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Task specialization across
research careers
Abstract Research careers are typically envisioned as a single path in which a scientist starts as a

member of a team working under the guidance of one or more experienced scientists and, if they are

successful, ends with the individual leading their own research group and training future generations

of scientists. Here we study the author contribution statements of published research papers in order

to explore possible biases and disparities in career trajectories in science. We used Bayesian networks

to train a prediction model based on a dataset of 70,694 publications from PLoS journals, which

included 347,136 distinct authors and their associated contribution statements. This model was used

to predict the contributions of 222,925 authors in 6,236,239 publications, and to apply a robust

archetypal analysis to profile scientists across four career stages: junior, early-career, mid-career and

late-career. All three of the archetypes we found - leader, specialized, and supporting - were

encountered for early-career and mid-career researchers. Junior researchers displayed only two

archetypes (specialized, and supporting), as did late-career researchers (leader and supporting).

Scientists assigned to the leader and specialized archetypes tended to have longer careers than those

assigned to the supporting archetype. We also observed consistent gender bias at all stages: the

majority of male scientists belonged to the leader archetype, while the larger proportion of women

belonged to the specialized archetype, especially for early-career and mid-career researchers.

NICOLAS ROBINSON-GARCIA*, RODRIGO COSTAS, CASSIDY R SUGIMOTO,
VINCENT LARIVIÈRE AND GABRIELA F NANE

Introduction
Successful research careers are built on concepts

such as leadership (Shen and Barabási, 2014),

productivity (McKiernan et al., 2019;

Reskin, 1979), and impact (Radicchi et al.,

2009; Petersen et al., 2014). But evidence sug-

gests that the design of a unique career path

built on individualistic success may hamper the

way in which science is actually produced

(Milojević et al., 2018). Collaboration has

become essential and ubiquitous

(Guimerà et al., 2005; Mongeon et al., 2017);

however, the increase in team size may come at

a cost for those who are not in leading roles

(Milojević et al., 2018). The overreliance on

past success in terms of accrued credit through

publications and citations (Merton, 1968) may

both reduce the scientific careers of team play-

ers and introduce gender biases (Cole and Zuck-

erman, 1984; Macaluso et al., 2016;

Larivière et al., 2013), discouraging women to

pursue careers in academia (Gaule and Piacen-

tini, 2018; Huang et al., 2019). The heteroge-

neity in scientists’ profiles realizes the need for

distribution of labor (Larivière et al., 2016).

However, there is still a lack of understanding of

how research profiles differ from each other,

and how they are associated with career stages

(Laudel and Gläser, 2008).

The goal of this study is to analyze the rela-

tion between task specialization and career

length of scientists. Do specific profiles of scien-

tists have shorter research careers than others?

How do profiles relate to gender? Are these dif-

ferences also reflected in productivity and cita-

tions? To answer those questions, we develop a

Bayesian network-that is, a probabilistic graphi-

cal model-to predict the specific contributions

scientists made to each of their publications

throughout their career. We then profile

researchers based on contribution statements

and explore how those profiles evolve
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throughout their careers. We investigate how

profiles at each career stage affect career

length, with a particular focus on the relationship

with the perceived gender of the scientist.

Finally, we examine the relationship between

profiles and bibliometric characteristics, such as

research production and scientific impact.

Our seed dataset contains a total of 70,694

papers authored by 347,136 scientists from

PLoS journals in the Medical and Life Sciences

fields. Author names are disambiguated using a

rule-based scoring algorithm (Caron and van

Eck, 2014). Each author has also been linked to

their bibliometric data from Web of Science. We

restrict our dataset to the Medical and Life Sci-

ences to make it more homogeneous and avoid

disciplinary differences in task distribution. We

assign papers to fields by identifying the journal

to which each of the references of the publica-

tions in our dataset belong. We then assign to

each publication the field from which most of its

references come. Finally, we only include those

which are assigned to the Medical and Life Sci-

ences fields. Further details are provided in the

Materials and methods section.

We then build a probabilistic model to pre-

dict authors’ contribution to publications, based

on a set of bibliometric variables. This model

allows us to extend our analysis from the initial

dataset to the complete publication history of

these authors. We reconstruct the publication

history of 222,925 authors from our original

dataset and predict, for each author, the proba-

bility of conducting a given contribution on each

of their publications. Based on the new dataset

of predicted probabilities of contributorship, we

divide scientists’ careers into four stages and

conduct an robust archetypal analysis

(Eugster and Leisch, 2011) by stage. This allows

us to identify differences in scientific profiles by

stage and gender, and explore differences in sci-

entific paths.

Results

Contribution statements and predicting
variables

Five types of contribution statements are identi-

fied in the contribution dataset: wrote the paper

(WR), conceived and designed the experiments

(CE), performed the experiments (PE), analyzed

the data (AD), and contributed reagents/materi-

als/analysis tools (CT). The number of contribu-

tions (NC), that is, the sum by paper of the

contributorships each author reports, is also con-

sidered. These contributions are assumed to be

related with author order (Milojević et al.,

2018; Mongeon et al., 2017; Sauermann and

contribution WR CE PE AD CT

0.2

0.4

0.6

0.8

junior early career mid career career

Career stage

S
h
a
re

 o
f 
p
u
b
lic

a
ti
o
n
s

A

0.00

0.25

0.50

0.75

first middle last

Author order

S
h
a
re

 o
f 
p
u
b
lic

a
ti
o
n
s

B

late-

Figure 1. Distribution of contributions by career stage and author order. (A) Share of publications of authors by

contributorship at each career stage. (B) Share of publications of authors by contributorship based on their author

position in each paper. Only publications with at least 3 authors are included for B. Career stages: junior stage (<

5 years since first publication); early-career stage (� 5 and < 15 since first publication); mid-career stage (� 15 and

< 30 years since first publication); and full career stage (� 30 years since first publication). WR (wrote the paper);

AD (analyzed the data); CE (conceived and designed the experiments); CT (contributed reagents/materials/

analysis tools); PE (performed the experiments); NC (number of contributions).
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Haeussler, 2017), with first and last positions in

author order reflecting leadership (Chinchilla-

Rodrı́guez et al., 2019), as per the recommen-

dations of the International Committee of

Medical Journal Editors, 2015. Figure 1 relates

career stage and author order with contribution

role. We define four career stages: junior (< 5

years since first publication), early-career (� 5

and < 15 years since first publication), mid-

career (� 15 and < 30 years since first publica-

tion) and late-career (� 30 years since first publi-

cation). These four stages are defined in

consistency with other classifications of career

stages in the literature (Laudel and Gläser,

2008; Milojević et al., 2018;

European Commission, 2016).

The distribution of reported contribution

roles by career stage shows that earlier stages

are more often associated with performing

experiments and analyzing data, and that this

contribution decreases as individuals become

more senior. Writing the manuscript and contrib-

uting reagents and tools increase over time, with

a decline in the late-career stage. Conceiving

and designing the experiments demonstrates a

modal shape, where early-career and mid-career

stages are the ones in which these tasks are

more prominent. In terms of labor distribution,

first authors are heavily associated with all con-

tributions, with the exception of contributing

tools, reagents, data, and other materials. Mid-

dle authors report to be less involved in writing

tasks or in the design and conception of experi-

ments but are associated with contributing

resources to a much greater extent. Last authors

report contributing mostly to the design and

conception of experiments as well as to writing

tasks, and to a lesser extent to the performance

of experiments.

Bibliometric indicators are employed as pre-

dictors of contributorship. Two types of biblio-

metric variables are included: paper-level and

author-level. Paper-level variables are document

type (DT), number of authors (AU), number of

countries (CO), and institutions (IN) to which

authors of the paper are affiliated. Author-level

variables include their position in the authors’

list (PO), number of years since they published

their first publication (YE) and the average num-

ber of publications per year (PU).
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Figure 2. Mixed correlation matrix of contributorship and bibliometric variables (A) and the Bayesian network used for predicting contributorship (B).

Contribution variables are in green, bibliometric variables are in blue. Bibliometric variables: PO (author’s position); AU (number of authors); DT

(document type); CO (number of countries); IN (number of institutions); YE (years since first publication); PU (average number of publications).

Contribution variables: WR (wrote the paper); AD (analyzed the data); CE (conceived and designed the experiments); CT (contributed reagents/

materials/analysis tools); PE (performed the experiments); NC (number of contributions).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Bayesian network structure used for predicting contributorship highlighting whitelisted arc relations.
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Figure 2A depicts the coefficients of a mixed

correlation matrix of the contributorship and

bibliometric data, while Figure 2B illustrates the

Bayesian network used for predicting the contri-

bution of a researcher for a given publication.

