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Abstract: The voltage-gated Na+ channel Nav1.5 is critical for normal cardiac myocyte excitability.
Mathematical models have been widely used to study Nav1.5 function and link to a range of cardiac
arrhythmias. There is growing appreciation for the importance of incorporating physiological
heterogeneity observed even in a healthy population into mathematical models of the cardiac action
potential. Here, we apply methods from Bayesian statistics to capture the variability in experimental
measurements on human atrial Nav1.5 across experimental protocols and labs. This variability was
used to define a physiological distribution for model parameters in a novel model formulation of
Nav1.5, which was then incorporated into an existing human atrial action potential model. Model
validation was performed by comparing the simulated distribution of action potential upstroke
velocity measurements to experimental measurements from several different sources. Going forward,
we hope to apply this approach to other major atrial ion channels to create a comprehensive model of
the human atrial AP. We anticipate that such a model will be useful for understanding excitability at
the population level, including variable drug response and penetrance of variants linked to inherited
cardiac arrhythmia syndromes.

Keywords: computational model; electrophysiology; atrial fibrillation; arrhythmia; Bayesian statis-
tics; voltage-gated sodium channel

1. Introduction

Atrial fibrillation (AF) is the most common sustained arrhythmia in the U.S., and is
associated with a range of comorbidities, including increased risk for heart failure and
ischemic stroke. Unfortunately, the prevalence of AF is only increasing, while therapy
has not advanced at the same pace, highlighted by the fact, that over the past 30 years,
mortality rates for AF patients have actually increased [1]. Current therapies for AF face
important limitations, including risk for procedural complications, efficacy, or adverse
effects (e.g., ventricular arrhythmia for some pharmacological agents).

Voltage-gated Na+ channels are required for normal atrial excitability and defects in
the function of the primary cardiac Na+ channel Nav1.5 have been linked to increased
risk for AF. Furthermore, despite the risk for ventricular pro-arrhythmia, drugs that block
Nav1.5 are commonly used in AF patients without structural heart disease [2,3]. Mathe-
matical modeling has proven valuable in understanding the role of Nav1.5 in regulating
cardiac excitability in normal and diseased states, including in the discovery and testing of
novel drugs and therapies (e.g., CiPA project) [4–7].
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In the context of AF, numerous atrial models have been developed with the purpose
of further understanding the ionic basis of the disease and/or regional differences in
excitability [8–10]. While these models have advanced our understanding of atrial cells
both in health and disease, they have focused specifically on modeling an average or
“typical” cell. Here we seek to propose a method for reparametrizing ion channels to better
incorporate the natural variability between cells. Due to its central role in cardiac impulse
generation and strong link to disease, we focus here on Nav1.5.

There has been a growing appreciation in the field for the fact that considerable
heterogeneity exists in electrophysiological properties of cardiac myocytes even from the
same heart/region, motivating a shift away from a modeling approach that focuses on
recapitulating a single idealized myocyte towards an attempt to capture inherent variability
in a representative population of cells. For the most part, populations of model cells have
been generated by randomly perturbing the idealized parameters about the mean [11,12].
While this approach has been applied successfully to better understand drug effects and
other population-level phenomena, it relies on several a priori assumptions about the
important parameters and their variability in the population.

Here we apply a statistical approach to define a model of the voltage-gated Na+

channel that reflects heterogeneity in a population rather than a single idealized set of
parameters. Specifically, we used a Markov chain Monte Carlo (MCMC) method from
Bayesian statistics to find maximum a posteriori estimates for each biophysical parameter
based on the available experimental data. This technique allowed us to fit statistical
parameters involving the complex biophysical model, which would be intractable using
more traditional approaches. By formulating the problem using statistical models, we
could define a reasonable population of model fits in an empirical and rigorous manner.

Bayesian models have been used successfully to develop a wide range of biophysical
models including action potentials, ion channels, calmodulin, and IP3 receptor [13–17].
Notably, Lei et al. used a MCMC approach to fit a model of hERG (IKr) to hundreds of
patch-clamp recordings simultaneously, which was then applied to comparing different
models of temperature dependence of rate constants [18,19]. To our knowledge, our study
represents the first effort to apply a similar approach to the voltage-gated Na+ channel
Nav1.5. Beyond previous efforts [18,19], we also correct for inter-paper differences caused
by temperature effects, as well as effects specific to labs and protocols. We apply this
approach to a novel Na+ channel model, which is then incorporated into an established
model of the human atrial action potential to compare emergent behavior in the context of
the intact atrial myocyte. The resulting model was able to accurately reproduce variability
in single cells as well as in fibers of cells. We find that there is substantial variability arising
from the inter-paper differences, as well as intra-paper variability. We anticipate that the
resulting model will be useful for studying population level responses to anti-arrhythmic
drugs as well as understanding complex phenomena like variable penetrance of inherited
ion channel defects.

2. Materials and Methods
2.1. Statistical Approach to Parameter Fitting for a Biophysical Model of the Voltage-Gated Na+

Channel Using Multiple Datasets

The ultimate goal of our study was to define a robust and physiological model of the
human atrial voltage-gated Na+ channel (Nav) for use in computer simulations of human
atrial excitability. While a variety of Nav models have been published for use in simulations
of the cardiac action potential (Figure 2), we proposed a novel formulation (Figure 2A) that
sought to balance simplicity of Hodgkin-Huxley type models with channel gating assumed
to occur via independent processes (Figure 2B) [20] and Markov Chain models in which
gating is represented as transitions between dependent states (Figure 2C) [21,22]. Our
resulting hybrid Nav model featured separate Markov Chain models for distinct activation
and inactivation processes, but grouped recovery into inactivation (details on model are
provided in next section).
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Having defined the structure of our model, the next step was to determine parameter
values based on experimental recordings from human atrial myocytes published in the
literature. Typically, a mathematical model of an ion channel is parameterized using data
from a single source or average value, one parameter at a time. Although each experimental
protocol aims to isolate a particular aspect of sodium channel behavior (e.g., steady-state
inactivation or activation, peak conductance, kinetics), a single model parameter will likely
influence results from several different protocols. Furthermore, this conventional approach
is subject to bias by weighing results from one or few sources over others. To overcome
these challenges, we parameterized our novel Nav model using numerous sources with a
range of experimental protocols and conditions to describe channel behavior. To facilitate
simultaneous fitting of model parameters across multiple protocols and data sources, the
Nav model was embedded into a statistical model, which estimated the model error: the
difference between the model’s predicted values for each experimental result (Figure 1). To
account for different units corresponding to data collected using the different protocols,
each result was allowed to have its own model error.

