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Abstract

Motivation: Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it

is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast,

regions with and without obvious peaks can be easily labeled by visual inspection of aligned read

counts in a genome browser. We propose a supervised machine learning approach for ChIP-seq

data analysis, using labels that encode qualitative judgments about which genomic regions contain

or do not contain peaks. The main idea is to manually label a small subset of the genome, and then

learn a model that makes consistent peak predictions on the rest of the genome.

Results: We created 7 new histone mark datasets with 12 826 visually determined labels, and ana-

lyzed 3 existing transcription factor datasets. We observed that default peak detection parameters

yield high false positive rates, which can be reduced by learning parameters using a relatively

small training set of labeled data from the same experiment type. We also observed that labels

from different people are highly consistent. Overall, these data indicate that our supervised label-

ing method is useful for quantitatively training and testing peak detection algorithms.

Availability and Implementation: Labeled histone mark data http://cbio.ensmp.fr/~thocking/chip-

seq-chunk-db/, R package to compute the label error of predicted peaks https://github.com/tdhock/

PeakError

Contacts: toby.hocking@mail.mcgill.ca or guil.bourque@mcgill.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chromatin immunoprecipitation sequencing (ChIP-seq) is a

genome-wide assay to profile histone modifications and transcrip-

tion factor binding sites (Barski et al., 2007), with many experimen-

tal and computational steps (Bailey et al., 2013). In this paper we

propose a new method for the peak calling step. The goal of peak

calling is to filter out background noise and accurately identify the

locations of peaks in the genome.

There are two main lines of research into software tools that can

help scientists find peaks in the genome. One class of software con-

sists of peak detection algorithms, which are non-interactive com-

mand line programs that can be systematically run on all samples in

a dataset. An algorithm takes the aligned sequences as input, and

returns precise locations of predicted peaks as output. Peak detector

software has one major drawback: model selection. There are many

different algorithms that have been designed for detecting peaks in

specific types of ChIP-seq experiments. Each algorithm typically has

several parameters that can be left at default values or changed.

Each algorithm and parameter combination will return a different

set of predicted peaks. Given a specific ChIP-seq dataset to analyze,

how do you choose the best peak detection algorithm and its

parameters?

The second class of software consists of graphical tools such as

the UCSC genome browser (Kent et al., 2002). To view ChIP-seq

data on the UCSC genome browser, the ChIP-seq coverage must be

saved to a bigWig file (Kent et al., 2010), which can be browsed as a
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line or bar plot to visually identify peaks. The main advantage of

this approach to peak detection is that it is often easy to visually

identify peaks and background noise in coverage plots of ChIP-seq

samples. Coverage plots are the standard visual representation of

ChIP-seq data (ENCODE Project, 2012; Mikkelsen et al., 2007;

Zheng et al., 2010), so it is safe to assume that scientists are capable

of visually recognizing relevant peaks in their datasets. However,

there are three main disadvantages of this approach. First, precise

peak start and end locations are not obvious on visual inspection (at

single base resolution). Second, visual interpretation is inherently

subjective, and is not exactly reproducible by other researchers.

Finally, no researcher has enough time to visually inspect and iden-

tify peaks across the whole genome.

In this article we propose a new supervised machine learning ap-

proach for ChIP-seq data analysis that combines the best parts of

these two lines of research. The main idea is to manually label peaks

in a small subset of the genome, and use those labels to learn a peak

detection model that makes consistent predictions on the rest of the

genome. In particular, we propose to create labels that encode an

experienced scientist’s judgment about which regions contain or do

not contain peaks (Fig. 1). The labels can then be used as a gold

standard to quantitatively train and test peak detection algorithms

on specific datasets. Our proposal contrasts traditional unsupervised

peak detection methods, which do not use labels.

1.1 Related work: unsupervised peak detectors and

benchmarks
The main idea of most existing algorithms for ChIP-seq data ana-

lysis is to treat peak detection as a purely statistical problem. Given

an assumed model of background noise and peaks, statistical argu-

ments are used to obtain an unsupervised peak detection method. In

this paper we limit our study to several such algorithms that predict

peaks independently for each sample (Ashoor et al., 2013; Heinz

et al., 2010; Kornacker et al., 2012; Song and Smith, 2011; Xu

et al., 2010; Zang et al., 2009; Zhang et al., 2008).