The highest correlations within types of contribu-

torship are between writing the manuscript and

conceiving and designing the experiments

(0.71), while the rest of contributorship variables

exhibit low correlations. In the case of bibliomet-

ric variables, there is a moderate positive corre-

lation between number of countries and

institutions (0.66), author position and number

of authors (0.68), and number of authors and

number of institutions (0.72). A strong positive

monotone relation between the number of
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Figure 3. Probability density functions of contribution roles predicted using the Bayesian Network model. Distributions are aggregated by career

stage. (A) Probability distributions for the contributorship Wrote the manuscript. (B) Probability distributions for the contributorship Analyzed the data.

(C) Probability distributions for the contributorship Conceived and designed the experiments. (D) Probability distributions for the contributorship

Contributed with tools. (E) Probability distributions for the contributorship Performed the experiments. (F) Probability distributions for estimated

Number of contributions of an author. Red color refers to scientists’ junior stage, green to early-career stage, blue to mid-career stage and purple to

late-career stage.

Robinson-Garcia et al. eLife 2020;9:e60586. DOI: https://doi.org/10.7554/eLife.60586 4 of 23

Feature Article Meta-Research Task specialization across research careers

https://doi.org/10.7554/eLife.60586


contributions and either writing the manuscript

(0.85), conceiving the experiments (0.82) or ana-

lyzing the data (0.79) is observed. The number

of contributions seem therefore to be associated

with those type of contributions. Weak mono-

tone negative relationships are suggested by

correlations between the number of contributor-

ships and bibliometric variables. Negative corre-

lations are observed between performing the

experiments and position in authors list, years

since publication and average number of publi-

cations. Weak to moderate negative correlations

are observed between contributorship variables

and the number of countries and institutions,

author’s position, and number of authors of a

publication.

Bayesian networkmodel for predicting
contributorship

We model our dataset using a Bayesian network

(BN) to be able to predict contribution roles of

scientists for their publications based on the bib-

liometric information of the given publications.

The aim here is to expand our original dataset

to the complete publication history of the

347,136 researchers from the Medical and Life

Sciences who had published at least one paper

in our PLOS seed dataset. A BN is a probabilistic

graphical tool used to model multivariate data

(Nielsen and Jensen, 2009). The variables are

denoted as nodes in the network, whereas the

arcs denote influences between variables, typi-

cally quantified as dependencies. BN accounts

not only for dependencies between the predic-

tor variables and variables of interest, but also

for dependencies between predictor variables.
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Figure 4. Coefficient values of contributorships by archetype, per career stage. Two archetypes are identified in

the junior stage (Specialized and Supporting), three have been identified for the early- and mid-career (Leader,

Specialized and Supporting) and two have been identified for the late-career stage (Leader and Supporting).

Uncertainty intervals of coefficients are shown in brackets. Color grades reflect the value of the parameters.

Contributions statements: WR, wrote the manuscript; AD, analyzed data; CE, conceived and designed the

experiments; PE, performed the experiments; CT, contributed with tools.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Screeplots of the residual sum squares (RSS) which allows determining the number of

archetypes for each career stage.
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Figure 5. Career trajectories, productivity and citation impact boxplots by archetype. (A) Sankey diagrams indicating the number of scientists by

archetype at each career stage and transitions from one stage to the next, including changes on researchers’ archetype. (B) Productivity boxplots, by

archetype and career stage. This is calculated based on the cumulative number of publications scientists had authored at each given stage. (C) Share of

highly cited publications boxplots by archetype and career stage. Highly cited publications are defined as those which are among the 10% most highly

cited publications in their field and year of publication. Red refers to the Leader archetype, Blue refers to the Specialized archetype and Green refers to

the Supporting archetype.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effect size for the differences between archetypes within each career stage for A number of publications and B share of highly

cited papers.
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This characteristic, along with the forthright

graphical representation, makes BNs an attrac-

tive choice to model dependent multivariate

data.

Figure 2B shows the structure of the

obtained BN. Five types of contributions along

with the number of contributions (in green) of

scientists are predicted using the seven biblio-

metric variables (in blue). The structure of the

BN has been obtained by using a hybrid data-

learning algorithm called Max-Min Hill Climbing

(MMHC) (Tsamardinos et al., 2006), along with

the constraint that bibliometric variables are

influencing contributorship variables. That is, if

an arc between bibliometric and contributorship

variables is present in the structure, then it

should be directed to the contributorship vari-

able. Furthermore, the structure of the network

has been tested for robustness. The strength of

the arcs, i.e., relationships between variables,

has been investigated using the bootstrap pro-

cedure, with 50 repetitions. Only the arcs that

were present in 80% of the repetitions have

been considered and are depicted in Figure 2B.

We evaluate the predictive power of the

obtained BN using k-fold cross-validation. That

is, the data has been repeatedly divided in 10

random folds, of which 9 have been used to

learn the BN structure using the MMHC algo-

rithm together with the aforementioned
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Figure 6. Estimated proportion of scientists, along with 95% confidence intervals, by gender and career stage

for each archetype. Top-left panel refers to the junior stage in which only two archetypes are present: specialized

and supporting. Top-right refers to the early-career stage. Bottom-left refers to the mid-career stage. Bottom-right

refers to the late-career stage, again here only two archetypes are observed: leader and supporting. Blue refers to

women scientists and yellow to men scientists.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Sankey diagram indicating the number of male scientists by archetype at each career stage

and transitions from one stage to the next, including changes on researchers’ archetypes.

Figure supplement 2. Sankey diagram indicating the number of female scientists by archetype at each career

stage and transitions from one stage to the next, including changes on researchers’ archetypes.

Figure supplement 3. Effect sizes for proportion tests to identify differences by gender and archetype at each

career stage.
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constraints. The contributions were then pre-

dicted for the remaining fold. The procedure has

been repeated for each of the 10 folds and

results on the prediction errors reported in the

Materials and methods section. The predictive

performance of the BN has been shown to be

extremely good, with an average classification

error rate of between 6-8% for all contributor-

ships and a mean squared error (MSE) of 0.12

for the predicted NC. The BN is used to predict

the contributions for the complete publication

history of a subset of 222,925 scientists who

have published in PLOS journals, for a total of

6,236,239 publications. Each contribution is pre-

dicted as the probability that an author has per-

formed a given contribution on a publication.

We further investigate the distributions of the

predicted contributorships.

When distinguishing by career stage (Fig-

ure 3), the densities clearly depict differences in

contributorships. Performing the experiments is

the most discriminative contributorship type,

with junior scientists more likely be associated

with this contribution. The more scientists

advance in their career, the less likely that they

will perform the experiments. Albeit less dra-

matic, the same discriminative pattern can be

observed for analyzing the data and for the total

number of contributorships, with decreasing

association by age. Inversely, the contribution

roles of wrote the manuscript, conceived the

experiments, and contributed with tools are

more likely for advanced career stages.
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Figure 7. Percentage of scientists by author position, along with 95% confidence intervals, for each archetype

and career stage. Top-left panel refers to the junior stage in which only two archetypes are present: specialized

and supporting. Top-right refers to the early-career stage. Bottom-left refers to the mid-career stage. Bottom-right

refers to the late-career stage, again here only two archetypes are observed: leader and supporting. Blue refers to

share of scientists publishing as first authors, green refers to those publishing as middle authors, and pink refers to

those publishing as last authors.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Effect sizes for differences in proportions by author position and archetype at each stage.
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Profiling scientists using robust archetypal
analysis

We aggregate the predicted contributorships at

the individual level and by career stage to profile

scientists based on their contributorship pat-

terns. To avoid the effect of contributorship out-

liers, we aggregate researchers’ contributorships

by choosing the median predicted contributor-

ship of publications for each career stage. We

perform a robust archetypal analysis (RAA) to

identify types of scientists based on their con-

tributorships (Eugster and Leisch, 2011). Arche-

types accentuate distinct features of scientists

based on contribution data. Robust archetypal

analysis identifies ‘‘prototypical types’’ of the

multivariate aggregated contributorship dataset,

correcting for outlier effects in the data. Each of

these ‘‘prototypical types’’ or archetypes is rep-

resented as a convex combination of researchers

in the aggregated contributorship dataset and,

in turn, each researcher is well described by a

convex combination of these archetypes.

We consider archetypes of scientists at each

career stage. A residual sum of squares (RSS)

analysis for different archetypes reveals that

using two archetypes for the junior and late-

career stages, and three for early-career and

mid-career stages results in significantly smaller

RSS. Figure 4—figure supplement 1 reveals the

screeplots of RSS per career stage, where the

elbow criterion supports the choice of number

of archetypes per career stage. The influence of

contributorships within each archetype is cap-

tured by corresponding coefficient values. Coef-

ficients of each archetype (Leading, Specialized

and Supporting) per career stage are presented

in Figure 4. Low values indicate low prevalence

of corresponding type of contributorship,

whereas high values indicate a high contribution

to the archetype.