The statistical approach also allowed us to fit data from a number of different sources
or publications. Naturally, different labs each with their own experimental conditions will
measure different values, even when performing the same experiment (referred to here as
the “undefined variability in experimental protocol effect” or UVEP effect). Accounting for
this type of variability in a model is difficult to accomplish in either pre- or postprocessing
steps. However, by embedding the Nav model in a statistical model, variability due to
the UVEP effect can be estimated during the model fit procedure. To accomplish this, we
applied a concept from the ANOVA statistical test: the variable effect term, which provides
an estimate for how different all the experiments in a given paper are from those in another
paper. To ensure that the model was not simply fitting independent sets of biophysical
model parameters to each paper, the following two constraints were added: (1) the effect
term summed across all papers should approach 0; and (2) small UVEP effects are preferred
over large UVEP effects. The first constraint ensures that there can be a meaningful set of
parameter values that do not depend on the specific paper, while the second constraint
prefers more parsimonious models. To impose the first constraint in a statistical model,
we treated each UVEP effect as arising from a normal distribution with a mean of 0. The
variance of this normal distribution was an additional parameter to be fit, and smaller
variances were preferred, to apply the second constraint. Thus each UVEP effect is modeled
as a random perturbation with a set variance. This approach is analogous to adding a
variable effect term to an ANOVA model, for which a few samples are observed from a
larger population.

A common experimental condition that varies between papers is the temperature of
the bath used for current recordings. Although it would be possible to capture variability
in this condition in the UVEP effect term, by treating it as an independent factor, we can
use prior information from the literature to constrain dependence of model parameters on
variable temperature [20,23].
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Figure 2. Statistical approach for fitting model parameters. Schematic illustrating the workflow used 
to fit biophysical model parameters using multiple sources of data. Experimental Data on voltage-
gated Na+ channel measurements in human atrial cells are curated and provided as input to the 
statistical model fitting procedure [Monte Carlo Markov Chain (MCMC) optimizer)]. A subset of 
the data are held back for validation. The MCMC fitting procedure generates an initial guess for the 
set of parameters corresponding to each dataset, which are fed to the biophysical model to generate 
a set of simulated results. Independent normal variables with means of simulated results are compared 
to experimental data in the model to update the model fit while experimental variances encompass 
the variability between the predictions and experimental results and is used to track goodness of fit. 
Finally, the Parameter Variance and Parameter Correlation capture the variability between different 
experiments and the relationships between different parameters. 

2.2. Curation of Experimental Data from the Literature 
A comprehensive literature review was performed to identify published studies in-

cluding electrophysiological data from normal (non-diseased) human atrial myocytes. 
Data were converted to json format for storage and cross referenced in an excel spread-
sheet with corresponding experimental conditions (Supplemental Table S1). Manual cu-
ration of the data was performed as quality control (i.e., physiological reversal potential 
for IV curve, activation/inactivation properties). 

Figure 1. Statistical approach for fitting model parameters. Schematic illustrating the workflow used to fit biophysical
model parameters using multiple sources of data. Experimental Data on voltage-gated Na+ channel measurements in human
atrial cells are curated and provided as input to the statistical model fitting procedure [Monte Carlo Markov Chain (MCMC)
optimizer)]. A subset of the data are held back for validation. The MCMC fitting procedure generates an initial guess for the
set of parameters corresponding to each dataset, which are fed to the biophysical model to generate a set of simulated results.
Independent normal variables with means of simulated results are compared to experimental data in the model to update
the model fit while experimental variances encompass the variability between the predictions and experimental results and
is used to track goodness of fit. Finally, the Parameter Variance and Parameter Correlation capture the variability between
different experiments and the relationships between different parameters.
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Figure 1. Examples of three different biophysical models of the volgate-gated Na+ (Nav) channel. 
Open/Active states are indicated in green, while closed/inactive states are white. (A) Our novel hy-
brid Nav model with 3 independent components, an activation component (subscript m), and two 
inactivation components for fast and slow inactivation (subscripts f and s, respectively). The activa-
tion component consists of an open (Om) and closed (Cm) state, while the inactivation components 
each consist of an active state (A), a closed state (C) and an inactivated state (I). (B) Example of a 
Hodgkin-Huxley type model consisting of 4 independent gating variables: activation (M), fast inac-
tivation (Hf), slow inactivation (Hs) and recovery (J) [20,24]. (C) A Markov model where channel 
gating is represented as transitions between coupled states, including inactivation (IX), closed (CX), 
and open states (O). Additionally, there are further states to allow for late current (LX), and for drug 
block (XB) [22]. 

Figure 2. Examples of three different biophysical models of the volgate-gated Na+ (Nav) channel. Open/Active states are
indicated in green, while closed/inactive states are white. (A) Our novel hybrid Nav model with 3 independent components,
an activation component (subscript m), and two inactivation components for fast and slow inactivation (subscripts f and s,
respectively). The activation component consists of an open (Om) and closed (Cm) state, while the inactivation components
each consist of an active state (A), a closed state (C) and an inactivated state (I). (B) Example of a Hodgkin-Huxley type
model consisting of 4 independent gating variables: activation (M), fast inactivation (Hf), slow inactivation (Hs) and recovery
(J) [20,24]. (C) A Markov model where channel gating is represented as transitions between coupled states, including
inactivation (IX), closed (CX), and open states (O). Additionally, there are further states to allow for late current (LX), and
for drug block (XB) [22].

2.2. Curation of Experimental Data from the Literature

A comprehensive literature review was performed to identify published studies
including electrophysiological data from normal (non-diseased) human atrial myocytes.
Data were converted to json format for storage and cross referenced in an excel spreadsheet
with corresponding experimental conditions (Supplemental Table S1). Manual curation
of the data was performed as quality control (i.e., physiological reversal potential for IV
curve, activation/inactivation properties).

2.3. Mathematical Model of the Voltage-Gated Sodium Channel Nav1.5

Our novel hybrid Nav model has 8 state variables that combines aspects of the first
2 approaches (Figure 2) with independent gating variables to represent activation and
inactivation, similar to previous Hodgkin–Huxley models [20]. Consistent with previous
models, the Activation module requires 2 state variables. Inactivation is separated into
independent fast and slow components with each component represented by a 3-state
Markov chain to allow for coupling of inactivation and recovery (not possible with pure
Hodgkin-Huxley approach). For fast inactivation (and recovery) the Markov model consists
of the Af state for when the channel is Active; the Cf state for rapid Closing of the channel
(comparable to the hf gate in O’Hara–Rudy); and a further additional state for Inactivation
of the channel If (analogous to the j gate in O’Hara–Rudy). Finally, as the inactivation
module is split into fast and slow, there are 3 slow components (As, Cs, Is) complementary
to the 3 fast components.

The model is parameterized by factors that are transformed into the model parameter
from a factor value in -∞ to ∞, to a range which is valid for that specific model parameter.
The first type of transformation is the exponential transformation for model parameters
which can only take on values from 0 to ∞. An example of this is the conductance which
has a base value of 1, GNa = 1 · eGNa Factor. Other model parameters that use the exponential
transformation are the steepness parameters for rate constants or steady states and the
maximum and minimum rates for a gate. The next kind of transformation is the logistic
transform for model parameters that can only take on values between 0 and 1. There was
only one parameter like this in the model, Ahf, the proportion of fast vs. slow inactivation
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gates, Ah f =
1

1+ exp(−Ah f Factor)
. Finally, shifts to the locations of steady state curves or rate

curves did not require any transformation as they could already take on any value from
−∞ to ∞. For a full list of model parameters and their transformations see Table A1.

