch4 is Inactive AND Ch9 is Very Active

THEN stimulus is Auditory with dominance score 0:239

Pattern P6 : IF Ch1 is Inactive AND Ch9 is Active

THEN stimulus is Auditory with dominance score 0:082

where dominance score (DS) is in the range (0,1) DS of a pattern
indicates the overall information prowess of a given pattern with
DS= 1 being the most informative pattern and DS= 0 being the
least informative pattern. More details on the metric DS are
provided in the section “Methods”: A MVPA method via XAI
(xMVPA):

Patterns P1 and P2 identified interactions between regions
involved in the processing of the visual stimulus, as shown in
Fig. 2a. Firstly, P1 showed a prominent involvement of the
occipital cortex, where channel 1 and channel 2 are both classified
as active. Secondly, both P1 and P2 identified an active status of
channel 4, located in the temporal cortex (see Fig. 1a). Finally, P2
identified an inactive status of channel 6 in the temporal cortex in
combination with an active status of channel 4 and a very active
status of channel 8, located in the frontal cortex.

The patterns of interactions in response to the auditory sti-
mulus are shown in Fig. 2b. Here, channels that are active cor-
respond to the prefrontal cortex (channel 8 in P3) and temporal
cortex (channel 5 in P4 and channel 9 in P5 and P6). The occipital
cortex is not engaged in the processing of auditory stimulus as
indicated by the inactive status of channel 1 in combination with
both prefrontal cortex (channel 8 active in P3) and temporal
cortex (channel 9 active) in P6 activation.

Taken altogether, the patterns identified by the xMVPA show
activation over the occipital and temporal cortices for visual sti-
mulus processing and over the temporal cortex for auditory sti-
mulus processing. The patterns also identified activity over the
frontal cortex for the processing of both auditory and visual
stimuli.
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Fig. 1 Multivariate pattern matrix construction using fNIRS signals. a The average anatomical location of the 10 channels (Chs) after MRI co-registration
using Lobar and LONI atlas as delineated in Emberson et al.19. b A schematic of the Auditory vs. Visual (AV) Experiment in Emberson et al.19. The auditory
stimulus is a toy sound played for one second, and the visual stimulus is a red smiley face that moves in and out of a box. Please note the location of
sources and detectors on the fNIRS cap is hypothetical. c A flowchart depicting the steps for the construction of a multivariate pattern matrix with
hypothetical numerical neuroimaging data from (arbitrarily chosen) eight fNIRS channels (Chs) associated with two stimulus conditions for ten trials. The
numerical multivariate pattern matrix is converted into a conceptual multivariate pattern matrix using conceptual labels (CoLs) of inactive, active, and very
active. Please note the numerical values are hypothetical, and since their conversion to the CoLs would depend on which statistical feature of the fNIRS
signals has been used, as well as the corresponding definition of the membership function of the associated CoLs (see Fig. 6), no direct inference between
the numerical value and the CoL can be made in this illustration.
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Results comparison with MVPA. Another important observa-
tion from the patterns in P1−P6 is that no individual channel in
the temporal cortex with sufficient decoding accuracy stood out
for processing the auditory stimulus presented to the infants in
the study, i.e., no channel had stimulus-specific activation (for
example, active for auditory processing, and inactive for visual
processing) as reported in Table 1. This is consistent with the
correlation MVPA analysis reported in Emberson et al.19 (see
Table 1). Nevertheless, the MVPA method was unable to specify
neither the semantics of such activation difference nor the com-
bination of channels yielding higher decoding, just the indepen-
dent decoding strength for each channel. The absence of decoding
strength in the temporal cortex in response to auditory stimuli
might be due to a more diffuse cortical activity26, in line with
what is suggested by fMRI and fNIRS studies that report wide-
spread activation in response to auditory stimuli, such as
sounds4,27, in the infant’s brain.