A central problem in ChIP-seq data analysis is how to decide

which peak detection algorithm to use, and how to choose its par-

ameters. In principle, if the true noise model was known, it would

be possible to use statistical arguments to choose the best model

and parameters to use. However, in practice the true noise model

is complex and unknown. There are many factors that influence

the signal and noise patterns in real ChIP-seq data: experimental

protocols, sequencing machines, alignment software, etc. Since the

noise model in real data is unknown, there is no way to verify the

statistical assumptions of an unsupervised model or its default par-

ameters. Thus it is not possible in practice to use statistical argu-

ments to choose an appropriate peak detection algorithm for a

given dataset.

Instead of assuming a statistical model, we approach the ChIP-

seq peak detection problem using labels and supervised machine

learning. Even though the true noise model is unknown in real data,

it is still possible to visually label a few genomic regions with obvi-

ous signal and noise patterns. These labels provide a well-defined

supervised machine learning problem. The best peak calling method

can be simply defined as the one which maximizes agreement with

the labels, both positive (genomic regions with obvious peaks) and

negative (genomic regions containing only noise).

Other existing methods for benchmarking peak detection algo-

rithms include known binding sites (Chen and Zhang, 2010), low-

throughput experiments (Micsinai et al., 2012; Osmanbeyoglu

et al., 2012) and simulation studies (Szalkowski and Schmid, 2011).

Each of these benchmarking methods has its own strengths and

weaknesses. For example, known binding sites are useful positive

controls for transcription factor ChIP-seq, but are rarely known for

histone marks. An unlimited amount of data can be generated using

computational simulation studies, but these data may be arbitrarily

different from real datasets of interest. Low-throughput experiments

are always useful to confirm binding sites at specific genomic loca-

tions, but are expensive and slow, so are not routinely done to ac-

company genome-wide ChIP-seq experiments.

In contrast, the labeling method that we propose requires no

additional experiments, so is much more widely applicable. In fact,

a similar approach has already been applied to create labeled data

for three transcription factors, which have been used to test the ac-

curacy of several unsupervised peak calling methods (Rye et al.,

2011). The main novelty of our method is that we also propose to

use supervised machine learning with the labels, to train model

parameters.

1.2 Related work: supervised, interactive analysis
Supervised machine learning methods have been applied to ChIP-seq

without using interactive data visualization. For example, a super-

vised machine learning approach was used to define a regulatory vo-

cabulary with genome-wide predictive power (Gorkin et al., 2012).

Another example is several low-throughput experiments which were

used to train models for ChIP-seq peak calling (Osmanbeyoglu

Fig. 1. Labels indicate some genomic regions with and without peaks. Visual inspection of ChIP-seq normalized coverage plots was used to create labels that en-

code where peaks should and should not be detected in these H3K4me3 profiles for T cell and B cell samples. Exactly 1 peak start/end should be detected in each

peakStart/peakEnd region. There should be no overlapping peaks in each noPeaks region, and at least 1 overlapping peak in each peaks region
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et al., 2012). In contrast, our proposed method using visually

defined labels is much more widely applicable.

Other recent software tools focus on interactive visualization of

ChIP-seq data, without using labels and supervised machine learning

approaches (Chelaru et al., 2014; Nielsen et al., 2012; Younesy

et al., 2013). These are similar to the tools used for Fluorescence-

Activated Cell Sorting (FACS) data, where the analyst manually

specifies parameters such as fluorescence threshold gates for count-

ing or sorting cells.

Our interactive, visual approach to ChIP-seq data analysis is

closely related to several other recently proposed software tools

which apply supervised machine learning to biological data with

visual labels. For example, CellProfiler Analyst is an interactive

system for semi-automatically labeling visually obvious pheno-

types in high-content cell microscopy screening assays (Jones et al.,

2009). We proposed a similar method for analyzing DNA copy

number datasets, using labeled genomic regions with and with-

out obvious breakpoints (Hocking et al., 2013, 2014). The method

that we propose in this paper is a first step in the develop-

ment of an analogous interactive machine learning system for

ChIP-seq data.

There are several substantial additions to this paper, with re-

spect to our arXiv pre-print (arXiv:1409.6209). We added results

for three previously labeled transcription factor datasets (Rye et al.,

2011), two new algorithms (CCAT and PeakSeg) and Receiver

Operating Characteristic (ROC) curves for the test error.