The m and h gates are parameterized separately. For steady state curves, logistic
curves were used, while bi-exponential curves were used for rate constants (τ). For τ, a
reparameterization was performed to reduce the dependence between its 4 parameters.
Steady state and τ values were then transformed into Markov model rate constants, before
they were used in the system of differential equations. For more details, see Appendix C.

The m gate had its own logistic steady state, mss, which was parameterized with a
slope mss_slope, and the location of the midpoint mss_shift. mss_slope controls the steepness
of the curve (0, ∞), with smaller values close to 0 being very gentle curves, while large
values are very steep curves.

mss =
1

1 + exp
(
−
(

v + mssshi f t

)
/mssslope

)
The rate constant, τ, is the inverted rate from Om to Cm (or the reverse direction)

where large values indicate slow transitions and small values indicate fast transitions. τ
was parameterized by the location of the maximum, the value at the maximum (τm_max),
the minimum asymptotic value (baseline) and the slopes of the exponentials to the right
(τm_slope1) and left (τm_slope2) of the maximum.

τm =
baseline

15
+

τmmax

exp
((

v− τmshi f t

)
/τmslope1

)
+ exp

(
−
(

v− τmshi f t

)
/τmslope2

)
The h gate was split into a fast and slow component. The steady state curve was the

same for both, but the τ‘s were different.

hss =
1

1 + exp
((

v− hssshi f t

)
/hssslope

)
The fast τ for h was parameterized as follows:

τh f =
baseline

10
+

τh fmax

exp
((

v− τh fshi f t

)
/τh fslope2

)
+ exp

(
−
(

v− τh fshi f t

)
/τh fslope1

)
While the slow τ had a higher baseline, and different location, slope and maximum:

τhs = baseline +
τhsmax

exp
((

v− τhsshi f t

)
/τhsslope2

)
+ exp

(
−
(

v− τhsshi f t

)
/τhsslope1

)
Recovery was a part of the h gate, and so there is a recovery state in both the fast and

slow components. However, the rates and steady states of recovery were the same for both
components.

jss = 1
1+exp

((
v− jssshi f t

)
/jssslope

)
τ j = baseline + τ jmax

exp
((

v− τ jshi f t

)
/τ jslope2

)
+exp

(
−
(

v− τ jshi f t

)
/τ jslope1

)
The rate constants and steady states are then converted into Markov model transition

rates, and the subsequent differential equations are solved. The solved gating variables
are combined to find the Nav open probability (O3

m

[
Ah f · A f + (1− Ah f ) · As

]
). Where
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Ah f is the proportion of fast to slow inactivation. Om, A f and As are the state variables
from Figure 2A. The open probability is used in combination with the driving force and the
conductance (GNa) to compute the sodium current. For further details, see Appendix C.

2.4. Data Normalization

Before parameter fitting, experimental data were normalized depending on the ex-
periment type. Briefly, Na+ current-voltage (IV) curves were split into two groups, those
that had been normalized to cellular capacitance and those that had not. Data that were
not normalized to capacitance were normalized to a minimum of −1 and then the signed
square root (sgn(x)

√
|x|) was taken to reduce the influence of large values. Data that had

been normalized to capacitance were not standardized to a specific minimum value and
only the signed square root was taken. For all IV curves, the empirical reversal potential
was compared to the expected reversal potential. If the difference was more than 10 mV,
then the experiment was excluded. For smaller differences, the data was shifted to ensure
consistency. Expected reversal potential was calculated using the Nernst equation which
is provided in Appendix C. Steady state inactivation data were normalized to the value
from the most negative voltage in the dataset, while activation data were normalized to
range from 0 to 1. Time constants for both activation and inactivation were used together to
produce simulated current traces that were fit, instead of fitting the time constants directly.
Finally, recovery from inactivation data were normalized to the peak pre-pulse current,
consistent with how these data are typically reported.

2.5. Bayesian Statistical Model Parameters

For estimation of the model parameters, as well as their variances, the Nav model
was embedded in a statistical model of the data (Figure 1). This enabled quantification
of variability in and between datasets. Further, the statistical model can compensate
for differences caused by temperature, or from different experimental procedures from
different labs. A similar approach has been used previously to fit a potassium current from
experimental recordings [19].

In our hierarchical model, the Results node compares model predictions with actual
observed experimental values.

XResults = xbiophysical + εExperimental

εExpiremental ∼ N
(

0, σ2
Experimental

)
Results (XResults) are the observed values (from published studies), which are modeled

as the biophysical model’s prediction (xbiophysical) plus some experimental error/noise
(εExperimental). The experimental error was considered to be independent and distributed
normally with mean 0, and a variance σ2

Experimental . The variance depends on the specific
experiment (e.g., measurement of IV curve, steady state inactivation, etc.), as different
experiments have different magnitudes of error. For example, IV curves involve large
values with a considerable amount of spread, whereas the steady state activation curve has
much smaller values with less spread.

44 sets of parameters were used to define individual biophysical models for each
experiment across all publications used for fitting (Figure 1). Each set of parameters
contains 25 individual model parameters that are the specific parameters (GNa, steady
state parameters, rate parameters) that the biophysical model uses to predict outputs
for experiment 1 through 44 (xbiophysical). Each set of parameters may be represented as
P =

[
GNa; . . . ; τj tau1

]
, and then combined into a matrix PVi,j =

[
P1 . . .

]
. Each

row of the resulting matrix, i ∈ 1 . . . 44, contains all the biophysical model parameters for
an experiment, and each column, j ∈ 1 . . . 25, represents the values for a specific biophysical
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model parameter (e.g., GNa) over the range of experiments. Therefore, the value of each
experiment P (PVi in the combined matrix) may be thought of as the following equation.

P = β0 + βTemp·T + σ2
UVEP + εParameter

εParameter ∼ N25(0, ΣParameter)

where β0 (intercept) is a 25-dimensional vector containing one value per parameter defining
the mean value across all experiments; T is the difference in temperature from 17 ◦C;
βTemp (temperature dependent effect) is a 25-dimensional vector defining the change in
parameters with each additional 1 ◦C increase in temperature (T); σ2

UVEP (the UVEP effect) is
a 25-dimensional vector defining the error caused by undefined variability in experimental
procedures across labs; εParameter is the random variation between experiments and follows
a multivariate normal distribution with mean 0 and covariance matrix ΣParameter, to allow
for correlations between parameters. For the full details of the model, as well as the priors
chosen, see Appendix A.

Taken as a whole, this statistical model produces a number of useful estimates, in-
cluding: (1) the best biophysical parameters for a specific experiment, constrained by the
group mean and variance; (2) the biophysical parameter mean while compensating for
the temperature effect, and the influence of specific undocumented inter-study variability
(UVEP effect); and (3) the variance of each parameter as well as its correlation with the
other parameters. In a typical model fitting approach, the only estimate that would be
created would be biophysical parameter mean without compensating for temperature
dependence. These additional estimates allow for many further uses of the model. We will
highlight two: (1) the temperature dependence allows for an improvement in estimating
the mean; and (2) the parameter variance-covariance matrix can be used to generate a more
realistic population of models.