Decoding performance comparison with black-box models. A
range of statistical performance measures derived from the con-
fusion matrix, outlined in Fig. 3a, are calculated to quantify the
performance of the xMVPA patterns. The confusion matrix helps
assess the robustness of a given model’s inference mechanism by
indicating whether or not the model is ‘confusing’ the classes, i.e.,
decoding visual stimulus when it is an auditory stimulus (or vice
versa). Please note, in Fig. 3a, the visual stimulus is referred to as a
positive class, and the auditory stimulus is referred to as a
negative class.

The bar graph in Fig. 3b shows a comparison of the statistical
performance measures (accuracy, positive predictive value (PPV),
negative predictive value (NPV), Fscore, false positive rate (FPR),
and false negative rate (FNR) defined in Fig. 3a) between the
xMVPA and the state-of-the-art machine learning algorithms
SVM, RF, and MLP. The statistical performance measures of
accuracy, PPV, NPV, and Fscore for xMVPA are comparable to
those obtained for SVM, RF, and MLP. However, the xMVPA
outperforms all the other models for the metrics FPR and FNR.

The lowest values of FPR and FNR for xMVPA indicate the most
robust classification method (also named decoding model in
MVPA19) for the input fNIRS data, i.e., the xMVPA obtains the
least fNIRS instances predicted as auditory when they are in
factual evoked by visual stimuli and vice versa. Altogether, this
comparison confirms that the xMVPA’s patterns clearly discern
the differences in the fNIRS instances for the six-month-old brain
in response to visual and auditory stimuli.

Discussion
In the present study, we provide a novel, explainable method for
analysing and interpreting infant fNIRS data. The proposed
xMVPA is an MVPA based on XAI that provides functional
patterns characterised by conceptual labels delineating contribu-
tions between brain regions for information processing. We
applied the xMVPA to the analysis of a group of 6-month-old
infants’ brain activity in response to visual and auditory stimuli19,
and identified six patterns of cortical networks. Our results
showed that the classification accuracy obtained on the infant
fNIRS dataset by the proposed xMVPA is comparable to the
state-of-the-art machine learning algorithms frequently used for
MVPA (e.g., SVM, RF, and MLP; see Fig. 3b), thus demonstrating
the validity of our model. This is of critical importance for
advancement in DCN because, in contrast to our xMVPA, the
classification process of these standard machine learning algo-
rithms is opaque14,15 and thus cannot inform our understanding
of the developing brain.

The validity and efficacy of our model are also demonstrated
against the correlation-based MVPA presented in the previous
study by Emberson et al.19. As reported in Table 1, channel 1 is
the only channel to have both decoding strength in the
correlation-based MVPA reported by19, and stimulus-specific
activation for visual and auditory processing in our xMVPA
analysis (see Table 1), i.e., channel 1 is specifically active in
response to the visual stimulus, but inactive in response to the
auditory stimulus. This specific pattern of activation is also
consistent with the localisation of channel 1 in the occipital

Fig. 2 Patterns of cortical networks delineated by xMVPA. The patterns (cyan) identified by the xMVPA delineate the contributions between brain
regions evoked by a visual and b auditory stimuli. The colour of the channels denotes their level of activity: inactive (white), active (amber), and very active
(red), and uncoloured for channels that do not belong to any pattern.

Table 1 A comparison of the (Ch) significance and decoding strength found using correlation-based MVPA Emberson et al.19

(second row) with the channel activations using conceptual labels (CoLs) of inactive, active, and very active provided by the
proposed xMVPA (third row) for the Auditory-Visual (AV) experiment in the study by Emberson et al.19.

Anatomical Location Occipital cortex Temporal cortex Pre-frontal cortex

Activation Level Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 Ch7 Ch9 Ch8 Ch10

Significant activation ✓ ✓ ✓ ✓
Visual processing Active Active Active Inactive Very active
Audio processing Inactive Inactive Active Active or very active Active
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cortex, responsible for the processing of visual information28. In
addition, our xMVPA patterns also delineate the interconnection
of channel 1 with other channels (channel 2 and channel 4 in P1),
uncovering a network of cortical regions for visual processing.