A first notable observation is that differences

in contributions are remarkably small for certain

archetypes throughout career stages. Given that

the archetypes at each stage have common

characteristics, we maintain the same profile

naming across stages. Three archetypes are

identified. The Leader is characterized by high

coefficient values for all contributions, except for

PE, indicating a high prevalence of each contri-

bution role, and especially on WR and CE. The

Specialized archetype is characterized by high

coefficient values for PE and AD. A trend analy-

sis for this archetype indicates a shift between

PE and AD contributions. The third archetype is

referred to as the Supporting, and is

characterized by generally low values for all con-

tributorships. This is the least discriminatory

archetype.

At the junior stage, we observe two arche-

types: Specialized and Supporting. Both are

characterized by scientists reporting more than

two contributions per paper. For the Specialized

archetype, the most prevalent roles are on PE

and AD, although they show higher coefficients

than Supporting for all contributorships except

CT (with a marginal difference). At the early-

career stage, three archetypes are obtained,

with a clear difference on PE between Leader

and Specialized. These three archetypes are

maintained during the mid-career stage, with

the most notable difference being the shift

between AD and PE for the Specialized, that

now exhibits a higher probability of conducting

the former than the latter. In the late-career

stage, the Specialized archetype is no longer

identified, and again two archetypes emerge.

Both archetypes show low probabilities on PE,

while the Leader is characterized by a higher

probability on WR and CE. Overall, RAA shows

that BN’s predictions can accurately capture the

diversity of archetypes of scientists and are suffi-

ciently discriminating.

Uncertainty of the coefficient values has been

accounted for to illustrate the robustness of the

obtained archetypes, per career stage. The

uncertainty intervals display small variations

around the initial coefficients, which confirms the

robustness of the archetypes. The large differen-

ces as well as similarities in contributions are

well preserved by the uncertainty intervals.

Career paths, productivity and citation
impact

Similarities between the archetypes are identi-

fied at each career stage, demonstrating the sta-

bility of the classification by scientific age

(Figure 4). In turn, each scientist can be repre-

sented as a weighted combination of the arche-

types. For a given scientist, the weights, or a

scores, corresponding to each archetype deter-

mine the researchers’ assignment to one of the

two or three archetypes. Here, we assign

researchers to archetypes based on the highest

weight. The assignment can be done for each

career stage, which naturally leads to a career

path.

Figure 5A presents the assignment of

researchers to the archetypes and their evolution

over the four career stages, using the maximum

coefficients and the median aggregation

method. However, we observe some patterns by
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archetype. Out of the 222,295 scientists

included in the dataset, 27,714 reached the late-

career stage. We observe that there is little attri-

tion, regardless of the archetype to which scien-

tists belong, between the junior and early-career

stage (93% for junior Specialized and 83% for

Supporting authors). At the early-career stage,

when the Leader archetype emerges, the advan-

tage of those exhibiting a Leader profile

becomes evident: 84% of scientists who belong

to the Leader archetype in their early-career

reach the next career stage, while 30% and 16%

of Specialized and Supporting scientists prog-

ress to mid-career stage respectively. The cost is

even higher from mid-career to late-career, with

37% of Leader profile scientists, and only 1%

and 2% of Specialized and Supporting authors

reaching the last career stage.

Furthermore, 98% of scientists reaching the

late-career stage exhibited a Specialized arche-

type in their junior stage, and 67% of those

reaching this last career stage have consistently

displayed a Leader profile in early- and mid-

career stages. Shifts across archetypes appear

more likely at earlier career stages, as well as

from the Leader archetype to the other two

archetypes (but not vice versa). Even though

most of the scientists reaching the late-career

stage belong to the Leader archetype in their

mid-career stage, 66% of late-career researchers

are in a Supporting role, although they remain

involved in more than one contributorship type.

When comparing archetypes by number of

publications (Figure 5B), we observe almost no

differences in publication rates in the junior

stage. Nonetheless, differences emerge for later

career stages. Except for the late-career stage,

where Supporting scientists are the most pro-

ductive, the Leader archetype exhibits higher

productivity, followed by Supporting. Special-

ized scientists appear to be much less produc-

tive than scientists assigned to the other two

archetypes in the early- and mid-career stages.

This pattern is also observed for Specialized, in

the case of citation impact. However, differences

in terms of share of highly cited publications

between the Leader and the Supporting arche-

types are much smaller, with the latter exhibiting

higher values.

We investigated whether the differences are

statistically significant using Wilcoxon rank sum

test (Wilcoxon, 1945). All group comparisons

between archetypes within each career stage

reveal statistically significant differences. Fur-

thermore, effect sizes to evaluate the strength of

the differences are reported in Figure 5—figure

supplement 1, along with their confidence inter-

vals. We observe large effect sizes on the differ-

ences in productivity for early- and mid-career

stages, a medium effect size for late-career and

a small effect-size for junior stage. Despite the

low p-values (all below 2:2E � 16) and the appar-

ent difference in median share of highly cited

publications between the specialized archetype

and the other two archetypes of the mid-career

stage, we observe that the effect sizes are small

across all career stages.

Archetypes and gender

Figure 6 shows that scientists are unevenly dis-

tributed by gender in each archetype. Note that

scientists from different generations are included

in the analysis, therefore, caution should be

expressed in drawing any conclusion on the

number of scientists by gender that reach the

late-career stage. The share of women who

reach the late-career stage is affected by the

generational diversity of scientists and hence we

make comparisons only within career stage. We

observe a gender disparity especially in the

early- and mid- career stages. The share of men

is higher for the Specialized archetype at the

junior stage, and for the Leader archetype at the

early- and mid-career stages. The second most

frequent is the Specialized archetype, with few

men in the Supporting archetype, except for the

late-career stage. Women are less likely to

appear as the Leader archetype in the early- and

mid-career stages. Whereas 87% of men in the

junior stage have a Specialized archetype, 43%

and 77% in the early- and mid-stage are desig-

nated as Leaders; 84% of women in junior are

Specialized, and only 27% and 65% in early- and

mid-career stages show a leading profile. The

gender distribution becomes more balanced

again at the late-career stage, where 35% of

men and 31% of women are in the Leader arche-

type. In summary, women appear to group

within the Specialized archetype in the early-

career stage, and show similar distributions to

that of men at the other career stages, although

the shares of the Leader archetype are consis-

tently lower to that of men. These differences on

the distribution of scientists by archetype and

gender and how they might affect their trajec-

tory is made more evident in Figure 6—figure

supplement 1 and 2.

We employed two-proportion z tests, based

on Pearson’s chi-squared test statistic, to investi-

gate whether the differences in proportions

within career stage are statistically significant. A

95% confidence interval of the differences in
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proportion allowed us to compute confidence

intervals around the estimated percentages. As

expected, the confidence intervals along with

the very small p-values (all below 2:2E � 16) indi-

cate that the differences are statistically signifi-

cant, hence it is unlikely that the observed

differences to have occurred by chance. Effect

sizes have been computed using Cohen, 2013.

We observe a medium effect size on differences

by gender for Leader and Specialized profiles at

the early- and mid-career stages (Figure 6—fig-

ure supplement 3).

Archetypes and author position

We analyze the relationship between author

order and archetypes by career stage. Figure 7

shows the share of papers by archetype and

career stage of scientists based on their author

position. Middle authorships occupy a larger

share of publications irrespective of the arche-

type or career stage, which is a consequence of

the fact that any paper with more than three

authors, most authors are in middle positions.

We do observe, however, variation in middle

authorship by career stage. At the junior stage,

middle authorships account for half of the

papers from Specialized scientists, while Sup-

porting scientists occupy a middle position in

almost 75% of their publications. In the early-

career stage, the Leader archetype emerges,

exhibiting a more balanced share of publications

between first (32%), middle (37%) and last posi-

tions (32%). Specialized scientists publish a

slightly higher share as first authors (36%) but

almost in half of their papers appear in middle

positions (48%). The Supporting archetype pub-

lishes more than half of their papers as middle

authors (53%), evenly distributed between first

and last authored publications.

At the mid-career stage, Leader scientists

start to shift to last positions (36%), with only

26% of their publications being first authored.

Specialized scientists become the middle

authors in 55% of their publications and are last

authors on 23% of their publications. Supporting

scientists, however, position themselves as last

authors in 35% of their publications. The Special-

ized archetype disappears in the late-career

stage. The Leader and Supporting archetypes

show similar distributions of publications accord-

ing to their author position, revealing that at this

stage, author position is more related with

seniority than contributorship.