2.6. Parameter Estimation

The estimates for each parameter from the Bayesian statistical model were computed
jointly using MCMC to generate maximum a posteriori estimates, which maximize the
likelihood of the model given the data. Initial values for the MCMC optimization procedure
were assigned by the fitting library PyMC3 to be the mean of the prior distribution. Due to
the heavy computational cost of repeatedly simulating all the experiments, only one chain
could be run. For all parameters where a gradient could be computed, the NUTS (No-
U-Turn Sampler) sampler was used as recommended by PyMC3 [25]. This encompassed
all nodes in the model graph except PVi,j, the model parameters for each experiment, as
the gradient of the biophysical model is intractable. For PVi,j a Metropolis-Hastings (MH)
step was used with a multivariate normal jump and the addition of a crossover step every
10 iterations.

The crossover step was performed independently for each set of parameters for an
experiment. A subset of parameters was selected, independently with 10% probability.
Then another experiment was selected at random from a predefined group, and the selected
parameters in that experiment were used to replace the selected parameters in the current
experiment. This step was then evaluated in the usual acceptance rejection fashion. The
predefined groups which were allowed to exchange parameters with each other were either
experiments from the same paper or of the same type.

To tune the MH step, an adaptive approach was taken, where the scaling of the jump
size was updated to achieve the ideal rejection rate and the variance-covariance matrix
of the jump distribution was updated using a moving average of the empirical variance-
covariance of the chain [26]. Each experiment was tuned independently. The crossover
step required no tuning.
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2.7. Code

Model development and fitting were done in python version 3.7 using numpy 1.17
(1.18), pandas 0.25 (1.0), scipy 1.4, pymc3 version 3.8 (3.9) [27–30]. The code is avail-
able on github in hundlab/iNaCells2021Code, while the data is available in hundlab/
iNaCells2021Data. Model testing and integration into the Grandi atrial myocyte was writ-
ten in c++17, using the LongQt library 0.5. LongQt is available at hundlab.engineering.
osu.edu/research/LongQt with model code available at hundlab/LongQt-model in branch
atrial-model [31].

2.8. Simulations

Voltage clamp simulations were run according to the experimental procedures used
to produce the data from the selected publications. The implicit backward-differentiation
formula solver (BDF) from the scipy integrate library was used to solve the ordinary
differential equations for the sodium channel model. The default values of relative and
absolute tolerance were left at their defaults, 10−3 and 10−6, respectively.

For the single cell and 1D fiber simulations, a well-validated model of the human
atrial action potential was used [8], with the original sodium current formulation replaced
with our novel formulation. The simulation platform LongQt was used to run all cell and
fiber simulations [31,32].

3. Results
3.1. Estimates of Nav Model Parameters: Simultaneous Fitting of Values Corresponding to
Individual Experiments and across the Population

An innovative aspect of our approach is that we are able to generate individual sets of
parameters for specific experiments, while also fitting the overall parameter means and
variances. In order to simulate each individual experiment from each paper, the protocol
which was used in that experiment was replicated in the simulation and post-processed in
a manner analagous to the actual experiment. For each individual protocol, a complete
parameterization of the biophysical model was executed. From these individual fits, an
overall average fit could then be compiled encompassing all experimental data. Further,
the amount a parameter varies across individual fits was captured as an overall variance,
as well as an overall correlation.

The model was able to reproduce both the characteristic trends in the data as well as
the individual differences between datasets (Figure 3). The model was able to reproduce
different IV curves presented in the same paper, generated under similar or identical
conditions, as well as IV curves reported in different papers (Figure 3A). Notably, location
of the peak current for data from Lalevée et al. had a value between −40 and −50 mV,
which our model predicts to be closer to −30 mV. This is not a case of the model being
unable to fit the locations of these peak currents, instead there is a tradeoff between the best
possible individual fit, and what is a reasonable fit given all the other observed data. In this
case, this tradeoff pulls the estimates back towards the overall fit. There was also qualitative
agreement between the simulated and experimentally measured steady-state activation
curves, which, in general, showed less variability across papers (Figure 3B). There are a
large range of time scales across publications for recovery curves, with Sakakibara et al.
being much slower than Feng et al. or Cai et al. (Figure 3C) even after taking into account
the different protocol’s holding potentials. Specifically, Sakakibara et al. used 3 different
holding voltages from−100 mV which was the same as was used in Cai et al. to−140 which
was the same as Feng et al. Nevertheless, the individual fits were capable of accurately
reproducing these large differences between curves (taking into account differences in
holding potentials). The inactivation steady state curves were quite similar from both
datasets, and were all fit very precisely (Figure 3D).
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Figure 3. Simulated results of individual model fits to specific experiments. (A–D). Current Voltage relations, steady-state
activation, recovery from inactivation, and steady-state inactivation curves using a different set of fit model parameters
predicted by the statistical model (solid lines) for each experiment (circles). Data from Feng et al. had 4 experimental groups
which were the lengths of time the cells were kept before an experiment was performed: 0, 1, 3, 5 days; Cai et al. had
two experimental groups: cells taken from adult or pediatric patients; 3 control IV curve experiments were taken from
Lalevée et al.; Wettwer et al. had a single IV curve control experiment; Sakakibara et al. had one control activation curve
and three recovery curves with different inter-pulse holding potentials: −100, −120, −140 mV; and two inactivation curve
experiments were taken from Schneider et al. with different durations for the inactivation potential: 512 and 256 ms [33–38].
Data from different experiments taken from the same paper are indicated with a single color indicated in the legend (same
for corresponding simulation results).

Only the parameter fits to individual experiments are tested in the biophysical model
during the fitting procedure. In contrast, the overall mean and variance of the model
population is not directly tested in the biophysical model, but instead are extracted from
the population of individual fits. A first test of the resulting fit from the statistical model is
to determine how closely the overall fit extracted from the population of models fits the data.
Therefore, we simulated the results of using the overall mean fit along with temperature
effects to determine how well the mean generated by our population of individual models
fit the mean predicted by the statistical model. Specifically, the UVEP effect was not used
and will not be used going forward, so that the fits in Figure 4 and subsequent figures
reflect only the overall fit. The UVEP effect could be reintroduced to simulate results based
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on data generated in an individual paper, however published differences in protocol or
conditions (e.g., bath Na+ concentration) were implemented when available. Supporting
success of the fitting procedure, the model using parameters from the overall fit, in general,
produced simulated results consistent with the experimental data (Figure 4A–D). It is
interesting to note that the greatest discrepancy between model and experiment could be
observed for the location of the peak in the IV curve (Figure 4A).
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Figure 4. Simulated results of overall model fits to specific xperiments. (A–D). Current Voltage relations, steady-state
activation, recovery from inactivation, and steady-state inactivation curves using a single set of fit model parameters with
experiment-specific temperature and sodium concentrations reported for each study. Experimental data is the same as
in Figure 3 from Feng et al., Cai et al., Lalevée et al., Wettwer et al., Sakakibara et al. and Schneider et al. [33–38]. Data
from different experiments taken from the same paper are indicated with a single color indicated in the legend (same
for corresponding simulation results). In the event that a different experimental protocol was used to measure the same
property (e.g., recovery from inactivation) multiple simulation results are indicated with the same color corresponding to
results using the same model parameters but different protocols.