Our xMVPA has identified two brain activity patterns (P1 and
P2) in response to the dynamic visual stimulus presented to the 6-
months-old infants in the study. Specifically, we found activation
of the occipital cortex and the prefrontal cortex, with partial
activation of the temporal cortex.

The activation of the occipital cortex for processing visual
information in infancy is well-established in the literature. For
example, Wilcox and colleagues29 reported activity over the
occipital cortex when 6.5-month-old infants were presented with
an occlusion event involving objects. Watanabe et al.30 showed
that 3-month-old infants’ occipital cortex was activated for both
dynamic (moving mobile objects) and static visual stimuli (black-
and-white checkerboard pattern). Similar to our findings, they
also reported activation over temporal and prefrontal cortices in
response to the dynamic stimulus. Hence, the patterns P1 and P2
provided by the xMVPA are in line with the existent literature,
suggesting that a specific cortical network of regions involving the

occipital, temporal, and prefrontal cortices is involved in the
processing of dynamic visual information.

It is important to note that the dynamic visual stimulus used by
Emberson et al.19 displayed human facial attributes. Extending
previous findings of studies that investigated face processing in
young infants31,32, we found a specific inter-regional interaction
between the occipital and temporal cortices (P1) in response to
the face stimulus. A similar network of occipital and temporal
regions for visual processing is also found in the adult literature33.
In particular, the occipitotemporal region is identified as a ‘core
system’ in the model of the distributed human neural system for
face perception in adults34. Thus the interaction between occipital
and temporal cortices identified in the pattern P1 in our study
provides evidence for the existence of an equivalent ‘core system’
for face processing in six-month-old infants (Fig. 4a).

In addition, pattern P2 identified inter-regional interaction
between the prefrontal and temporal cortices. This indicates that
infants as young as six months of age recruit an extended neural
system for processing social stimuli, such as faces, adding to the
existing literature that found similar activations in older
infants35,36. This is also in line with the ‘extended system’ in the

Fig. 3 Comparison of statistical performance measures of xMVPA with black-box models. a Definition of the statistical performance measures used for
comparison of frameworks prowess in driving MVPA. A confusion matrix of binary classification problem, i.e., predicting one of the two stimuli (Visual or
Auditory) that best matches the brain activity instances. The visual stimulus is referred to as the positive stimulus and the auditory stimulus as the negative
stimulus. b A bar chart for the comparison of frameworks driving MVPA including the proposed model xMVPA, Support Vector Machines (SVM), Random
Forest (RF), and Multi-Layer Perceptron (MLP) on infant’s unisensory fNIRS dataset. PPV: predictive positive value; NPV: negative predictive value; FPR:
false positive rate; FNR: false negative rate with error bars representing the standard deviation. The statistical performance measures that attain statistical
significance over the decoding results of a baseline classifier with 5,000 randomly permuted stimulus labels are denoted with asterisks (*). A breakdown of
the values and statistics in this figure is detailed in Supplementary Table 4.
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model of face perception in adults34, which is a dedicated network
over the temporal and prefrontal cortices for processing basic
facial emotions.

In line with Emberson et al.37, we found no pattern in P1 or P2
suggesting direct inter-regional interactions between the occipital
(channel 1 and channel 2) and the prefrontal cortex (channel 8,
inferior frontal gyrus) in response to the visual stimulus. How-
ever, previous studies have demonstrated the involvement of the
prefrontal cortex during the presentation of visual stimuli in
newborns28 and 3-month-old infants30. While there is evidence
supporting the functional role of the prefrontal cortex in the early
postnatal period38, it is possible that the functional connections
between the visual and frontal cortex undergo experience-
dependent synaptic pruning during this time39 leading to
potential functional specialisation in the occipital cortex by
6 months of age40. In support to this hypothesis, a study by
Homae et al.41 demonstrated a decrease in connectivity between
prefrontal and occipital cortices from birth to six months. Taken
together, the results reported by Homae et al.41 and Emberson
et al.37, as well as the absence of interaction between occipital and
prefrontal cortex in the present work, suggest that the role of the
prefrontal cortex is not representative in the core processing of
visual information at 6 months of age. However, the direct con-
nections with the temporal cortex suggest that the prefrontal

cortex may play a role in the extended system for deriving
meaning from the visual stimulus. This is in line with the
established role of the prefrontal cortex as an overall control unit
that receives input from perceptual cortices and generates
meaning from the received input2,42.