Similar to the gender analysis, we have evalu-

ated whether the differences in proportions are

statistically significant. All pairwise tests reveal

statistical significance, as supported also by the

very small confidence intervals. The effect sizes

are reported in Figure 7—figure supplement 1.

We observe a large effect size for specialized

authors in the junior stage and supporting

authors in the late-career between being first or

last author. Large effects sizes are also observed

between being first or middle author for sup-

porting authors across all stages, as well as spe-

cialized at their mid-career stage and leaders

and their late-career stage. Finally, we observe a

large effect size between having a middle or last

position for specialized and supporting authors

at the junior and early-career stage, and for spe-

cialized authors at the mid-career stage. For the

rest, we report between middle and small effect

sizes.

Discussion
The assessment of researchers has been under

scrutiny for some time (McKiernan et al., 2019;

Moher et al., 2018; Way et al., 2019; Wein-

gart, 2005). They are immersed in a reward sys-

tem that evaluates them individually following

uniform expectations of leadership and excel-

lence (Bol et al., 2018; Merton, 1968;

Reskin, 1977). Recent evidence shows an

increasing need for a larger and more stratified

scientific workforce (Milojević, 2014;

Larivière et al., 2016; Newman, 2004;

Wuchty et al., 2007) which necessarily involves

a reconceptualization of research careers and

considering a breadth of profiles for which spe-

cific paths should be considered. Larger teams

require a distribution of tasks which will translate

on individuals specializing on certain roles

(Larivière et al., 2016). Here we identify and

characterize such diversity of profiles by career

stage, by combining contribution statements

with bibliometric variables and applying a

machine learning algorithm to predict

contributions.

We find that scientists exhibit different arche-

types at different stages, following many paths

during their career trajectory. Some paths, how-

ever, come at a cost. Out of the 222,295 scien-

tists included in our dataset, only 12% reached

the late-career stage. While this should not be

striking, as scientists of different ages are

included in our analysis, it is worth noting that

the vast majority (98%) of these scientists dis-

played a Specialized archetype in their junior

stage. Even though most of them belonged to

the Leader archetype in their early- and mid-

career stages, scientists at the late-career stage
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mostly exhibit a Supporting archetype (66%).

This could be happening because many scien-

tists adopt a secondary role when they reach

seniority, leaving the leading role to their youn-

ger colleagues.

The names assigned to each archetype are

figurative but reflect an implicit hierarchy in sci-

ence. This hierarchy exists at each career stage,

indicating that the diversity of profiles is not the

result of scientists evolving in their career trajec-

tory and adopting different roles, but that

diverse archetypes exist between and within

career stages. The robust archetypal analysis

identified no Leader archetype at the junior

stage, when scientists are still ’earning their

stripes’, nor are there Specialized scientists in

the late-career stage. Such reality enters into

conflict with the current expectations of research

careers, which consider roles to be attached

with career stages and steps that must be made

to progress. Our findings have important policy

implications as they indicate that scientists’

career design may be at odds with the way sci-

ence is produced, and suggest a complete

reform wherein reproduction of Leaders is not

the only model of success (Milojević et al.,

2018).

Our results demonstrate the high versatility

of the Leader archetype: scientists with this pro-

file are able to move seamlessly across arche-

types during their careers. While there are some

scientists with a Specialized or Supporting pro-

file who manage to shift to the other three

archetypes, most of the scientists fitting these

archetypes in our dataset do not progress to

more senior stages. Our analysis on productivity

and citation impact by archetype sheds light on

the mechanisms which may be affecting trajecto-

ries. Specialized scientists are less productive

and have a lower share of highly cited publica-

tions than Leaders and Supporting scientists,

which may serve a disadvantage for career

advancement in those environments which prior-

itize publication productivity indicators in

research assessment (Figure 5B,C). The lack of

assessment schemes sensitive to the diversity of

profiles, partly due the inappropriate use of bib-

liometric indicators at the individual researcher

level (McKiernan et al., 2019; Hicks et al.,

2015), limits the capacity of policies to correct

for inequalities observed across and within

archetypes. Structural changes in the academic

reward system are necessary to support the

advancement and retention of Specialized and

Supporting scientists.

We observe consistent differences in the dis-

tribution of archetypes by gender, which may

contribute to explain the higher rates of attrition

for women (Huang et al., 2019). Early-career

stage is key to the development of scientific

careers, and it is at this stage that large gender

differences are observed. While in the other

career stages women and men exhibit a similar

distribution of archetypes, women are more

likely to be of the Specialized archetype in early-

career, while men are more likely to be Leaders.

That women disproportionately engage in tech-

nical labor–even when controlling for academic

age–has been demonstrated in previous studies

(Macaluso et al., 2016). This is consistent with

general patterns in academic labor; for example,

the higher service work done by women aca-

demics (Heijstra et al., 2017).

Contributorships are generally associated

with author order (Larivière et al., 2016;

Sauermann and Haeussler, 2017), based on the

presumption that first and last author will have

major roles, while middle authors will play a sec-

ondary role. These roles reinforce hierarchy and

organizational strategies: leaders set the agenda

and define lines of work, whereas technicians are

prized for their ability to implement this agenda

(Latour and Woolgar, 2013). This model, how-

ever, does not provide equal access to career

advancement for all types of scientists: those

showcasing a Specialized or Supporting arche-

type in their early- and mid-career stages have

greater difficulties to progress in their research

career. These obstacles affect women at a

greater extent than men, as a higher proportion

of female scientists adopt these roles. Our find-

ings suggest systematic biases on the selection

of individuals which may be hampering the effi-

ciency of the scientific system to self-organize

itself and assemble robust and diverse scientific

teams.

Materials and methods
The data needed to reproduce the our analysis

are openly accessible at http://doi.org/10.5281/

zenodo.3891055. Data were processed and

extracted from a T-SQL database server held at

the Centre for Science and Technology Studies-

CWTS (Leiden University). Data modelling, analy-

ses and visualization figures were conducted

using the R statistical programming language

version 3.6.3 (R Development Core Team,

2020). The Bayesian network modelling was

conducted using the bnlearn package

(Scutari and Denis, 2014). The Robust
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Archetypal Analyses were conducted using the

archetypes package (Eugster and Leisch, 2009).

Visualizations were created using the ggplot2

(Wickham, 2016) and ggpubr packages (Kas-

sambara, 2020). Mixed correlation matrix in 2A

was calculated using the psych package

(Revelle et al., 2010). Spearman rank correla-

tions have been determined for continuous vari-

ables, tetrachoric correlations for binary random

variables and biserial and polyserial correlations

for mixed random variables, i.e., between binary

or other discrete and continuous random

variables.

Our analysis is based on two datasets: a seed

dataset of contributorship statements and data-

set of researchers’ late-publication histories. The

seed dataset combines bibliometric and contrib-

utorship data for 85,260 publications from 7

PLoS journals, during the 2006-2013 period.

Although many biomedical journals have

adopted contributorship statements (e.g., BMJ,

The Lancet), PLoS journals provide data in an

XML format which ease the data retrieval

process.

This dataset is used to train a predicting

model of contributorship based on bibliometric

variables. The full publication histories dataset

contains the complete publication history of the

222,925 authors selected from the list of publi-

cations of the first dataset. This dataset is used

to predict authors’ contributorship per paper

and is later aggregated at the individual level to

identify archetypes of scientists per career stage.

The analyses were conducted on an Intel Core

i7-8550U CPU with 16GB RAM, running Micro-

soft Windows 10 Home Edition. The total

computational time of the analyses took around

30 hours, with 20 hours being required for the

data modelling.

Contributorship statements

We used a dataset of 85,260 distinct PLoS

papers published during the 2006-2013 period.

This dataset was gathered from the PLoS web-

site in combination with Web of Science data.

Full account of the complete extraction proce-

dure is provided in a previous study

(Larivière et al., 2016). For each publication

and author, a dummy value is assigned based on

the tasks they performed. Table 2 shows the list

of journals together with the number of publica-

tions per journal. 88% of the publications have

been published in PLoS One. Seven types of

contributions were originally included in the

dataset. Only five of those contributorships are

being used consistently throughout the dataset.

"Approved final version of the manuscript" and

"Other contributions" are present in less than

5% and 20% of the papers respectively. While

the former is a requirement of the ICMJE and

therefore is used mostly in PLoS Medicine, the

latter is not an individual category, but an aggre-

gate containing nearly 20,000 different types of

contributions. The low incidence of the

Table 1. Definition of variables included in the dataset.