Aside from the parameter mean values, the fitting procedure generates several dif-
ferent estimates for standard deviation, the overall standard deviation of the individual
fits, the standard deviation of the UVEP effect, and the model error, which is the error
the model makes in predicting the experimental results (Figure 5). The overall variability
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in the model parameters for shift of mss and th,f are by far the largest (Figure 5A); this is
due specifically to the large range of shifts needed to fit the IV curves (Figures 3 and 4).
This is interesting, as it indicates that in order to shift the IV curve, it requires a shift in
both parameters rather than just mss as might be expected. Further, it is actually the rate
of inactivation that makes a difference, not the location of its steady state curve. While
this might seem counterintuitive, this is because even though inactivation is much slower
than activation, it is still fast enough to effect peak current. Thus, to shift the location of
the IV curve both parameters must be changed, which also results in a positive correlation
between the shifts of mss and th,f (Figure S2). As this variability in both mss and th,f was
only present in the IV curve experiments, for future applications of the fitted model these
variabilities were reduced to 0.4.

Cells 2021, 10, x  12 of 23 
 

 

(same for corresponding simulation results). In the event that a different experimental protocol was 
used to measure the same property (e.g., recovery from inactivation) multiple simulation results are 
indicated with the same color corresponding to results using the same model parameters but differ-
ent protocols. 

Aside from the parameter mean values, the fitting procedure generates several dif-
ferent estimates for standard deviation, the overall standard deviation of the individual 
fits, the standard deviation of the UVEP effect, and the model error, which is the error the 
model makes in predicting the experimental results (Figure 5). The overall variability in 
the model parameters for shift of mss and th,f are by far the largest (Figure 5A); this is due 
specifically to the large range of shifts needed to fit the IV curves (Figures 3 and 4). This 
is interesting, as it indicates that in order to shift the IV curve, it requires a shift in both 
parameters rather than just mss as might be expected. Further, it is actually the rate of in-
activation that makes a difference, not the location of its steady state curve. While this 
might seem counterintuitive, this is because even though inactivation is much slower than 
activation, it is still fast enough to effect peak current. Thus, to shift the location of the IV 
curve both parameters must be changed, which also results in a positive correlation be-
tween the shifts of mss and th,f (Figure S2). As this variability in both mss and th,f was only 
present in the IV curve experiments, for future applications of the fitted model these var-
iabilities were reduced to 0.4. 

 
Figure 5. Fitting of model parameters using maximum a posteriori (MAP) estimates. (A–E) The 
overall standard deviations (dark blue) and the UVEP effect standard deviations (light blue) for 
each model parameter. Estimates for standard deviations were made using maximum a posteriori 
values that maximize the likelihood of the statistical model (Appendix A). Model parameter factors 
are grouped according to functionality. (A) Parameter factors responsible for locations of steady 
state and rate curves. (B) Parameter factors responsible for the steepness parameters of the steady 
state curves. (C) The minimum and maximum values of the rate constants. Baseline is scaled for 
each rate constant by constants 1/15, 1/10, 1, 1, for gates m, hf, hs, j respectively. (D) The steepness 

Figure 5. Fitting of model parameters using maximum a posteriori (MAP) estimates. (A–E) The overall standard deviations
(dark blue) and the UVEP effect standard deviations (light blue) for each model parameter. Estimates for standard deviations
were made using maximum a posteriori values that maximize the likelihood of the statistical model (Appendix A). Model
parameter factors are grouped according to functionality. (A) Parameter factors responsible for locations of steady state and
rate curves. (B) Parameter factors responsible for the steepness parameters of the steady state curves. (C) The minimum
and maximum values of the rate constants. Baseline is scaled for each rate constant by constants 1/15, 1/10, 1, 1, for gates m,
hf, hs, j respectively. (D) The steepness parameters for the rate constants. (E) The conductance, GNa, and the proportion of
fast to slow inactivation. (F) The estimated standard deviations for the error components in the model. Each error term
corresponds to a different type of experiment. IV curve simulation error has units pA/pF, while all other errors are for
normalized measurements and are unitless.
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Our estimates of the variability in steepness of the steady state curves (Figure 5B),
indicated that there is considerable variability both overall, and between papers. The
variability between papers is consistently larger than the overall variability, which indicates
that experimental conditions may play a large role in this variability. By contrast, the
variability in the maximum time constants values (τ) (Figure 5C) is constantly higher for
the overall standard deviation, with the exception of the m gate. This, along with large
UVEP effects in the slopes of the τ (Figure 5D) suggests that the m gate may be strongly
affected by variability in undocumented conditions across experiments/labs.

Upon estimating model errors (Figure 5F), we found that IV curves had substantially
more variability than other experiments, even after they were normalized. The other
experiment types had more similar degrees of simulation error. The range of error predicted
across experiments supports the a priori decision to allow for separate error estimates.

The estimates of the correlations, showed moderate to weak associations between
model parameters (Figure S2). This may be in part due to our reparameterization of the
rate constants to reduce the dependencies between parameters, which is described in the
Appendix B.

3.2. Generation of a Population of Nav Models Based on Overall Parameter Fits

Our estimates of the variances and correlations are also highly important components
of the model, as these define the physiological range of parameter values. To test if extract-
ing new values (not used in the determining the overall fit) would result in physiological
range of behavior, we drew 100 parameter combinations from the fitted 25-dimensional
normal distribution, with the overall mean and temperature effect, and the overall variance
covariance matrix. Next, we simulated the four different kinds of experiments shown
previously with these randomly drawn values and examined the results. Unlike previ-
ous simulations (Figures 3 and 4) that used room temperature to facilitate comparison to
experiment (difficult to measure Nav1.5 at body temp due to its rapid kinetics and large
amplitude), the temperature for these plots is set to body temperature. The resulting IV,
activation, inactivation and recovery from inactivation curves show a distribution that is
relatively tight (Figure 6A–D). The mean from this test population of 100 individual models
compares well to the true mean of the distribution (curves are virtually superimposed
in Figure 6), which validates that this population is similar to the data we used to fit the
model during the fitting process.