Based on the above discussion on the patterns provided by the
xMVPA, a model for the cortical pathways for the processing of
visual stimulus in six-month-old infants is presented in Fig. 4a.
The model for the developing brain has similar modules and
interconnections as the adult neural system for face perception
presented by Haxby et al. in34 suggesting that by 6 months of age,
the cortical activity associated with face processing is already
similar to that of mature brains.

A total of four patterns, P3 to P6, were identified by the
xMVPA for the processing of the auditory stimulus. Specifically,
while patterns P4, P5, and P6 delineated the involvement of the
temporal cortex, the activation of the prefrontal cortex is
observed in pattern P3. This evidence alings with the literature,
whereby non-speech auditory stimuli elicit consistent responses
in the infant temporal43 and prefrontal cortex37.

While activation of the prefrontal and temporal cortices were
found, none of the patterns revealed an interaction between these
areas. Previous studies with infants reported non-synchronised
activity in temporal and prefrontal cortices in response to non-

Fig. 4 Illustration of cortical networks proposed by xMVPA. a A model for face processing in 6-month-old infants, based on the patterns P1 and P2
revealed by the xMVPA inference mechanism. The proposed model consists of an occipital-temporal network as a core system that undertakes the primary
processing of facial features (two eyes above a nose above a mouth), and of the prefrontal cortex as an extended system that processes the emotion
associated with the visual stimulus (i.e., associate happiness with a smiley face). b A model for non-speech auditory processing in 6-month-old infants,
based on the patterns P3 to P6 revealed by the xMVPA inference mechanism. The proposed model consists of the temporal cortex as a core system for
processing non-speech auditory stimuli, and of the prefrontal cortex as an extended system that processes the emotion associated with the auditory
stimulus. The colour of the channel’s (Ch) circle is based on its activity level: inactive (white), active (amber), and very active (red).
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speech auditory stimuli44,45, whereas activation in both temporal
and prefrontal cortices has been reported in response to speech-
like sounds46,47. Considering that in the present work, the audi-
tory cue presented to infants was a non-speech stimulus, our
results are in line with the literature and suggest that inter-
regional interactions between the temporal and prefrontal cortex
might be specific to speech-like sounds46,47. While this inter-
pretation would fit both with our results and with the available
evidence from previous infant research, further studies should use
the xMVPA model to test this hypothesis directly.

None of the patterns identified activation of the occipital cortex
in response to the auditory stimulus; indeed channel 1 was found
inactive in patterns P3 and P6. While this is not surprising, as the
occipital cortex is usually recruited in response to visual, rather
than auditory stimuli28, it is important to point out that this
finding further strengthens the validity of our xMVPA model.

Our model also shows a particular activation pattern over the
temporal cortex specific to visual vs auditory stimuli. Specifically,
the channels of the temporal cortex, which are active in response
to the visual stimulus are instead inactive in response to the
auditory stimulus, i.e., channel 4 is active in P1 and P2 for visual
processing and inactive in P4 and P5 for auditory processing. This
confirms the multifaceted role of the temporal cortex in the
processing of sensory stimuli thereby, some areas are dedicated to
visual processing29–31,34 whilst others are associated with audi-
tory processing4,46,47.

Based on this body of evidence, with this work, we hypothesise
a non-synchronised model for the cortical pathways engaged in
the processing of non-speech auditory stimuli in six-month-old
infants. This proposed model is composed of a ‘Core’ and an
‘Extended’ system, as shown in Fig. 4b. The temporal cortex will
form the core system for processing non-speech auditory stimuli,
while the prefrontal cortex will form the extended system for
processing the emotion associated with the auditory stimulus.
When inactive, the occipital cortex enables the occurrence of
these patterns.