Acronym Definition Source

Bibliometric variables

PO Author’s position in the paper WoS

AU Total number of authors in the paper WoS

DT Document type. Letters are excluded WoS

CO Number of countries to which authors of the paper are affiliated WoS

IN Number of institutions to which authors of the paper are affiliated WoS

YE Number of years since first publication at the time the paper was published WoS

PU Average number of publications (full counting) per year WoS

of the author at the time the paper was published

Contribution variables

WR Wrote the paper PLoS

AD Analyzed the data PLoS

PE Performed the experiments PLoS

CE Conceived and designed the experiments PLoS

CT Contributed reagents/materials/analysis tools PLoS

NC Number of contributions PLoS
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"Approved final version" contribution together

with the difficulties in interpreting the "Other"

contributorship led to their exclusion from the

analysis.

Bibliometric data
The bibliometric data is obtained from the

CWTS (Leiden University) in-house version of the

Web of Science. This database contained at the

moment of analysis all publications included in

the Science Citation Index Expanded, Social Sci-

ence Citation Index, and Arts and Humanities

Citation Index for the 1980-2017 period. Fur-

thermore, an author name disambiguation algo-

rithm (Caron and van Eck, 2014) is applied to

the complete database, allowing to identify a

scientist’s complete publication history. This

allowed us to retrieve, for each paper contained

in the contribution dataset, bibliometric varia-

bles at the publication and at the author level. A

set of seven bibliometric variables is considered,

which is described in Table 1 by author-publica-

tion combination. Here, we highlight the use of

the variable years since first publication (YE).

This variable is used to determine the age of sci-

entists and is used later to estimate the different

career stages of the individuals identified. Our

use of the year of first publication as an indicator

for academic age is based on previous research

(Nane et al., 2017), in which the year of first

publication is found to be the best predictor for

the academic age of scientists. In the case of

productivity, we use a full counting approach.

While fractional counting can be considered as

being more accurate from a mathematical point

of view (Waltman, 2016), the focus here is on

the previous publication experience of the

author and how that might influence their role in

future publications. Hence we consider full

counting to suit best the purposes of the

analysis.

Merging of bibliometric and contribution
data
The merging process was undertaken by match-

ing documents by their DOI identifier and

authors who had the same initials and surname

in both datasets. We only included papers for

which all authors were successfully matched.

After this process was undertaken, we ended up

with a total of 77,749 publications, containing a

total of 369,537 disambiguated unique authors.

Subject field identification
We assigned a subject field to each publication

and filtered only those publications that belong

to the Medical and Life Sciences to ensure con-

sistency on publication patterns and distribution

of contributorships. For this, we used the Dutch

NOWT Classification which introduces three lev-

els of categorization: 7 broad areas, 14 fields,

and 34 subjects. This classification is linked to

the the Web of Science subject categories (see

correspondence here https://www.cwts.nl/pdf/

nowt_classification_sc.pdf). The classification is

made at the journal level, which implies that,

given the high incidence of the PloS One papers

in our data set, most publications would be cate-

gorized as Multidisciplinary. To overcome this

issue, publications in Multidisciplinary were

reclassified into other more specific fields based

on their reference lists. We identified the journal

to which each of the references of the publica-

tions in our data set belong to. Then, we

assigned to each publication the field from

which most of its references come from. Finally,

we only include those which are assigned to the

Medical and Life Sciences fields. A total of

70,694 publications and 347,136 distinct authors

were extracted from this process, constituting

the ‘‘seed data set’’.

Table 2. Distribution of papers by journal of the seed dataset on contributions.

Journal No. of papers

PLOS ONE 62,174

PLOS GENETICS 2408

PLOS PATHOGENS 1882

PLOS COMPUTATIONAL BIOLOGY 1684

PLOS NEGLECTED TROPICAL DISEASES 1432

PLOS BIOLOGY 697

PLOS MEDICINE 417
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Publication history of individual scientists

We reconstructed the publication histories of sci-

entists, and predicted their contributions

throughout their careers. The set of authors

identified is retrieved from the seed dataset to

ensure consistency on the predictions of the

Bayesian Network model. But a series of thresh-

olds are imposed. First, we retrieve authors’

gender using the following sources to identify

gender: Gender API, Genderize.io and Gender

Guesser. We apply a 90% accuracy threshold

before assigning gender and only include those

authors who surpass such threshold. By promot-

ing accuracy over recall, we assume some selec-

tion biases derived from limitations on the

identification of gender. By doing so, we mini-

mize potentially misclassified authors due to the

assumption of gender as a binary variable. Sec-

ond, we include only authors whose first publica-

tion occurred from 1980 onwards. While the

CWTS in-house database includes publications

prior to 1980, it does not contain metadata of

sufficient quality as to rely on the name disam-

biguation algorithm. Hence, authors with their

first publication prior to 1980 are discarded.

Third, we include only authors who have contrib-

uted to at least five publications. We do this for

two reasons. On the one hand, we remove tran-

sient authors, that is, those who have published

sporadically, and focus only on scientists that

have more chances of being pursuing a research

career. On the other hand, this increases the

accuracy of the author name disambiguation

performed on those researchers. This is specially

relevant since the algorithm adopts a conserva-

tive approach: when confronted with individuals

having outlier patterns of behavior, such as rapid

shifts across publication venues, disciplines and

co-authors, it will consider them as different

authors and consequently split their publications

across different ‘‘individuals’’. Hence, by includ-

ing a publication threshold, we focus on those

individuals for whom the algorithm is more

robust and accurate at identifying them

uniquely. Last, we remove the publications clas-

sified as letters to ensure consistency between

the two datasets with respect to the document

type. As a result, the final dataset contains a

total of 222,925 individuals and 6,236,239 dis-

tinct publications. The reason for the much

larger set of publications is that for those scien-

tists identified in the Seed dataset, we have

expanded to all their other publications identi-

fied by the algorithm (and not just those from

Table 2).

Bayesian networks for predicting
contributorships

Bayesian networks (BNs) graphically depict inter-

actions among dependent multivariate data. The

network structure represents a directed acyclic

graph (DAG), where nodes represent random

variables and arcs encode direct influences.

Along with dependence statements, a BN enco-

des conditional independence statements

among random variables. These conditional

independencies are described by the d-separa-

tion concept (Nielsen and Jensen, 2009) and

are captured graphically by the BN structure.

The Markov property ensures a convenient fac-

torization of the joint distribution of the multivar-

iate data. Say n continuously distributed random

variables X1;X2; . . . ;Xn are modeled by a Bayes-

ian network. Then, the joint probability density

function can factorize in the following manner

f ðx1;x2; . . . ;xnÞ ¼
Y

n

i¼1

f ðxijPaðXiÞÞ; (1)

where PaðXiÞ, for i¼ 1; . . . ;n, represents the par-

ent set of node Xi, that is, the set of nodes (vari-

ables) whose arcs are directed at Xi. The

conditional densities f ðxijPaðXiÞÞ, for i¼ 1; . . . ;n,

of each random variable conditioned on its set

of parent nodes encode the Markov property.

The joint density factorization therefore depends

on the structure of the network, that is, on the

presence or absence of arcs and their directions.

There are numerous structures that can be

considered, and the number of structures grows

super-exponentially with the number of variables

(Robinson, 1977). Let an denote the number of

BNs with n random variables. Then

an ¼
X

n

k¼1

ð�1Þkþ1 n

k

� �

2
kðn�kÞan�k; (2)

where a0 ¼ 1. The structure of a BN can be

learned from data or from experts, or from mix-

ing data-driven algorithms with expert input.

Data driven learning algorithms of a BN struc-

tured are broadly categorized into constraint-

based and score-based learning algorithms

(Scutari and Denis, 2014). Constraint-based

methods rely on conditional independence tests,

whereas score-based methods employ likeli-

hood-based metrics to evaluate structures. Both

types of algorithms also contain a search proce-

dure, such as a local search in the space of net-

work structure (Scutari and Denis, 2014;

Koller and Friedman, 2009). We employ the

Max-Min Hill-Climbing (MMHC) algorithm
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(Tsamardinos et al., 2006), which combined

techniques from constraint and score-based

algorithms, along with an initial local discovery

algorithm of edges without any orientation.

We have employed a mixed approach, which

imposed, via a white list, the direct influences of

bibliometric to contributorship variables. The

white-listed arcs are depicted in red in Figure

S1. It is noteworthy that the arcs were present

from employing the MMHC data-driven algo-

rithm, and only the direction was switched.

These white-listed nodes have been accounted

for in learning the structure with the remaining

variables. Thus, the remaining arcs in the BN

together with their directionality have been fully

assigned by using data-driven algorithms.

Finally, the BN structure has been subjected a

robustness check by employing a bootstrap pro-

cedure, by which bootstrap replications of the

data have been sampled 50 times from the initial

data, with replacement. The bootstrap samples

had the same size as the initial dataset. The

MMHC algorithm has provided network struc-

tures and the arcs that have appeared in at least

80% of the structures have been retained.