3.3. Incorporation of Nav Model into a Comprehensive Model of the Human Atrial Action Potential

As a final validation step for our model and parameterization approach, we incorpo-
rated the fitted Nav model into a whole cell human atrial myocyte model [8]. Importantly,
the data used in validation were not used to fit the model, and only one dataset came from a
paper that was also used in the model fitting process. Some adjustments needed to be made
to fit the model in the whole cell: the location of the inactivation steady state curve had to
be moved in the positive direction by 16 mV. This is likely a result of the steady state curve
datasets being exceedingly negative, as has been commented on previously [39]. Next, the
slopes of the activation and inactivation steady state curves needed to be increased by 1.6.
Finally, the conductance was tuned so that the resulting mean was close to the mean value
from Molina et al. (Figure 7). Notably, the variability seen in Molina et al. was not used in
the tuning process.
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Figure 6. Simulation of model population at physiological temperature. (A–D) Current-voltage, steady-state activation,
recovery from inactivation, and steady state inactivation curves from a population of models generated by randomly
selecting 100 parameter sets from the fitted 25 dimensional multivariate normal distribution. The individual results from
the 100 simulations (light blue lines) were used to generate a population mean (dark blue line) for each property and
compared to the theoretical mean (black line) generated using the mean of the entire normal distribution. Simulations
used the sodium concentrations and temperature used by the Grandi full sell AP model [9.1 and 140 mM, internal and
external sodium, respectively, and temperature of 40 ◦C (unlike previous simulations (Figures 3 and 4) that used room
temperature to facilitate comparison to experiment (difficult to measure Nav1.5 at body temp due to its rapid kinetics and
large amplitude)].
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data on upstroke velocity, with observations divided into two groups: one which was 
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had a typical shape of healthy APs, while highly triangular APs have commonly been 
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Figure 7. Model validation. The new voltage-gated Na+ channel model was incorporated into a detailed model of the
human atrial action potential [8]. Validation for single cell dynamics was performed by comparing the maximum upstroke
velocity and conduction velocity at different cycle lengths to published data, in single cells and in fiber. (A) Solid dark blue
line is the mean, and the dark blue shaded region is the standard deviation for the maximum action potential upstroke
velocity from the generated population of 100 cells. Similarly, the light blue line and shaded region are the mean and
standard deviation, respectively, from a population of 40 fibers, each of which is 100 cells long. For the fiber, the upstroke
velocity of the fiber is calculated as an average of cells, Xi, from the middle of the fiber: X20, X30, . . . , X70, X80. Solid dots
are values reported in literature and error bars are standard deviations. Model was tuned by hand to the mean of Molina et al.
(B) Conduction velocity, light blue line and shaded region use the same fibers as in A. Conduction velocity was calculated
using the 30th and the 80th cells. Data from Hansson et al. is on individuals, so each point represents one individual.
(C,D) Sample traces from individual cells and from cells in the fiber, respectively. Data was taken from [36,40–44].

Action potential upstroke velocity was measured in the model, both in simulated
single cell pacing, as well as in a 100 cell fiber (Figure 7). For single cell simulations, all
of the observed data falls comfortably within the 1 standard deviation band (Figure 7A).
Further, the 1 standard deviation band in both Molina et al. and Skibsbye et al. is quite close
to our simulated band, but is slightly more narrow. Resulting action potentials showed
a physiological range of AP morphologies (Figure 7C). For the fiber of cells (to simulate,
for example, a human atrial trabecula), there was only one paper with published data
on upstroke velocity, with observations divided into two groups: one which was highly
triangular AP labeled group A (not shown), and the other which had a plateau phase and
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was labeled group B. For our comparison, we choose to use group B as they had a typical
shape of healthy APs, while highly triangular APs have commonly been associated with
disease. There was one additional study that quantified conduction velocity in multiple
individuals (Figure 7B). For these measurements on healthy cells, our fiber measurements
align with the observed data, and show a similar response to changes in basic cycle length
(Figure 7A,B, action potentials from individual cells in the fiber shown in Figure 7C).

4. Discussion
4.1. Bayesian Modeling Provides a Natural Way to Incorporate Different Data into One Model

When developing a new model it is advantageous to use as much data as possible to
ensure that the model has the opportunity to learn how the system operates in a diverse set
of conditions. This presents a distinctive challenge for conventional approaches as these
larger datasets are often only obtainable by compiling data from different publications from
different labs, with different protocols, etc. To compensate for all of these complicating
factors thus necessitates more sophisticated models and fitting procedures. We propose
that a natural path forward is to borrow concepts and models from statistical literature,
namely Bayesian statistical literature, and embed the biophysical model of interest in a
larger statistical model. A similar approach has been used before to measure cell-to-cell
variability, and has shown this approach’s effectiveness for fitting the hERG channel in
high-throughput systems [19]. Our work shows that statistical modeling can also be
effective using data from traditional patch-clamp systems and the more complex Nav.

By embedding the biophysical model in a statistical model, we can combine the
strengths of both approaches. The biophysical model is capable of capturing the complex
time and voltage relationships seen in the Na+ current in myocytes in a concise and
interpretable fashion, which is why they have been at the core of electrophysiological
modeling for almost 70 years. They also have the ability to help compensate for some
highly important factors such as changes in the voltage clamp protocol, or changes in
sodium ion channel concentrations, which vary across experiments and labs. On the other
hand, it is difficult to capture other changes in the environment in the biophysical model,
such as the effect of temperature. This is often not an issue in simulating myocytes, as they
also operate at a fixed temperature. However, for fitting Nav, this provides a particular
challenge, as the experiments are typically done at room temperature, while the system
of interest naturally operates at body temperature. To complicate the situation, ambient
temperature can vary considerably across studies, so some of the available data may be
taken at one temperature while the rest is at a different temperature. Incorporating this
information into the fitting process is non-trivial; however, this is possible in the statistical
model. Further, one uniquely Bayesian component is that some information from other
publications can be incorporated directly into the model. In the case of temperature, we
used the results of a different publication to characterize its effect, rather than trying to
extract that from our primary dataset.

It is worth noting that we found numerous large UVEP effects, suggesting that there
are important differences between papers, which are not explicitly defined in the experi-
mental protocol or the model. These differences may be the result of preparation techniques
and solution; artifacts in different patch clamp systems; heterogeneity in myocyte popu-
lations, or heterogeneity across individuals [45]. Further exploration of the roots of this
variability could yield important insights into the many factors which influence myocytes
and the sodium channel in particular.

Despite large UVEP effects and significant variability within papers, the average
parameter fits (Figure 4) seem to be reasonable summaries of the individual fits (Figure 3).
While the ability to average data together is often taken for granted in cardiac research, it is
not guaranteed that an average will be representative of the individual points which were
averaged together. This fact has been noted in neuronal tissue, where averaging sometimes
fails, and is associated with the measured properties having complex associations with
one another [46]. Our work suggests that in the context of Nav averaging is in fact
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a valid approach and should yield summaries which are in fact representative of the
underlying data.

One of the key components of Bayesian statistical models is their ability to incorporate
information known previously about the problem into the statistical model, through prior
distributions. One example of this is how we used previous information on temperature
effects to inform its effect in the model. More broadly, however, prior distributions provide
a powerful tool to incorporate the results of previous fits into future work. For example,
if more data was gathered on the sodium channel in human atrial myocytes, the results
from this study could inform prior distributions for the model of the new data. The new
model would then fit the new data, but be biased toward the results from this study; that
is, it would find a compromise between the new data and the old data. This is powerful
in the sense that the new fit is still informed by the old data, without needing to actively
fit to all of the old datasets. This effect also scales such that as more new data is present,
the old data becomes “washed out” and has a weaker and weaker effect on the model.
Thus Bayesian modeling provides powerful tools and intuitive approaches to handling
disparate data.