2 Methods

ChIP-seq data analysis pipelines typically contain steps for align-

ment, coverage computation and peak calling. We propose adding

a labeling step between the coverage computation and peak call-

ing steps (Fig. 2). A ChIP-seq pipeline with a labeling step can

use supervised machine learning algorithms to compute peak

calling model parameters which maximize accuracy with re-

spect to the labels. As we discuss in the Results section, as few as

several dozen labels can dramatically improve the accuracy of

peak calls.

2.1 Labeling samples
Labels can be created by visual inspection of the coverage data in a

genome browser black(detailed user guide in Supplementary Text

1). If there are genomic regions that are expected to have relevant

peaks (e.g. genes, promoters, predictions from an unsupervised peak

caller), begin by labeling those regions. Otherwise, start at a random

genomic region, then zoom and scroll through the genome until rele-

vant peaks are visible.

For our proposed labeling method to be meaningful, it is import-

ant to label all types of relevant peaks. If peaks with low signal-

to-noise ratio are relevant, then make sure to label some. However,

to ensure the creation of a high quality set of labels, we recommend

to only label genomic regions in which presence/absence of peaks is

obvious. We do not recommend labeling any genomic regions in

which it is not clear whether or not there is a peak. If the signal-to-

noise ratio is so low that there are no visually obvious peaks, then

our labeling method should not be used.

For each labeled genomic region, we copied the genomic coord-

inates to a text file and noted the label type (detailed instructions

in Supplementary Text 1). The boundaries of each labeled re-

gion can be made as large or small as necessary. We propose to

use exactly four types of labels: noPeaks, peaks, peakStart and

peakEnd.

• Each noPeaks label is used to designate a region that definitely

contains only background noise, and contains no peaks.
• A peaks label means that there is at least one overlapping peak

(of any size). For example, on the right side of Figure 1 it is clear

that there is at least one peak, but in profile McGill0091 there

seems to be two peaks. So we created a ‘peaks’ label, which

means that one or more peaks in that region is acceptable (but

zero peaks is unacceptable).
• When a peak start or end is visible, it can be labeled using a

peakStart or peakEnd region. Each labeled region should con-

tain exactly one peak start or end (not zero, and not more than

one). If the peak start is clear and the peak end is unclear, then

we recommend adding a peakStart region, and not add any

nearby peakEnd region. Although it is difficult or impossible to

visually locate a precise peak start/end at single base resolution,

it is often easy to do so in a larger window. For example

Supplementary Figure 2 shows H3K36me3 data in which

peakStart/peakEnd regions of size 10–100 kb were used to label

peaks which were obviously up, with respect to background

noise in adjacent genomic regions. Large peakStart/peakEnd

labels can be used to designate a region where there should be

just one big peak (and not several smaller peaks, as in

Supplementary Fig. 2). For broad domains which may contain

more than one separate peak, make sure that the peakStart/

peakEnd labels are consistent with the desired peak calls (de-

tails in Supplementary Text 1).

When possible, we recommend simultaneous inspection of sev-

eral samples, to more easily identify common peaks and noise

(Fig. 1). For a given experiment type (e.g. H3K4me3), we observed

similar patterns in samples of a given cell type, and assigned the

same label to each of those samples (e.g. T cells peakStart, B cells

noPeaks). The ChIP-seq profiles for samples of interest should be

viewed alongside other relevant data such as genes, alignability/

mappability, and related input/control samples. If input/control

samples are up in a given genomic location, ‘noPeaks’ labels can be

used to quantify false positive peak predictions in experimental

samples.

Fig. 2. Supervised ChIP-seq analysis includes an extra labeling step. Labels

allow learning peak calling parameters during model training, and evaluating

peak calling accuracy during model testing
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So that we could later review and verify the labeled data, we

grouped our labels into windows containing several nearby peaks

(Fig. 1). We made sure that each window contains at least one

noPeaks label and at least one positive label (peaks, peakStart, or

peakEnd). Furthermore, we made sure that no label overlaps any

other label on the same sample. Usually in machine learning cross-

validation experiments, a subset of labeled observations is put aside

as a test set. We propose to use windows as the unit of cross-

validation, since each window was independently labeled (and labels

in each window are not independent). So in our computational ex-

periments, we train on several windows of labels, and test on several

other windows.