Figure 2B illustrates the resulting network.

Cross-validation

To validate the BN used to predict contributions,

we perform a k-fold cross-validation. The data

are split in 10 subsets. For each subset, in turn,

the BN is fitted on the other k - 1 subsets and a

predictive loss function is then computed using

that subset. Loss estimates for each of the k sub-

sets are then combined to give an overall pre-

dictive loss. Since we are interested in

predicting whether a scientist had a certain con-

tributorship for the publications in the dataset,

we translate the predictive loss into classification

error. That is, we quantify the classification error

rate of the BN in predicting a certain

contributorship, given the bibliometric informa-

tion of scientists and publications. The classifica-

tion error rates obtained for each

contributorship with a cut-off value of 0.5 are

shown in Table 3. While the error rates obtained

are quite low, it is true that this validation is per-

formed using data which is of the same nature

as the data on which the BN has been quanti-

fied. This means that the extent to which contri-

bution patterns in our dataset can be inferred to

other datasets should be further investigated

using different journals or fields.

Constructing scientific profiles

Data aggregation
Predicted probabilities of all contributorship

types obtained from the BN are available for

each author-publication combination. We aim to

aggregate those prediction at the author level,

that is, to derive, for each scientist, the probabil-

ity of fulfilling each contribution role. For this,

we used the median probability value per contri-

bution type. Furthermore, we grouped the pub-

lications by career stage, that is, publications

within 5 years from the first publication (junior

stage), publications between 5 and 15 years

from first publication (early-career), publications

between 15 and 30 years from first publication

(mid-career) and publications after 30 years from

first publication (late-career). Here must note

that the selection of the time periods was

selected for convenience and that any other divi-

sion could have been selected. For each

researcher, we obtain a median probability per

contribution type and career stage.

Suppose within career stage i, with

i ¼ 1; . . . ; 4, a scientist has k publications. Let pij

the probability that the scientist performs con-

tributorship j within career stage i, for

j ¼ 1; . . . ; 5 denoting the five different types of

contributions (WR, CT, CE, PE, AD). Then

Table 3. Classification error rates from cross-validation of Bayesian Network model for the

contribution variables.

For contributorships, the percentage of mis-classified predictions is shown, while for NC, the mean

squared error between the predicted and the observed values is reported.

Variables Min. Median Mean Max.

WR 0.062 0.064 0.064 0.065

AD 0.064 0.067 0.067 0.069

PE 0.072 0.075 0.075 0.077

CE 0.062 0.064 0.064 0.066

CT 0.077 0.078 0.078 0.081

NC 0.120 0.125 0.125 0.127
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pij ¼Medianðpij;1;p
i
j;2; . . . ;p

i
j;kÞ; (3)

where pij;1 is the predicted probability for contri-

bution j of scientist’s first publication in career

stage i. For the number of contributions (NC),

the same aggregation rule is applied

NCi ¼MedianðNCi
1
; . . . ;NCi

kÞ (4)

where NCi
1
is the predicted number of contribu-

tions for the first paper in career stage i.

Robust archetypal analysis
Profiles of researchers, by career stage, are

obtained using a robust archetypal analysis.

Archetypal analysis aims to identify archetypes

that emerge from the given contribution data

for scientists. This approach has been previously

applied to identify scientists’ profiles based on

citation and publication data (Seiler and Wohl-

rabe, 2013). The archetypes are extreme obser-

vations in a multivariate dataset and represented

as convex combinations of the observations in

the dataset that result from a least squares prob-

lem (Cutler and Breiman, 1994). For multivari-

ate data with n observations (scientists, per

career stage, in our case) and m random varia-

bles (types of contributorships, in our case), then

X is a n�m matrix denoting the aggregated

dataset. For given k archetypes, denote by Z the

k�m the matrix of archetypes, represented in

terms of the types of contributorships. Then, the

residual sum of squares (RSS) plotted in Figure

S1 is denoted by

RSS¼ jjX�aZT jj
2
; (5)

with Z ¼ XTb, where a,b are positive coefficients

and where jj � jj
2
denotes the Euclidean matrix

norm. In turn, each observation in the dataset

can be represented as a convex combination of

the archetypes

X »aZT
: (6)

In the standard approach of archetypal analy-

sis, each residual contributes to the RSS with

equal weight. The archetypal analysis is thus sen-

sitive to outliers, whose large residuals can con-

tribute significantly to the RSS. A robust

archetypal analysis (Eugster and Leisch, 2011)

has been proposed to weight down the influ-

ence of outliers to the construction of arche-

types. By letting W be a n�n matrix of weights,

we define the weighted RSS

RSS¼ j jWðX�aZTÞ j j
2
: (7)

The weights can be chosen by the user or can

be chosen to depend on each observation’s

residual. The robust archetypal analysis pro-

posed by Eugster and Leisch, 2011 proposes

an iterative re-weighted least squares algorithm.

Unlike the k-means clustering approach, which

engages averaging when profiling out clusters,

archetypal analysis focuses on extremes and

explore the heterogeneity of complex multivari-

ate data. Furthermore, archetypes are not

forced to be mutually exclusive, as principal

components are, nor do they remain the same

when the number of considered archetypes is

changing. The archetypal analysis has been per-

formed using the archetypes package in R

(Eugster and Leisch, 2009).

Confidence intervals, hypothesis testing and
effect sizes
In this section we report how confidence inter-

vals were constructed for Figures 4, 6 and 7, as

well as additional analyses conducted for those

figures which are reported in supplement

figures.

Neither the BN’s predictions, nor the RAA

coefficient or alpha values account for uncer-

tainty in the form of confidence intervals. Never-

theless, accounting for uncertainty in reporting

the coefficient values of the archetypes would

inform about the potential varying influence of

contributions within each archetype. To con-

struct those uncertainty intervals for the coeffi-

cient values of contributions (Figure 4), we have

used the classification error rates as uncertainty

bounds of our predicted probability of contribu-

tion. We have extracted and added the mean

classification error rate to our predicted values,

creating two additional datasets of predicted

probabilities of contributorships: one for the

upper value and the other one for the lower

value. We have then conducted a RAA for each

of the two new datasets, for each career stage.

The same number of archetypes have been

obtained as for the initial dataset. The coeffi-

cient values obtained for the upper and lower

datasets are reported as uncertainty intervals in

Figure 4.

When analyzing the distributions of number

of publications and share of highly cited papers

by archetype across career stages (Figure 5), we

tested if the differences in medians are statisti-

cally significant. We performed a Wilcoxon rank

sum hypothesis test. Very low p-values

(p� value<2:2E � 16 for all paired hypothesis

tests), suggest that the differences in median are

statistically significant within each career stage.
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However, this was expected, given the large

sample sizes across the career stages. To evalu-

ate the strength of the differences, we also

investigated the effect size using the epsilon

squared measure (Kelley, 1935), which are dis-

played, along with confidence intervals, in Fig-

ure 5—figure supplement 1.

In the case of gender and author position

(Figures 6 and 7), we investigated whether the

differences in proportions within each career

stage are statistically significant by using the

two-proportion z-test (Cohen, 2013). The Pear-

son’s chi-squared test statistics allowed us to

determine 95% confidence intervals for the dif-

ferences in proportions, which, in turn, has been

used to construct 95% confidence intervals for

each proportion. Also, we reported effect sizes

using Cohen, 2013.

Limitations of the study

Representativeness of the sample of
scientists
The analysis is based on a set of publications

and a sample of scientists which may not repre-

sent accurately the whole population of scien-

tists. This means that, despite the robustness of

the results, any inference to the whole popula-

tion should be done with caution. Furthermore,

the thresholds imposed to introduce such scien-

tists in the archetypal analysis further restricts

such inference endeavour. If we compare the

productivity distributions of our set of research-

ers and for the whole population of the Web of

Science, we observe that while we still retain a

high skewness of productivity, this is much lower

than the overall one.

Identification of scientists
The study relies heavily on the competence of

an author name disambiguation algorithm to

correctly identify disambiguated authors. As pre-

viously noted, this algorithm has some limita-

tions which are partially overcome by the

production thresholds imposed. However, inac-

curate assignments can still occur.

Author age
We estimate researchers’ age based on the year

of first publication and build the four career

stages based on such year. However, alternative

approaches could have been adopted and these

could have some impact on the results. For

instance, first year of first-authored publication

could have been used instead. The selection of

the first year of publication is based on empirical

data suggesting that it is the best proxy for PhD

year (Nane et al., 2017).