Taken together, the patterns P1 to P6 obtained by the proposed
xMVPA have provided not only corroborative evidence for the
existent literature for the processing of perceptual information in
infants but also revealed new brain regions activation and inter-
actions not yet established for the developing brain. Learning new
cortical pathways directly from the neuroimaging data is of
fundamental importance in DCN research to shed light on
functional brain development in the absence of established
assumptions. In this work, we introduced an AI-powered
explainable approach to interpreting infant neuroimaging data.
The xMVPA, a MVPA for fNIRS data analysis powered by XAI,
overcomes important methodological limitations currently pre-
sent in DCN and represents a stepping stone for furthering our
understanding of the functional development of the human brain.
The proposed xMVPA is here applied on fNIRS data obtained in
response to visual and auditory stimuli in a group of 6-month-old
infants19. The xMVPA identified six patterns describing cortical
activations and inter-regional interactions specific to each of the
perceptual stimuli. These patterns corroborated the existing evi-
dence in the DCN literature, while providing further insight into
auditory processing in infants.

Given its capability and reliability of identifying patterns of
inter-regional interactions for information processing, the
xMVPA provides a technical framework for the Interactive Spe-
cialisation (IS) account proposed by Johnson2 for explaining
functional brain development. The IS account suggests that
postnatal brain development emerges due to the optimisation of
interactions between different regions of the brain. In more detail,
it suggests that cortical regions interact and compete with each

other to acquire their role in new computational abilities, there-
fore becoming more specialised with development. Critically, the
onset of new behavioural abilities is associated with changes in
activity over cortical networks and not by the onset of activity in
single regions. Future prospective use for xMVPA can be dedi-
cated to identifying changes in the activation of cortical regions
and networks that may characterise, directly from the neural data,
typical and atypical development. Even more, the employment of
the xMVPA to a longitudinal dataset is a promising avenue for
the study of developmental brain trajectories in terms of
maturation and inter-regional functional interactions2. A limita-
tion of the present study is that the cross-sectional nature of the
dataset could only inform us on the brain regions involvement for
6-month-old infants.

Future developments of the xMVPA could focus on the
inclusion of time information in the multivariate matrix since
using a single value such as the mean of the fNIRS signal to
construct the multivariate matrix does not retain the time
dimension of the fNIRS signal. The proposed xMVPA could
therefore be extended to provide complementary time-stamps
patterns and map brain regions activation and interactions to a
corresponding time after stimulus presentation. This will further
enhance the potential of the xMVPA to contribute to the field of
DCN critically.

Methods: a MVPA method via XAI (xMVPA)
The patterns obtained from xMVPA are formed of two parts: the
antecedent part, A, and the consequent part, Y, as outlined in eq.
(2).

Pattern : IF Antecedents THEN Consequent ð2Þ
The patterns of activation between fNIRS channels that map

interactions among brain regions (antecedents (A)) to particular
stimuli (consequent (Y)), are defined as follows in eq. (3):

Pattern Pq : IF NV1 is CoL1 AND ::: AND NVn is CoLn

THEN stimulus is Yq with DSq
ð3Þ

where q is the pattern number, NVj is the numeric brain activity
value of fNIRS channel j, CoLj is the conceptual label for the jth
channel with n as the total number of channels, Yq is the con-
sequent stimulus class for the pattern, and DSq is the dominance
score associated with the qth pattern.

In the present work, a multivariate matrix is constructed by
calculating the mean of the HbO2 signal for each of the 10
channels from time 4−7 s post-stimulus presentation for each
trial. The rows in the multivariate matrix consist of all the trials
with each entry in the two-dimensional matrix (for row (i) and
column (j) being the average of the jth channel activity from time
4−7 s post-stimulus for the ith trial. Please see Fig. 1c that out-
lines the steps for the construction of a multivariate matrix.