2.2 Label error and peak detection problem
Assume we have n labeled training samples, all of the same ChIP-seq

experiment type. For simplicity, and without loss of generality, let

us consider just one chromosome with b base pairs. Let x1 2 Zb
þ; . . .

;xn 2 Zb
þ be the vectors of coverage across that chromosome (counts

of aligned sequence reads). For example b¼249, 250, 621 is the

number of base pairs on chr1, and xi 2 Zb
þ is the H3K4me3 cover-

age profile on chr1 for each sample i 2 f1; . . . ; ng.
We also have a set of labels Li for each sample i 2 f1; . . . ; ng.

Each label l 2 Li has a type and an interval of base pairs, e.g.

l ¼ ðnoPeaks; 100; 200Þ. For example, Figure 3 shows a coverage

profile that has one label of each type.

A peak caller is a function c : Zb
þ ! f0;1g

b that takes a coverage

profile x 2 Zb
þ as input, and returns a binary peak prediction y ¼ cð

xÞ 2 f0; 1gb (0 is background noise, 1 is a peak).

The goal is to learn a peak calling function cðxÞ which is consist-

ent with the labeled regions L. To quantify the error of the peak calls

with respect to the labels, we define the error E as the total number

of false positive (FP) and false negative (FN) labels:

Eðy;LÞ ¼ FPðy;LÞ þ FNðy;LÞ 2 f0;1;2; . . . ; jLjg: (1)

The principle used to compute the label error E is illustrated in

Figure 3, and the precise mathematical definitions of FP and FN are

given in Supplementary Text 3. In short, a false positive occurs

when too many peaks are predicted in a labeled region, and a false

negative occurs when there are not enough predicted peaks. The

number of incorrect labels Eðy;LÞ is at least 0 (when all labels are

correctly predicted) and at most jLj (when all labels are incorrect).

In practice we recommend using the PeakError R package (https://

github.com/tdhock/PeakError), which contains functions for com-

puting the label error E.

The supervised machine learning problem can be formalized as

follows. Find the peak caller c with the minimum number of incor-

rect labels when calling peaks in an un-seen test dataset:

minimize
c

X
i2test

E c xið Þ;Li½ �: (2)

In the Results section, we consider several types of test sets

to answer different questions using computational cross-

validation experiments (Table 1). For example, in one case we

train on labels from one person and test on labels from another

person, to show that different people have consistent definitions

of peaks.

2.3 Training unsupervised peak detection models

Most existing peak detection models are ‘unsupervised’ in the sense

that they are not designed to be trained using the labeled regions

that we propose. However, in this section we show that grid search

over one of their parameters can be used as a model training

procedure.

We considered several unsupervised peak detection models

with free/open-source software implementations (details in

Supplementary Text 2). MACS, HMCan, and CCAT have param-

eters for sharp peaks and broad domains, so we tried both settings

(Ashoor et al., 2013; Zhang et al., 2008). RSEG and SICER were de-

signed for broad domains (Song and Smith, 2011; Zang et al.,

2009). The HOMER set of tools contains a findPeaks program

which has been used to detect transription factor binding sites and

histone modifications (Heinz et al., 2010). The Triform algorithm

was shown to have good peak detection for transcription factor

ChIP-seq experiments (Kornacker et al., 2012).

Each model has several parameters that may affect peak detec-

tion accuracy. Some parameters may have a large effect on peak

calls, whereas other may have smaller effects. An exhaustive

grid search over several parameters would be infeasible, since

there is an exponential number of different parameter combin-

ations (Micsinai et al., 2012). So for each model we train by cali-

brating a single significance threshold parameter, and holding

other parameters at default values. In the Results section we

show that this single parameter grid search is sufficient to im-

prove peak detection accuracy of most algorithms. Further im-

provements could be made by applying heuristic search algorithms

over the multi-dimensional parameter space, which we leave for

future work.