Another powerful feature of a Bayesian statistical model like the one we have de-
scribed is that an individual experiment does not need to conclusively define all the
parameters needed to specify the biophysical model. As long as some experiment does
define that parameter, it will be defined in the overall summaries. For example, an IV
curve is not significantly affected by the parameter values that control recovery from
inactivation. Thus, in a traditional approach, it would be impossible to fit the model to
individual experiments and instead only an overall fit across all the experiments would be
obtainable. However, in our approach, the overall mean and variances are fit at the same
time, and so the overall estimates can both infer parameter values from experiments where
that parameter is well defined and impose realistic restrictions on the experiments where
that parameter is poorly defined. Together, they allow us to estimate the collected set of
experiments as a population, rather than as one overall mean.

4.2. Variability Is of the Next Frontier for Electrophysiological Modeling

Having a variety of data is even more crucial when incorporating variability, as this
shifts the focus from finding one average fit of the data to finding a population of fits to the
data. Modeling a population also requires a model that can describe that variability, which
is by necessity a statistical model. Bayesian statistical models fit this requirement and
have the additional desirable property that they can interface with complex non-statistical
models, so long as the parameter space can be explored efficiently. This is in contrast
to other common statistical models, which typically require all model components to be
highly tractable.

We believe that modeling variability is an important next step in electrophysiological
modeling. As models continue to be used for increasingly important tasks such as drug
screening, it is crucial that we ensure the population of models we are using truly represent
the underlying population of interest. Previous approaches have mostly introduced vari-
ability into a model by assuming a distribution with defined mean and standard deviation.
In this conventional approach, parameters (usually various conductances) are assigned
a sampling distribution and then independent and identical samples are draw for each
parameter many times to form a population. While this is a reasonable first approxima-
tion and an efficient way to generate a population of models, there is no guarantee that
the sampling distribution is physiologically meaningful. This may not be a significant
issue, especially when the source of variability is confined for example to heterogeneity
in ion channel conductances where high throughput sequencing can provide reasonable
constraints. However, the challenge becomes greater as more sources of variability are
considered (for example, differences in channel gating). Going forward, we expect that the
many uses of models will require increasing accuracy and confidence in their prediction,
which cannot be met without modeling of variability. Further we have shown that a statisti-
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cal modeling framework can provide such estimates of variability from a complex dataset,
and in one of the most complex ion channels in the heart. We expect that the techniques
described here will play an invaluable roll in characterizing the variability in other ion
channels and in a full myocyte model.

The techniques applied here may also be combined with more conventional ap-
proaches to find a balance between simplicity and accuracy. Depending on the subject of
interest, some ion channels may not be as critical to producing cell models with realistic
variability. In these cases, it would be effective to vary the less important ion channels
using only the conductance with a simple distribution. Then by using this more in depth
model for the more critical ion channels, the resulting population may be very good ap-
proximation of the true population without needing to fit every ion channel using our new
approach.

4.3. Limitations

There are many sources of variability which can contribute to the overall and UVEP
standard deviations and range from artifacts or errors in the patch clamp measurements
to differences in experimental preparation to myocyte heterogeneity across tissue regions
and human populations. We have divided this variability into the two groups (overall
and UVEP) in order to better understand the impact of these sources at these two different
levels in the data. However, these data are not fine-grained enough to facilitate a more
detailed modeling of all of these potential sources, and so it is certainly possible that some
of the variability seen in the overall standard deviation is not physiological in nature, but
is instead the result of experimental artifacts [45].

We have shown that a statistical approach may be used to generate a physiological
population of Nav and action potential models using heterogeneous data from multiple
(but limited) sources. The greatest challenges in this approach arise from the complexity of
the Nav model and the low information content of the individual experiments in the dataset.
The Nav channel is inherently complex [47], both in terms of the number of parameters
needed to define the model as well as in finding numerical solutions to its differential
equations. The large number of parameters leads to a huge search space that a fitting
algorithm must traverse in order to find reasonable solutions, resulting in long fitting times.
Additionally, computing the numerical solutions to each experiment is compounded by
the number of simulations needed to reproduce the >500 points from 44 experiments. This
connects to what we mean by the low information content of each experiment. In other
words, to reproduce, for example, an IV curve with 20 data points, 20 separate simulations
are needed, and only the peak current is used from each simulation. This means that
the model must simulate a huge amount of data, most of which is thrown out, simply to
represent a handful of points. Thus more than >500 simulations needed to be run at each
step of the fitting procedure. While all simulations could be executed in < 30 seconds, the
overall effect was that the total fitting time required was in excess to 200 computational
hours utilizing a 20 core processor.

We expect that for more complex models, such as the L-type calcium channel, or
very large Markov models, this approach would be difficult to implement effectively.
Similarly, for whole cell models, the fitting times would be very large. However, these chal-
lenges could be partially or fully ameliorated by modeling more directly the experimental
recordings, as they would provide a much richer dataset, and thus would require fewer
simulations to be run at each step in the fitting process. Further, for simpler ion channels
such as the potassium channels, the size and computational expense of the models are
greatly reduced and would make excellent targets for this approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10061516/s1, Figure S1: Normalized IV Curves and Current Traces, Figure S2: Correlation
Matrix, Table S1: Experimental Conditions.
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Appendix A. Full Statistical Model

The statistical model used by the fitting procedure for maximum a posteriori estima-
tion.

XResults,j = xbiophysical,j + εExperimental,j,l,m

εExpiremental,j,l,m ∼ N
(

0, σ2
Experimental,l

)
σExerimental,l ∼ InverseGamma(0.001, 0.001)

xbiophysical,j = BiophysicalModel
(

PVj
)

PVi,j =
[

Pi
]

j

Pi = β0,i + βTemp,i·Tk + µ2
UVEP,i, k + εParameter,i,j

β0,i ∼ N
(

µβ0 ,i, σ2
β0,i

)
βTemp,i ∼ N

(
µβTemp ,i, σ2

βTemp ,i

)
µUVEP,i, k ∼ N

(
0, σ2

UVEP,i

)
εParameter,j ∼ N25(0, ΣParameter)

σUVEP,i ∼ InverseGamma
(
αprior,i, βprior,i

)
ΣParameter = diag(σParameter) ρParameter diag(σParameter)

σParameter ∼ InverseGamma
(
αprior, βprior

)
ρParameter ∼ Lewandowski− Kurowicka− Joe(η = 1)

The detailed coefficients for the priors are provided below. Most priors were vague but
proper, except for βTemp where temperatures effects were defined or for Ahf. Information
on Ahf was given in two publications (Sakakibara et al. and Cai et al.) used for fitting,
however incorporating this directly into the experimental data was not always possible
and the small amount of data present was not sufficient to constrain Ahf, thus we choose to
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restrict the priors, setting Ahf to have a mean of 0.85 in accordance with the results from
those publications [34,37].