In general, xMVPA inference mechanism consists of the fol-
lowing integral processes:

1. Brain activation concept definition;
2. Pattern dominance score evaluation;
3. Matching of data with the stimulus by the explainable

pattern;
4. Learning of xMVPA:

(a) Learning of conceptual labels;
(b) Learning of patterns.

The interlinks between the different processes of the xMVPA
inference mechanism are delineated in a flowchart in Fig. 5d. A
description of each of these processes is provided next.

In this work, evaluation of xMVPA is performed by splitting
the observations transformed into the conceptual multivariate
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matrix into five mutually exclusive train and validation sets (viz.
k-fold cross-validation). The patterns are initially generated at
random with the maximum number of patterns in a given set to
be 20, and the maximum number of channels (or antecedents) in
a given pattern to be 3, i.e., a given pattern would outline inter-
actions from a maximum of 3 channels/brain regions. The small
number of patterns with short antecedents, ensures that a given
set of patterns is comprehensive and easily interpretable48,49.

Conceptualisation of brain activation levels. The xMVPA works
on a multivariate matrix that has elements characterised by CoLs.
The numerical multivariate matrix formed by combining the data
from all channels of interest is converted into a conceptual
multivariate matrix. In the present work, the CoLs of inactive,
active, and very active are used to represent the level of brain
activity measured by a fNIRS channel. The capability of encoding
uncertainty in the numerical range of each CoL makes the
xMVPA particularly suitable for analysing infant neuroimaging
data, which are typically characterised by high levels of inter-
subject variability50. The CoLs also allow furnishing multivariate
methods with activation-based analysis as well as information-
based analysis20. An illustrative plot to exemplify how a CoL is
characterised with uncertainty handling in xMVPA is shown in
Fig. 6 with reference to thermal concepts.

The conversion of numeric data into CoLs is based on the
numerical range of values represented by each of the CoLs. The
shape of the degree of the membership functions for the CoLs is
as outlined in Fig. 5a−c. The numeric values to be learnt for the
definition of inactive and very active CoLs are 4 each, while 8
numeric values need to be optimised for the trapezium-shaped
degree of membership function for active. The range of numeric
values for each CoL are learnt using an evolutionary algorithm
with more details as outlined in the section xMVPA learning
from data.

A mathematical definition of the degree of the membership
function is provided in section Supplementary Methods.

Explainable patterns’ dominance score evaluation. Starting with
an initial random set of patterns, the upper and lower bounds of
the dominance score, DSq and DSq, respectively, for each of the
patterns Pq in the set are determined on a given k-fold training
dataset as shown in eq. (4)22.

DSq ¼ cq � sq
DSq ¼ cq � sq

ð4Þ

where q is the pattern number, cq and cq is the upper and lower
confidence score of the pattern Pq respectively, and sq and sq is the
upper and lower support of the pattern Pq, on a training dataset.

The confidence score, cq, of a pattern, Pq, can be viewed as the
possibility that a given data instance is an observation of this
pattern, i.e., cq is the likelihood of a given data instance to be a
representative observation for the same stimulus as the pattern
stimulus (consequent) Yq, given the data instance has matching
interactions of brain regions as the rule Pq, i.e., the same
antecedents. More information on the pattern confidence is
provided in eq. (3) in Supplementary Methods. The support, sq, of
a given pattern is an indication of the coverage of the training
dataset by the pattern. More information on the support is
provided in eq. (4) in Supplementary Methods.

In this work, the conceptual multivariate data is split into five-
fold disjoint training and validation datasets51 to ensure there is
no bias in selecting the training and validation datasets. Also,
please note that in the xMVPA inference mechanism, there is no

information flow from the learning of patterns from one training
fold to another training fold.

Stimulus prediction. A set of optimal patterns, with corre-
sponding dominance scores, DSq, are obtained using an evolu-
tionary search (section xMVPA learning from data) guided by the
results of a k-fold cross-validation (k= 5) procedure. The most
possible stimulus for a given data instance, where a data instance
is a row (i) in the validation dataset, is achieved by evaluating the
association of the data instance with all the patterns (rule-based
explanations). The stimulus-response of a data instance is pre-
dicted as the consequent of the pattern with the highest asso-
ciation degree, i.e., visual or auditory stimulus.