Fig. 3. Annotated region labels quantify the accuracy of a peak detection model. Peaks detected by five different thresholds of the HMCan model are shown in

blue for tcell sample McGill0102, experiment H3K4me3, labeled by TDH. Models with too few peaks have false negatives (threshold� 4), and models with too

many peaks have false positives (threshold� 1:5), so for these data we choose an intermediate threshold¼2 that minimizes the number of incorrect labels
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Each algorithm can thus be described as a function

ck : Zb
þ ! f0; 1g

b, where the significance threshold parameter k 2 R

controls the number of peaks detected. In each peak detection algo-

rithm, k has a different, precise meaning that we specify in

Supplementary Text 2. Typically, low thresholds k yield too many

peaks, and high thresholds k yield too few peaks (Fig. 3). As shown

in Figure 4, we select an optimal threshold k by minimizing the total

label error E in the set of n training samples

bk ¼ arg min
k

X
i2 1;...;nf g

E ckðxiÞ;Li½ �: (3)

The training or model calibration procedure (3) consists of simply

computing peak calls for several peak detection parameters k, and

choosing whichever parameter bk minimizes the number of incorrect

labels (formally, this algorithm is called grid search). To simulate the

case of an unsupervised ChIP-seq pipeline (no labels available), we

can simply use the default significance threshold ~k suggested by the

author of each algorithm. The test error (2) can be used to evaluate

the accuracy of the trained model bk and the default model ~k.

2.4 The supervised PeakSeg model
We also considered the supervised PeakSeg model, which was shown

to have state-of-the-art peak detection accuracy in both sharp

H3K4me3 data and broad H3K36me3 data (Hocking et al., 2015).

Unlike standard unsupervised models which can only be trained

using grid search, PeakSeg was designed to be trained using labels.

The PeakSegDP R package (https://github.com/tdhock/PeakSegDP)

implements discrete and convex optimization algorithms to find

model parameters which maximize peak detection accuracy with re-

spect to a set of labels.

3 Results

3.1 Creating labeled histone datasets
Since the only other labeled benchmark dataset is limited to tran-

scription factors (Rye et al., 2011), we decided to label samples

from two histone mark experiments. We analyzed ChIP-seq

samples from the McGill Epigenomes portal (http://epigenomes

portal.ca), which we visualized using the UCSC genome browser

software (Kent et al., 2002). We labeled 37 H3K4me3 samples

(sharp peak pattern) and 29 H3K36me3 samples (broad peak

pattern). In these data there are many samples of the same

cell type, with 8 distinct cell types (Supplementary Table 1).

The same peaks often occur in all samples of the same cell type

(Fig. 1).

We constructed the 7 labeled histone mark datasets using the

method described in the ‘Labeling samples’ section. Of the four dif-

ferent people who created the labels, some were post-docs (TDH,

XJ), and some were PhD students (AM, PGP). In total we created 12

826 labels, in genomic windows with on average 1–4 peaks per sam-

ple (Supplementary Table 2). The datasets are published to a public

web site (http://cbio.ensmp.fr/�thocking/chip-seq-chunk-db/), and

we will refer to them as the McGill ChIP-seq peak detection bench-

mark datasets.

We are only aware of one other publicly available benchmark

with labels, a set of three transcription factor ChIP-seq datasets

from NTNU (Rye et al., 2011). There are several differences be-

tween these datasets and our McGill benchmark datasets. First, each

experiment in the NTNU benchmark includes two replicate samples

with the same expected peak pattern. In contrast, each McGill data-

set includes several samples of different cell types, so some labels in-

dicate only certain cell types have a peak in a given genomic region.

For example Figure 1 shows a genomic region with a labeled peak in

T cells but not B cells. Another difference is that the NTNU datasets

were labeled by visual verification of regions with called peaks.

In contrast the McGill datasets were labeled by visual inspection

of random genomic regions, before running any peak calling

algorithms.

3.2 Trained models are more consistent with test labels

than default models
We expected that default model parameters are not always consist-

ent with the labels. In agreement with our expectation, we observed

that training a significance threshold parameter can reduce the num-

ber of incorrect labels, with respect to default parameters. For ex-

ample, Supplementary Figure 1 shows an H3K4me3 sample for

which the default parameter of MACS yields a false positive, but the

trained parameter yields perfect agreement with the labels. As an-

other example, Supplementary Figure 2 shows an H3K36me3 sam-

ple for which the default parameter of HMCan.Broad yields two

false positive labels, but the trained parameter yields perfect agree-

ment with the labels.

Table 1. Examples of different training and test sets that we used to answer different questions using computational cross-validation

experiments

Figure Same Train Test

Figure 5 person, cell types, experiment chr1 chr2

Supplementary Figure 5 cell types, experiment labels from TDH labels from PGP

Supplementary Figure 7 person, experiment T cells kidney cells

Supplementary Figure 8 person, cell types H3K4me3 H3K36me3

For example, Supplementary Figure 7 shows that a model trained on immune cells provides accurate peak calls for samples of different cell types.