µβ0,i =

{
0 : i ∈ 0, . . . , 17, 19, . . . , 24

1.7 : i = 18

σβ0,i =

{
100 : i ∈ 0, . . . , 17, 19, . . . , 24

1/10 : i = 18

µβTemp ,i =


− 7/100 : i ∈ 1, 4, 10, 14, 21

4/10 : i ∈ 6, 9, 11, 15, 20, 22

− 4/10 : i = 3

0 : otherwise

σβTemp ,i =

{
1/100 : i ∈ 1, 4, 6, 9, 10, 11, 14, 15, 18, 20, 21, 22

100 : otherwise

αprior, i =

{
0.001 : i ∈ 0, . . . , 17, 19, . . . , 24

11 : i = 18

βprior,i =

{
0.001 : i ∈ 0, . . . , 17, 19, . . . , 24

1 : i = 18

i ∈ 0 . . . 24, The biophysical model parameter, names provided in Table A1 below.
j ∈ 0 . . . 44, The experiment, see Supplementary Table S1 for individual experiments

and their protocols pages: iv_curve and gating.
k ∈ 0 . . . 5, The paper, fully determined by j, the experiment number.
l ∈ 0 . . . 5, The experiment type, fully determined by j, the experiment number.
m ∈ 0 . . . nj, The index of an individual data point; nj, The number of data points in

the jth experiment.
In addition to the priors a potential was also added to the model to reduce the impact

of the idealized current traces, as they were artificial data, and thus provided more data
points than the other kinds of experiments. The loglikelihood for each idealized current
traces was divided by the square root of the number of artificial points in the current trace.

Table A1. The biophysical model parameter.

Index Transformation Model Parameter Factors

0 GNa = exp(GNaFactor) GNaFactor

1 baseline = 2.038 exp(baselineFactor) baselineFactor

2 mssslope = 9.871 exp
(

mssslopeFactor
)

mssslopeFactor

3 mssshi f t = 51.57 + mssshi f tFactor mssshi f tFactor

4 τmmax,inital = 0.474 exp(tmmaxFactor) tmmaxFactor

5 τmslope1 = 34.77 exp
(

τmslope1Factor
)

τmslope1Factor

6 τmshi f t,inital = −57.6 + tmshi f tFactor τmshi f tFactor

7 τmslope2 = 5.955 exp
(

tmslope2Factor
)

τmslope2Factor

8 hssslope = 14.086 exp
(

hssslopeFactor
)

hssslopeFactor
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Table A1. Cont.

Index Transformation Model Parameter Factors

9 h f ssshi f t = −76 + hssshi f tFactor hssshi f tFactor

10 τh fmax,inital = 5exp(τh fmaxFactor) τh fmaxFactor

11 τh fshi f t,inital = −57.64 + th fshi f tFactor τh fshi f tFactor

12 τh fslope1 = 6.285 exp
(

τh fslope1Factor
)

τh fslope1Factor

13 τh fslope2 = 15 exp
(

τh fslope2Factor
)

τh fslope2Factor

14 τhsmax,inital = 5.894 exp(τhsmaxFactor) τhsmaxFactor

15 τhsshi f t,inital = −66.947 + thsshi f tFactor τhsshi f tFactor

16 τhsslope1 = 28.05 exp
(

τhsslope1Factor
)

τhsslope1Factor

17 τhsslope2 = 40 exp
(

τhsslope2Factor
)

τhsslope2Factor

18 Ah f = 1
1+exp(−Ah f Factor) Ah f Factor

19 jssslope = 20 exp(jsstauFactor) jssslopeFactor

20 jssshi f t = −110 + jssshi f tFactor jssshi f tFactor

21 τ jmax,inital = 100exp(τ jmaxFactor) τ jmaxFactor

22 τ jshi f t,inital = −80 + tjshi f tFactor τ jshi f tFactor

23 τ jslope2 = 10 exp
(

τ jslope2Factor
)

τ jslope2Factor

24 τ jslope1 = 20 exp
(

τ jslope1Factor
)

τ jslope1Factor

Appendix B. Equation Reparameterization

The inverted bi-exponential was reparameterized to allow control over the location
and value of the peak. These transformations were performed before the biophysical
equations in Methods, which parameterized the rate constants for gates m, h, and j, as in
the following equation.

τx =
τxmax

exp
( v−τxshi f t

τxslope1

)
+ exp

(
−(v−τxshi f t)

τxslop2

)
However the τxmax and τxshi f t were modified as below.

τxshi f t = shi f tadjust − τxshi f t, inital

τxmax = τxmax,adjust·τxmax,inital

shi f tadjust =
log(τxslope1/τxslope2)
1/τxslope1+1/τxslope2

τxmax,adjust = exp(shi f tadjust/τxslope1) + exp(− shi f tadjust/τxslope2)

In these equations, τx is the rate constant of a gate and v is the transmembrane
voltage. The parameters which we adjust are: τxmax the maximum value of the curve;
τxshi f t the voltage at which the maximum (τxmax ) occurs. Without these modifications,
the location and value of the maximum are dependent on the values of τxslop1 & τxslop2, so
it was necessary to first calculate the maximum height correction τxmax,adjust and the shift
correction shi f tadjust, in order to find values of τxmax and τxshi f t, which would correspond
to a maximum at τxmax,inital with its location at τxshi f t, inital . Before these adjustments the
max and location would change with different slope parameters. The advantage of this
different parameterization of the inverted bi-exponential is that max and its location follow
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an intuitive definition than the parameters in other parameterizations. Further, this allows
for the maximum and its location to be independent of each other and the slopes. The
slopes, however, cannot be made entirely independent from one another. Reducing the
dependence of variables on each other improves the efficacy of the fitting process.

Appendix C. Markov Model

The rate constants and steady states defined in Methods are converted into Markov
model transition rates a and b.

a =
(

mss
τm

hss
τh f

hss
τhs

jss
τ j

)
b =

(
(1−mss)

τm
(1−hss)

τh f

(1−hss)
τhs

(1−jss)
τ j

)
These transition rates are then used to define the 3 independent sets of differential

equations needed for the model. See Figure 2A for a state diagram of these equations.

d
dt

[
Om
Cm

]
=

[
−b1 a1
b1 −a1

][
Om
Cm

]

d
dt

 A f
C f
I f

 =

 −b2 a2 0
b2 −(a2 + b4) a4
0 b4 −a4

 A f
C f
I f



d
dt

 As
Cs
Is

 =

 −b3 a3 0
b3 −(a3 + b4) a4
0 b4 −a4

 As
Cs
Is


Finally, after solving these systems of differential equations, the sodium current can

be computed using the following equation.

INa = GNaO3
m

[
Ah f · A f + (1− Ah f ) · As

]
[v− vrev]

vrev = R·T
F log

(
na+o
na+I

)
In this equation, v is the transmembrane voltage, R is the gas constant, T is the

temperature in Kelvin, F is faraday’s constant, na+o is the external sodium concentration,
na+I is the internal sodium concentration and vrev is the reversal potential for sodium. GNa
and Ah f are the model parameters for conductance and proportion of fast to slow h gate,
respectively.
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