Taxonomy of contributorships
In this paper, contributions are classified into

five types. These types are obtained from the

data itself. However, one may question the

appropriateness of the number and contribution

types. The ones used in this paper are consistent

with those used in other studies (Larivière et al.,

2016), but different from those implemented in

the CRediT initiative, which defines up to 14

types of contributions. Furthermore, evidence

suggests that author self-reporting on contribu-

torship is not exempt of limitations

(Ilakovac et al., 2007). Questions like the extent

to which contribution types are field-dependent

are still unsolved. With this respect, our predic-

tions already point towards some of these

issues. Despite the low error rates, we observe

that the distribution of predicted probabilities

exhibits a normal distribution for writing the

manuscript (Figure 2A). This could be due to

the ambiguity of the statement. As observed in

the CRediT intitiative, this statement is disclosed

into two: wrote the first draft and wrote parts of

the manuscript and revised. Such distinction

might help the model to better discriminate

contributorships.
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Guimerà R, Uzzi B, Spiro J, Amaral LA. 2005. Team
assembly mechanisms determine collaboration
network structure and team performance. Science
308:697–702. DOI: https://doi.org/10.1126/science.
1106340, PMID: 15860629
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Laudel G, Gläser J. 2008. From apprentice to
colleague: the metamorphosis of early career
researchers. Higher Education 55:387–406.
DOI: https://doi.org/10.1007/s10734-007-9063-7
Macaluso B, Larivière V, Sugimoto T, Sugimoto CR.
2016. Is science built on the shoulders of women? A
study of gender differences in contributorship.
Academic Medicine 91:1136–1142. DOI: https://doi.
org/10.1097/ACM.0000000000001261,
PMID: 27276004
McKiernan EC, Schimanski LA, Nieves CM, Matthias L,
Niles MT, Alperin JP. 2019. Use of the journal impact
factor in academic review, promotion, and tenure
evaluations. PeerJ Preprints 7:e27638v2. DOI: https://
doi.org/10.7287/peerj.preprints.27638v2
Merton RK. 1968. The Matthew effect in science.
Science 159:56–63.
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Milojević S, Radicchi F, Walsh JP. 2018. Changing
demographics of scientific careers: the rise of the
temporary workforce. PNAS 115:12616–12623.

DOI: https://doi.org/10.1073/pnas.1800478115,
PMID: 30530691
Moher D, Naudet F, Cristea IA, Miedema F, Ioannidis
JPA, Goodman SN. 2018. Assessing scientists for
hiring, promotion, and tenure. PLOS Biology 16:
e2004089. DOI: https://doi.org/10.1371/journal.pbio.
2004089, PMID: 29596415
Mongeon P, Smith E, Joyal B, Larivière V. 2017. The
rise of the middle author: investigating collaboration
and division of labor in biomedical research using
partial alphabetical authorship. PLOS ONE 12:
e0184601. DOI: https://doi.org/10.1371/journal.pone.
0184601, PMID: 28910344
Nane GF, Larivière V, Costas R. 2017. Predicting the
age of researchers using bibliometric data. Journal of
Informetrics 11:713–729. DOI: https://doi.org/10.
1016/j.joi.2017.05.002
Newman ME. 2004. Coauthorship networks and
patterns of scientific collaboration. PNAS 101 Suppl 1:
5200–5205. DOI: https://doi.org/10.1073/pnas.
0307545100, PMID: 14745042
Nielsen TD, Jensen F. 2009. Bayesian Networks and
Decision Graphs. Springer Science & Business Media.
DOI: https://doi.org/10.1007/978-0-387-68282-2
Pearl J. 2009. Causal inference in statistics: an
overview. Statistics Surveys 3:96–146. DOI: https://doi.
org/10.1214/09-SS057
Petersen AM, Fortunato S, Pan RK, Kaski K, Penner O,
Rungi A, Riccaboni M, Stanley HE, Pammolli F. 2014.
Reputation and impact in academic careers. PNAS
111:15316–15321. DOI: https://doi.org/10.1073/pnas.
1323111111, PMID: 25288774
R Development Core Team. 2020. R: A Language and
Environment for Statistical Computing. Vienna, Austria,
R Foundation for Statistical Computing. http://www.r-
project.org
Radicchi F, Fortunato S, Markines B, Vespignani A.
2009. Diffusion of scientific credits and the ranking of
scientists. Physical Review E 80:056103. DOI: https://
doi.org/10.1103/PhysRevE.80.056103, PMID: 2036503
9
Reskin BF. 1977. Scientific productivity and the reward
structure of science. American Sociological Review 42:
491–504. DOI: https://doi.org/10.2307/2094753
Reskin BF. 1979. Academic sponsorship and scientists’
careers. Sociology of Education 52:129–146.
DOI: https://doi.org/10.2307/2112319
Revelle W, Wilt J, Rosenthal A. 2010. Individual
differences in cognition: New methods for examining
the personality-cognition link. In: Gruszka A, Matthews
G, Szymura B (Eds). Handbook of Individual
Differences in Cognition. Springer. p. 27–49.
DOI: https://doi.org/10.1007/978-1-4419-1210-7_2
Robinson RW. 1977. Counting unlabeled acyclic
digraphs. In: Little C. H. C (Ed). Combinatorial
Mathematics V. Springer. p. 28–43. DOI: https://doi.
org/10.1007/BFb0069178
Sauermann H, Haeussler C. 2017. Authorship and
contribution disclosures. Science Advances 3:
e1700404. DOI: https://doi.org/10.1126/sciadv.
1700404, PMID: 29152564
Scutari M, Denis J-B. 2014. Bayesian Networks: With
Examples in R. Chapman and Hall/CRC. DOI: https://
doi.org/10.1111/biom.12369
Seiler C, Wohlrabe K. 2013. Archetypal scientists.
Journal of Informetrics 7:345–356. DOI: https://doi.
org/10.1016/j.joi.2012.11.013

Robinson-Garcia et al. eLife 2020;9:e60586. DOI: https://doi.org/10.7554/eLife.60586 20 of 23

Feature Article Meta-Research Task specialization across research careers

https://doi.org/10.1177/1474904116668884
https://doi.org/10.1038/520429a
https://doi.org/10.1038/520429a
http://www.ncbi.nlm.nih.gov/pubmed/25903611
https://arxiv.org/abs/1907.04103
https://arxiv.org/abs/1907.04103
https://doi.org/10.1503/cmaj.060687
http://www.ncbi.nlm.nih.gov/pubmed/17200389
http://www.icmje.org/recommendations/
http://www.icmje.org/recommendations/
http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/
http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/
https://doi.org/10.1073/pnas.21.9.554
https://doi.org/10.1073/pnas.21.9.554
http://www.ncbi.nlm.nih.gov/pubmed/16577689
https://doi.org/10.1038/504211a
https://doi.org/10.1038/504211a
http://www.ncbi.nlm.nih.gov/pubmed/24350369
https://doi.org/10.1177/0306312716650046
https://doi.org/10.1177/0306312716650046
http://www.ncbi.nlm.nih.gov/pubmed/28948891
https://doi.org/10.2307/j.ctt32bbxc
https://doi.org/10.1007/s10734-007-9063-7
https://doi.org/10.1097/ACM.0000000000001261
https://doi.org/10.1097/ACM.0000000000001261
http://www.ncbi.nlm.nih.gov/pubmed/27276004
https://doi.org/10.7287/peerj.preprints.27638v2
https://doi.org/10.7287/peerj.preprints.27638v2
https://doi.org/10.1073/pnas.1309723111
http://www.ncbi.nlm.nih.gov/pubmed/24591626
http://www.ncbi.nlm.nih.gov/pubmed/30530691
http://www.ncbi.nlm.nih.gov/pubmed/30530691
https://doi.org/10.1371/journal.pbio.2004089
https://doi.org/10.1371/journal.pbio.2004089
http://www.ncbi.nlm.nih.gov/pubmed/29596415
https://doi.org/10.1371/journal.pone.0184601
https://doi.org/10.1371/journal.pone.0184601
http://www.ncbi.nlm.nih.gov/pubmed/28910344
https://doi.org/10.1016/j.joi.2017.05.002
https://doi.org/10.1016/j.joi.2017.05.002
https://doi.org/10.1073/pnas.0307545100
https://doi.org/10.1073/pnas.0307545100
http://www.ncbi.nlm.nih.gov/pubmed/14745042
https://doi.org/10.1007/978-0-387-68282-2
https://doi.org/10.1214/09-SS057
https://doi.org/10.1214/09-SS057
https://doi.org/10.1073/pnas.1323111111
https://doi.org/10.1073/pnas.1323111111
http://www.ncbi.nlm.nih.gov/pubmed/25288774
http://www.r-project.org
http://www.r-project.org
https://doi.org/10.1103/PhysRevE.80.056103
https://doi.org/10.1103/PhysRevE.80.056103
http://www.ncbi.nlm.nih.gov/pubmed/20365039
http://www.ncbi.nlm.nih.gov/pubmed/20365039
https://doi.org/10.2307/2094753
https://doi.org/10.2307/2112319
https://doi.org/10.1007/978-1-4419-1210-7_2
https://doi.org/10.1007/BFb0069178
https://doi.org/10.1007/BFb0069178
https://doi.org/10.1126/sciadv.1700404
https://doi.org/10.1126/sciadv.1700404
http://www.ncbi.nlm.nih.gov/pubmed/29152564
https://doi.org/10.1111/biom.12369
https://doi.org/10.1111/biom.12369
https://doi.org/10.1016/j.joi.2012.11.013
https://doi.org/10.1016/j.joi.2012.11.013
https://doi.org/10.7554/eLife.60586