Fig. 4. Peak detectors can be trained by selecting model parameters that min-

imize the number of incorrect labels. We plot the percent error as a function

of the finalThreshold parameter of the HMCan.Broad model in the 1743 labels

of the H3K36me3_AM_immune dataset
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To quantitatively compare peak predictions using trained and

default model parameters, we performed 4-fold cross-validation in

each of the 10 labeled datasets. We randomly assigned each labeled

genomic window to one of four folds. For each fold, we treat that

data subset as a test set, and train models using all other folds. Then

we compute the number of incorrect regions in the test fold. In gen-

eral it is clear that test error rates are lower with learned parameters

than with default parameters (Fig. 5). Over all 11 algorithms and all

40 test folds, the average improvement was 9:462:3% incorrect

labels (mean 6 95% t439 confidence interval). The only exception is

that for some models such as rseg, the test error of the learned par-

ameter is the same as the test error for the default parameter.

These data suggest that labels can definitely be used to train

model parameters for increased peak detection accuracy.

3.3 Different algorithms are appropriate for different

experiment types
Since different ChIP-seq experiments have different peak patterns

(e.g. sharp versus broad histone marks), we expected that each un-

supervised algorithm would provide accurate peak detection for

only one experiment type. We expected the supervised PeakSeg algo-

rithm to adapt to the labels in each dataset, and provide accurate

predictions for each experiment type.

In agreement with our expectation, we observed that unsuper-

vised algorithms yield accurate peak predictions in only certain ex-

periments (Fig. 5). For example, Triform yields accurate predictions

in transcription factor datasets but not histone marks. Also, MACS

yields better predictions for transcription factor and sharp histone

mark data than for broad histone mark data.

We observed that the supervised PeakSeg method yields state-of-

the-art accuracy in most of the datasets we analyzed (Supplementary

Fig. 3). The only exception is that Triform was more accurate for

the transcription factor datasets. These results confirmed our expect-

ation that since PeakSeg was designed to be trained using labels, it

can adapt to different labeled patterns, and provide accurate predic-

tions for almost any type of experiment.

We computed Receiever Operating Characteristic (ROC) like

curves for the test error of each algorithm. These ROC-like curves

plot true positive and false positive rates for a range of peak calling

parameters. Consistent with the qualitative examples in

Supplementary Figures 1 and 2, the ROC-like curves quantitatively

show that default parameters tend to yield higher false positive rates

than learned parameters (Supplementary Fig. 4). It is also clear that

some algorithms are more accurate than others, for all possible

thresholds k. In particular it is clear that PeakSeg is more accurate

than most other methods for all possible thresholds k.

3.4 Only a few labels are required to train an accurate

model
One limitation of our proposed method is that to perform labeling,

some time is required for manual visual inspection of the ChIP-seq

data. However, we show in this section that our method is useful

even if there is only time to label a few genomic regions.

To determine how many labels are necessary to learn a model

with maximum accuracy, we fixed a test fold, and then considered

training models using a variable number of labeled genomic win-

dows from the training folds (from 0 to 12). We observed that each

algorithm quickly achieves its model-specific maximum accuracy

(Fig. 6), after only about 2–6 labeled windows in the training set

(several dozen labels).

3.5 Labels from different people are highly consistent
One of the fundamental assumptions of our method is that a re-

searcher is capable of consistently labeling visually obvious peaks

and noise in ChIP-seq coverage plots. However, labels from a par-

ticular researcher are inherently subjective, and we expect that labels

from different people will not always agree. However, since peaks

and noise are often very obvious when visually inspecting coverage

plots of several ChIP-seq samples, we also expect labels from differ-

ent people to be highly consistent.

To determine the extent of consistency between people, we con-

sidered training each peak detector using labels from one person,

and testing them on labels from the same or a different person (hold-

ing experiment and samples constant, second row of Table 1). We

observed very little changes in test error when training on one or the

other person (Supplementary Fig. 5). Over all algorithms and all test

folds, the average difference in test error was not significantly differ-

ent from zero (0:0860:16% incorrect labels, mean 6 95% t87 confi-

dence interval). The algorithm with the largest difference was

PeakSeg, which sometimes had higher test error when testing on an-

other person (2:064:1%, mean 6 95% t7 confidence interval).