The stimulus for each data instance in the validation dataset, xi,
is determined using the metric of association degree. The
association degree, hq, of pattern Pq with each data instance in
the validation dataset, xi, is computed as outlined in eq. (5).

hqðxiÞ ¼ wqðxiÞ � DSq
hqðxiÞ ¼ wqðxiÞ � DSq

hqðxiÞ ¼
hqðxiÞ þ hqðxiÞ

2

ð5Þ

where wq and wq are the upper and lower strengths of activating a
pattern Pq for a data instance of the validation set xi. More
information on the strengths of activation is provided in eq. (2) in
Supplementary Methods.

In sum, a given validation data instance, xi, is classified as a
response to the stimulus, Yq, corresponding to the pattern Pq with
the maximum association degree with xi.

xMVPA learning from data. The initial set of patterns used in
the proposed xMVPA inference mechanism is randomly gener-
ated to ensure that there is no bias introduced in learning the set
of patterns. An evolutionary genetic algorithm (GA) is integrated
into the xMVPA inference mechanism to identify patterns that
together give the best classification results.

Figure 5d outlines the steps undertaken to reveal an optimised
set of patterns using a given dataset. All sets of patterns are learnt
using k-fold cross-validation to establish the general ability of a
given set of patterns.

Using an initial random set of patterns with a total of Q
patterns, Mathew’s correlation coefficient (MCC) of the set of
patterns is computed as MCC gives a more balanced measure of
the quality of binary (two-class) classifications. It is computed as
shown in eq. (6)16:

MCC ¼ TP ´ TN � FP ´ FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p

ð6Þ
where TP, TN, FP, and FN are as defined in the confusion matrix
in Fig. 3a.

The cost of the set of patterns is computed as 1 − the mean of
the MCCs of all k-fold validation datasets. The GA then compares
the cost of the set of patterns with a pre-defined tolerance
criterion. If the cost is greater than the tolerance of GA, the GA
then populates a new set of patterns, and the cycle is repeated till
the tolerance criterion of the GA is met as outlined in Fig. 5d.
More details on the GA are provided in subsection 1.5 in
Supplementary Methods.

To maximise the model interpretability, the total number of
patterns to be learnt by xMVPA system is set at 20 patterns, with
a maximum of three channels interactions in a given pattern (as
three-point messages are the recommended standard for science
communications49). The evolutionary system52 will aim to
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Fig. 5 A flowchart outlining the construction of xMVPA. a−d An illustrative plot delineating the values to be learnt by the evolutionary algorithm for each
of the conceptual labels (CoLs) associated with brain activity in a channel, with the corresponding degree of membership, μ, namely: inactive (white), active
(amber), and very active (red). The values to be learnt for each CoLs definition are encircled in yellow. For CoL inactive, the values to be learnt are 4 as
shown in (a), for CoL active are 8 as shown in (b), and for CoL very active the values to be learnt are 4 as shown in (c). d A flowchart depicting the steps for
the construction of xMVPA. With an initial random population (of size 200) of the numerical range of CoLs, and an initial random population (of size 200)
of a set of patterns, the input fNIRS data is converted into the conceptual multivariate matrix and split into five-fold train and validation datasets. The
dominance score (DS) of the patterns is established using train datasets, and the validation datasets are used to determine the efficacy of the set of
patterns based on MCC (Mathew’s correlation coefficient). The tolerance criterion, 1 × 10−5, for the evolutionary algorithm is compared with the 1 − mean
MCC of the five-fold validation datasets to evaluate the performance of the set of patterns for correctly predicting the stimulus for un-labelled brain activity
instances in the validation datasets. If the tolerance criterion is met, the xMVPA learning is complete else new populations, of size 200, of the numerical
range of CoLs and set of patterns are found, and their DS and MCC on k-fold train and validation datasets are determined respectively and the process is
repeated till the set tolerance criterion is achieved. The numbers in the boxes, 1)−4), refer to the steps outlined in the section “Methods”: a MVPA method
via XAI (xMVPA) for the construction of the xMVPA.
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maximise prediction accuracy while using a maximum of 20
patterns, where each pattern consists of a maximum three
antecedents. This renders the total number of variables, to be
optimised for pattern learning, by GA to be: total number of
patterns (20) * maximum number of channels (3) and CoL for
each chosen channel (3: inactive, active, or very high) and the
corresponding stimulus class for each pattern (1) =
20*(3+ 3+ 1) = 140 variables.