Seth S, Eugster MJA. 2016. Probabilistic archetypal
analysis. Machine Learning 102:85–113. DOI: https://
doi.org/10.1007/s10994-015-5498-8
Shen HW, Barabási AL. 2014. Collective credit
allocation in science. PNAS 111:12325–12330.
DOI: https://doi.org/10.1073/pnas.1401992111,
PMID: 25114238
Smith E, Williams-Jones B, Master Z, Larivière V,
Sugimoto CR, Paul-Hus A, Shi M, Resnik DB. 2020.
Misconduct and misbehavior related to authorship
disagreements in collaborative science. Science and
Engineering Ethics 26:1967–1993. DOI: https://doi.
org/10.1007/s11948-019-00112-4, PMID: 31161378
Tsamardinos I, Brown LE, Aliferis CF. 2006. The max-
min hill-climbing Bayesian network structure learning
algorithm. Machine Learning 65:31–78. DOI: https://
doi.org/10.1007/s10994-006-6889-7
Waltman L. 2016. A review of the literature on citation
impact indicators. Journal of Informetrics 10:365–391.
DOI: https://doi.org/10.1016/j.joi.2016.02.007

Way SF, Morgan AC, Larremore DB, Clauset A. 2019.
Productivity, prominence, and the effects of academic
environment. PNAS 116:10729–10733. DOI: https://
doi.org/10.1073/pnas.1817431116, PMID: 31036658
Weingart P. 2005. Impact of bibliometrics upon the
science system: inadvertent consequences?
Scientometrics 62:117–131. DOI: https://doi.org/10.
1007/s11192-005-0007-7
Wickham H. 2016. Ggplot2: Elegant Graphics for Data
Analysis. Springer-Verlag. DOI: https://doi.org/10.
1007/978-3-319-24277-4
Wilcoxon F. 1945. Individual comparisons by ranking
methods. Biometrics 1:16. DOI: https://doi.org/10.
1007/978-1-4612-4380-9_16
Wuchty S, Jones BF, Uzzi B. 2007. The increasing
dominance of teams in production of knowledge.
Science 316:1036–1039. DOI: https://doi.org/10.1126/
science.1136099, PMID: 17431139
Yu Z, van der Laan MJ. 2002. Construction of
Counterfactuals and the G-Computation Formula.
Berkeley Division of Biostatistics Working Paper Series.

Robinson-Garcia et al. eLife 2020;9:e60586. DOI: https://doi.org/10.7554/eLife.60586 21 of 23

Feature Article Meta-Research Task specialization across research careers

https://doi.org/10.1007/s10994-015-5498-8
https://doi.org/10.1007/s10994-015-5498-8
https://doi.org/10.1073/pnas.1401992111
http://www.ncbi.nlm.nih.gov/pubmed/25114238
https://doi.org/10.1007/s11948-019-00112-4
https://doi.org/10.1007/s11948-019-00112-4
http://www.ncbi.nlm.nih.gov/pubmed/31161378
https://doi.org/10.1007/s10994-006-6889-7
https://doi.org/10.1007/s10994-006-6889-7
https://doi.org/10.1016/j.joi.2016.02.007
https://doi.org/10.1073/pnas.1817431116
https://doi.org/10.1073/pnas.1817431116
http://www.ncbi.nlm.nih.gov/pubmed/31036658
https://doi.org/10.1007/s11192-005-0007-7
https://doi.org/10.1007/s11192-005-0007-7
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1007/978-3-319-24277-4
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1007/978-1-4612-4380-9_16
https://doi.org/10.1126/science.1136099
https://doi.org/10.1126/science.1136099
http://www.ncbi.nlm.nih.gov/pubmed/17431139
https://doi.org/10.7554/eLife.60586


Appendix 1

Future directions on profiling diversity in research careers

Stability of profiles based on contribution taxonomies

In this paper we profile scientists based on an specific taxonomy of contributorships with five differ-

ent statements. However, other taxonomies including the more comprehensive proposed by CReDiT

Allen et al., 2014 have also been suggested and are implemented in journals. The extent to which

the archetypes identified in this study are sensitive to such taxonomies remains to be explored. Fur-

thermore, some of the original contributorships were removed from the final analyses due to the

lack of data on authors reporting them. These two contributorships were ’Other’ and ’Approved/

Revised final version of the manuscript’. Hence one could question which would be the more appro-

priate contributorship statement, as well as the appropriate number in order to be meaningful for

most publications and at the same time sufficiently detailed as to provide rich information on differ-

ent types of contributorship.

Value of contribution statements

Related with the previous question, one might wonder how to disentangle contributorship when

more than one author state to have contributed in the same tasks. Is their contributorship for each

of the common tasks equal? Is author A more involved in some tasks than author B? How could this

be reported in a consistent and quantifiable way? Some of these issues have already been treated

with regard to author order, with different types of author counting proposed in case of multi-auth-

ored papers (Waltman, 2016). How this could be resolved or whether this is an issue that should be

addressed should be better explored in the future. Considering that the inclusion of contribution

statements is derived from an effort to provide more transparency and go beyond the limitations of

authorship especially in multi-authored publications, can the fact that this is self-reported informa-

tion be misleading in some cases? Furthermore, if this type of statements are to be used and scruti-

nized in an evaluative context which is highly competitive, it could lead to further disputes and

misbehaviour related to contribution disagreements (Smith et al., 2020).

Reporting uncertainty

From a methodological standpoint, the analyses conducted in this study presented certain chal-

lenges when reporting uncertainty. This is due to the fact that neither methods provide confidence

intervals to their estimates. The BNs predictions probabilities already account for uncertainty, and

RAA does not report any uncertainty. We therefore opted for using the error rates resulted from the

cross validation analysis to obtain confidence intervals around the coefficient values of contributions

by archetype. We also used the confidence intervals of the employed test statistics when testing for

statistically significant differences in median publications and share of highly cited publications and

proportion of researchers distributed with respect to gender and author position. However, other

methods can be employed, such as probabilistic archetypal analysis (Seth and Eugster, 2016), which

we believe is worth exploring further.

Longitudinal analyses of archetypes

In our study we distinguish between four different stages of a research trajectory, namely junior,

early-, mid- and late-career. These stages go in consistency with alternative proposals in the litera-

ture (Laudel and Gläser, 2008; Milojević et al., 2018; European Commission, 2016). However,

one could question if shorter periods of time could be analyzed to explore the stability of the pro-

files identified. For instance, a yearly analysis could be proposed to identify shifts of profiles over

time, but the reliance on productivity may hamper the robustness of the findings or would be only

limited to highly productive scientists.
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Career trajectories, prediction and causality

Finally, we focus on career trajectories and on factors which influence the length of scientists’ trajec-

tories. An appropriate analysis of researchers’ career trajectories requires an appropriate dataset.

Our current dataset, albeit extensive, includes only researchers who published in PloS journals and

only over a period of seven years. Extending the analysis over a larger period would include different

cohort of scientist with different trajectory lengths and would hence allow for meaningful insights on

trajectories, as well as a robustness analysis of the archetypes. We note that, with this respect, our

current dataset is somewhat limited, as our most senior scientists have only had a long career up

until 2006–2013. Furthermore, a dataset covering more journals would allow to test the methods fur-

ther and available contribution data would enable the evaluation of the BN’s predictive

performance.

Our current analysis pointed out association between archetype assignment at current stage with

assignment at previous career stage, or with gender. A prediction model would allow us to find the

best predictor or best combination of predicting factors for career advancement. With this respect,

a dynamic BN would account for the temporal dependencies. Once again, a more extensive dataset

would enable this analysis. Furthermore, properly assessing the influence of various factors would

invoke causal inference. An overview of the statistical method is provided in Pearl, 2009. Counter-

factual analysis appears to be germane. Additionally, the transition between archetypes within

career advancement can be accounted for in the g-computation (Yu and van der Laan, 2002).
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