More generally, it is important to realize that although the learned

peak calls were highly consistent between different people, they are

not exactly reproducible (e.g. it is unlikely that the optimal param-

eters for two people are exactly the same).

Also, there were some genomic windows in the H3K36me3 im-

mune datasets that were labeled by both TDH and AM. It is clear

that these two sets of labels are consistent, but provide different

Fig. 5. Model parameters which are learned using labels provide more accurate peak predictions than default model parameters. Four-fold cross-validation was

used to estimate test error rates (mean 6 standard deviation over four test folds). Closed circles represent default parameters (labels not used for model training),

and open circles represent learned parameters (with minimal incorrect labels in each training dataset). It is clear that some algorithms are accurate in several

data types and others only work in one data type
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levels of detail. For example, TDH used a peakStart and

peakEnd label in many instances where AM used a peaks label

(Supplementary Fig. 6). Also, there are other regions which only

TDH labeled, and AM left un-labeled.

Overall, these data indicate that the outcome of comparing mod-

els is consistent using labels from different people. Labeled regions

can thus be used as a method for benchmarking peak detection algo-

rithms, with results that are specific to the ChIP-seq dataset, and

quite robust across labels from different people.

3.6 Trained models predict accurate peaks in samples

of the same experiment
In real ChIP-seq datasets, there are often dozens or even hundreds of

samples to analyze. If there is not enough time to label all the sam-

ples, we expect that training a model on a subset of labeled samples

should yield accurate predictions on the other un-labeled samples

(for the same experiment type, e.g. H3K4me3). To evaluate the ex-

tent to which trained models generalize to other samples, we trained

each algorithm on several immune cell samples and tested them on

samples of other cell types (holding person and experiment constant,

third row of Table 1).

We observed that most algorithms had similar test error when

training on the same or different cell types (Supplementary Fig. 7).

The exceptions were the MACS and MACS.Broad algorithms,

which exhibited higher test error when training on samples of differ-

ent cell types. These data suggest that the MACS qvalue parameter

does not generalize well between different samples. For accurate

peak detection using the MACS algorithm, these data suggest to

label all samples of interest, and then learn sample-specific qvalue

parameters.

3.7 Trained models do not predict accurate peaks in

other experiments
Since different experiments can have very different peak patterns,

we did not expect that models trained on one experiment would

work on other experiments (e.g. sharp versus broad histone marks).

To quantitatively demonstrate this point, we trained each algorithm

on one histone mark and tested them on another (holding person

and samples constant, last row of Table 1). In agreement with our

expectations, we observed that all algorithms had higher test error

when trained on a different experiment (Supplementary Fig. 8).

4 Discussion

4.1 Supervised versus unsupervised analysis
In the machine learning literature, a problem is considered super-

vised when there is a teacher or expert that provides correct predic-

tions for a learning algorithm. In this paper, the type of supervision

that we proposed was a database of labeled regions that represents

where a scientist does and does not observe peaks. We used these

labeled regions as a gold standard to define a prediction problem

(2), which seeks a peak detector with minimal incorrect labels on a

test dataset. Furthermore, we proposed choosing a peak detection

parameter bk (3) that minimizes the number of incorrect labels in a

training dataset.

In contrast, ChIP-seq peak detection without labeled regions can

be considered an unsupervised learning problem. Usually, an algo-

rithm with default parameters ~k is first fit to a dataset, and then

peaks are qualitatively judged by visualizing them along with the

data in a genome browser. The user can manually change the par-

ameters k, until the predicted peaks appear to be satisfactory (this is

human learning, not machine learning).

In fact, our supervised analysis protocol with labeled regions is

similar, but is independent of any specific peak detection algorithm.

First, one must visually inspect the ChIP-seq data in a genome

browser, and label some genomic regions with and without peaks.

After that, those labels can be used to train model parameters bk, and

test different models in particular ChIP-seq datasets of interest.

Our supervised analysis protocol is a user-friendly alternative to

manual parameter tuning of an unsupervised peak caller. In fact,

manual parameter tuning only works when the user knows how the

parameters k affect the output peaks. However, users do not often

understand the details of peak calling parameters, so typically leave

the parameters at default values. In contrast, our supervised method

exploits the fact that it is often easy to label peaks when visualizing

ChIP-seq data in a genome browser. After labeling a few genomic re-

gions with and without peaks, the labels can be used for automatic-

ally selecting optimal peak calling parameters bk.