The number of parameters to be learned for CoLs definition is
the lower and upper numeric values for each concept. For a given
channel, the number of variables that need to be learned for the
channel’s equivalent CoLs numeric range is 16 (4 for inactive (IA)
as shown in Fig. 5a, 8 for active(A) as shown in Fig. 5b, and 4 for
very active (VA) as shown in Fig. 5c). Hence, in this work, for ten
channels, the total number of variables to be optimised for CoLs
numeric range are 16 � 10 = 160.

Hence, the grand total of variables to be learnt by the GA is
140+ 160 = 300 variables. The structure of each phenotype is
delineated in eq. (7). The population size of GA, i.e., the number
of feasible solutions, is set at 200, with selection done using
tournament, and the GA tolerance is set at 1 � 10−5.

ρb ¼ ϕ11; ϕ
1
2; ϕ

1
3; λ

1
1; λ

1
2; λ

1
3; γ

j;1; :::;
�

ϕQ1 ; ϕ
Q
2 ; ϕ

Q
3 ; λ

Q
1 ; λ

Q
2 ; λ

Q
3 ; γ

j;Q; :::;

δ1IAj ; :::; δ4IAj ; δ1Aj ; :::; δ8Aj ; δ1VAj ; :::; δ4VAj ; :::;

δ1IAn ; :::; δ4IAn ; δ1An ; :::; δ8An ; δ1VAn ; :::; δ4VAn

�0

ð7Þ

where ρb is the phenotype of an individual b (a potential solution)
for the GA for a total of Q patterns. Each ϕ denotes a particular
channel, and each λ represents the corresponding CoLs associated
with each channel. These chromosomes form the antecedent of a
pattern. The consequent of this pattern is denoted as γ. The δ
represents the numeric values for the range of each of the CoLs of
all the n Chs. In particular, δNVCoLj , subscript CoL denotes the value
of concept that can be inactive: IA, active: A, and very active: VA,
along with the associated channel number j and the numeric
value (NV) in the superscript: 4 NVs for inactive and very active,
and 8 NVs for active.

Statistics and reproducibility. A total of 19 babies’ data is
included in the analysis, with multiple trials per baby, amounting

to 524 trials. Experimental control and signal assessment were
performed to avoid any possible noise artifacts or covariates in
our data19,53. The evaluation of xMVPA is performed by splitting
the observations transformed into the conceptual multivariate
matrix into five mutually-exclusive train and validation sets (viz.
k-fold cross-validation). The statistical performance measures
that attain statistical significance over the decoding results of a
baseline classifier with 5,000 randomly permuted stimulus labels
are reported in Fig. 3 and denoted with asterisks (*). Moreover,
additional statistical values are reported in Supplementary
Table 4.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data from the analysis of this paper is publicly available at the Princeton Data
Repository: http://arks.princeton.edu/ark:/88435/dsp01xs55mf543. Data used in section 2.2
of the Supplementary File is available at http://bnci-horizon-2020.eu/database/data-sets.
Data used to generate Figs. 2−4 from the main article and Figs. 1−3 of the Supplementary
Material are provided with the paper.

Code availability
An executable version of xMVPA is publicly available on GitHub (https://github.com/
jandreu/xMPVA) and Zenodo (https://doi.org/10.5281/zenodo.4644294), for other
developmental scientists to use it. The source code of xMVPA is available through
sharing agreement upon reasonable request to the corresponding author.
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