4.2 Time required for labeling
One potential criticism of our proposed method is that it requires a

new labeling step (Fig. 2), which may be time-consuming. However,

in our experience, this labeling step requires a relatively small time

investment. It only takes a few minutes to find and label a whole

Fig. 6. Only a few labels are required to train an accurate model. Some labeled genomic windows were set aside as a test set, then models were learned for each

training set size, for two different random orderings of the training set (mean line and min/max band). A circle on the right shows the test error of the model

trained with the maximum number of windows. It is clear that in each dataset, the model-specific maximum accuracy is achieved after only 2–6 labeled windows

(several dozen labels)
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window of several nearby genomic regions. This is an insignificant

amount of time compared to the time required to perform experi-

ments, write code for data analysis, and write papers.

Additionally, we were able to quickly create many labels by sim-

ultaneously visualizing dozens of samples. For example, the immune

H3K4me3 sample set consists of 27 samples. When we found a re-

gion with a peak across all samples, we assigned the same label to

all 27 samples.

As another example, it only took about 40 min to create the en-

tire H3K36me3_TDH_other dataset, which contains in total 8 sam-

ples and 200 labeled regions across 4 genomic windows. And even

though this was the smallest dataset that we created, we were still

able to observe clear differences in test error between the various al-

gorithms (Supplementary Fig. 3).

Also, the test accuracy curves indicate that only a few labeled

genomic windows are necessary to train algorithms (Fig. 6). In all

datasets, the test accuracy increases to its model-specific maximum

after labeling only about 2–6 genomic windows (several dozen

labels).

Overall, these data indicate that a relatively small number of

labels allows both training model parameters and testing different

peak detection algorithms. Thus, it is quite reasonable to spend a

few minutes creating labels as a part of a supervised ChIP-seq data

analysis pipeline.

4.3 Advice for choosing a peak caller and parameters
Practically speaking, which peak caller and what parameters should

be used for a given dataset? We have proposed a general method for

quantitatively answering that question. First, label a few genomic re-

gions, and divide the labels into training and test sets. Then, run sev-

eral peak callers, using the labels in the training set to choose model

parameters. Finally, compare predicted peaks with the labels in the

test set. The most accurate peak caller has the minimum number of

incorrectly predicted test labels.

If you do not have time to create any labels, our data suggest

using a different algorithm for each experiment. For example, we

observed that Triform is accurate in transcription factor data but

not histone data, and that MACS is accurate in sharp H3K4me3 his-

tone data, but not broad H3K36me3 data (Fig. 5). However, beware

that default parameters typically yield high false positive rates

(Supplementary Figs. 1 and 4).

5 Conclusions

We proposed a supervised machine learning approach for ChIP-seq

data analysis. Our approach involves first using visual inspection to

label regions with and without peaks in a specific dataset, and then

using those labels to train and test peak detection models.

We used this approach to benchmark the performance of several

peak detectors on several labeled histone mark and transcription

factor datasets. We observed that while some unsupervised methods

yield accurate peak calls for specific experiments, the supervised

PeakSeg method was the most accurate in general across all

experiments.

We limited our study to single-sample peak calling algorithms.

In the future, we will be interested to use visually defined labels for

training and testing multi-sample peak detection algorithms such as

JAMM and PePr (Ibrahim et al., 2014; Zhang et al., 2014).

We have made available several labeled histone samples as a

public benchmark dataset. Such labeled datasets are essential for

making links between computational biology and the larger

computer science research community. In particular, these labeled

datasets make the ChIP-seq peak detection problem more accessible

to machine learning researchers, who will now be able to work on

developing more accurate supervised learning algorithms for peak

detection.

Our results indicated that models learned on one of our bench-

mark datasets yield accurate predictions for our other datasets of

the same experiment type. In the future, we would also like to exam-

ine the extent to which these models generalize to ChIP-seq data

from other labs, using different experimental protocols, and differ-

ent alignment programs.

Finally, we are interested in developing an interactive labeling

and machine learning web application for ChIP-seq data, possibly

using Apollo (Lee et al., 2013). An ideal system for interactive ChIP-

seq data analysis would display current peak predictions on the gen-

ome browser, and allow the user to correct any obvious errors by

labeling genomic regions with and without peaks. Then the system

would learn from those labels, and automatically update the peak

calling model in order to provide more consistent predictions.
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