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Abstract

We tested the metabolic rate hypothesis (whereby rates of mtDNA evolution are postulated to be mediated primarily by
mutagenic by-products of respiration) by examining whether mass-specific metabolic rate was correlated with root-to-tip
distance on a set of mtDNA trees for the springtail Cryptopygus antarcticus travei from sub-Antarctic Marion Island. Using
Bayesian analyses and a novel application of the comparative phylogenetic method, we did not find significant evidence
that contemporary metabolic rates directly correlate with mutation rate (i.e., root-to-tip distance) once the underlying
phylogeny is taken into account. However, we did find significant evidence that metabolic rate is dependent on the
underlying mtDNA tree, or in other words, lineages with related mtDNA also have similar metabolic rates. We anticipate
that future analyses which apply this methodology to datasets with longer sequences, more taxa, or greater variability will
have more power to detect a significant direct correlation between metabolic rate and mutation rate. We conclude with
suggestions for future analyses that would extend the preliminary approach applied here, in particular highlighting ways to
tease apart oxidative stress effects from the effects of population size and/or selection coefficients operating on the
molecular evolutionary rate.
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Introduction

The rate of molecular evolution is known to vary in three

predominant ways (changes in: mutation rate, population size, and

selection coefficients; [1]), but in practice, the specific causes of

rate variation are difficult to isolate [2,3]. Recent interest has

focused on the contribution of nucleotide mutation rate to the rate

of molecular evolution. While general trends of this rate variation

can be attributed to differences in repair equipment among taxa

[1], multiple variables are expected to affect mutation rate itself.

Mutations arise through unrepaired errors accrued during DNA

replication and other damage-causing processes. However, the

mutation rate may also be influenced by the life history of a species

[1,4]. Thus, factors including body size, generation time, and

metabolic rate may play important roles in determining the

evolutionary rate of taxa through their effects on the mutation

rate. Recently, mutation rates have been analysed indirectly using

these biological variables with the intention of developing an all-

encompassing theory to describe the patterns and processes of

evolutionary rates for a range of taxa [2,5–11]. According to

proposed theories, animal taxa with large body sizes, long

generation times, and low mass-specific metabolic rates should

have a slower mutation rate [12–15]. This is consistent with

observations that ectotherms have lower evolutionary rates than

endotherms and that small vertebrates with high metabolic rates

have higher substitution rates than large vertebrates with lower

metabolic rates [1].

Metabolic rate and generation time (both correlated with body

size) may affect mutation rates by altering the mean residence times

of nucleotides, such that these would tend to be shorter in small,

short-lived and metabolically active species [16]. In particular,

normal cellular metabolism is well established as a source of reactive

oxygen radicals — harmful by-products that can account for the

background levels of oxidative DNA damage detected in normal

tissue [17]. In healthy organisms a small but significant part of

respiratory activity generates such radicals (e.g. hydroxide: OH2),

which are capable of modifying several types of macromolecules,

including DNA [17]. Antioxidants eliminate many of these radicals;

however the remaining fraction can cause significant damage. This

is generally expected to occur near the sites of radical generation,

since the most reactive radicals are poor diffusers [13]. Thus

mtDNA (the site of respiration) is likely to be a prime target for

oxygen-radical caused damage, and indeed it has a higher rate of

molecular evolution than nuclear genes in animals [1].

Mitochondria are able to repair at least five different types of

DNA damage [13]. However, the repair of mtDNA oxidative

damage has been reported as a relatively error-prone process [18].

In relation to a ‘metabolic rate hypothesis’, rates of mtDNA

evolution are postulated to be affected primarily by by-products of

respiration (e.g. oxygen radicals) which can cause mutations in

DNA. Thus, if reactive oxygen radicals have a mutagenic effect on

DNA, then taxa with higher metabolic rates should generate

higher concentrations of mutagens and sustain more DNA

damage. Indeed, empirical studies have demonstrated that species
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with higher metabolic rates experience higher rates of reactive

oxygen radical production [19] and higher rates of oxidative DNA

damage [20–22].

Interest in metabolic rate for its influence on nucleotide rate

variation among populations was stimulated by Martin and

Palumbi [5] and Rand [22] who documented effects of body size,

temperature and correlated variables, including generation time

and metabolic rate, on DNA substitution rate across various

animal species. More recent work has supported these findings

[10,11]. The mass-specific metabolic rate model of Gillooly et al.

[7] used thermodynamic equations to relate temperature and body

size to metabolic rate and Gillooly et al. [8] demonstrated that

body mass, temperature and metabolic rate explain a significant

fraction of the variance in nucleotide substitution rates in a broad

sample of organisms. Most recently, Gillooly et al. [9] showed that

rates of protein evolution are largely controlled by mutation rates,

which in turn are strongly influenced by individual metabolic rate.

Several studies have addressed this question through empirical

work [5,6,12,22–25]. However, studies of this type have run into

inherent difficulties because the effects of different variables on

evolutionary rates are hard to tease apart. Divergent groups of

taxa usually differ in many respects (e.g. nucleotide generation

time, G + C content, various life history traits), making it difficult

to isolate single factors acting on DNA evolution. Therefore

investigations of rate heterogeneity at an intra-specific level may be

helpful, through their avoidance of these particular confounding

factors [26].

Indeed, few studies to date have examined intraspecific levels of

rate heterogeneity. Notwithstanding the difficulties of teasing apart

population size and selection effects on rates of evolution (see above),

this is most likely due to the relatively small number of mutational

events that occur between closely related samples, making it difficult

to achieve a statistically significant number of nucleotide mutations

between sequences. Choice of a relatively fast-evolving mtDNA gene

may go some way towards overcoming this.

Felsenstein [27] pointed out that comparative studies must

account for the hierarchically structured phylogeny that underlies

all species when assessing whether one physiological variable is

correlated with another. This is because treating species as the

units of analysis in a comparative study assumes that the traits

under investigation evolved independently in each lineage. Owing

to the phylogenetic structure of the data, however, the species will

share some portion of the path leading from the root to the tips of

a phylogenetic tree, and for closely related species, this may be

most of the path. As a consequence, if taxa with a certain

physiological trait are all closely related, they will tend to have a

low genetic distance to each other regardless of their trait status

[28]. Thus, ignoring the underlying coalescent history of taxa will

almost certainly bias estimates of any correlation. Fortunately,

there are techniques available which can account for the

underlying phylogeny when examining hypotheses about trait

data [28].

Here, we attempt to use such a method to examine the

relationship between metabolic rate and mtDNA (cox1) mutation

rate. We use mtDNA because, although data on mtDNA repair in

non-model organisms are scarce, there is evidence that mtDNA

repair efficiency varies in natural populations and may thus be

influenced by natural selection [25,29–33]. It is also recognised

that molecular evolution can be highly variable within and among

taxonomic groups, at least for mtDNA [34]. Further, evolutionary

lability in metabolic traits including metabolic rate (and by

inference, DNA damage rate) mean that variation among

individuals will exist at the intra-specific level. Collectively,

variation in mtDNA may therefore be used to explore the

intraspecific relationships between metabolic rate and the rate of

DNA mutation (as opposed to the rate of nucleotide substitution,

which is a population-level measurement involving the incorpo-

ration of somatic mutations into the germ line).

We explore this by making use of an existing metabolic rate and

mtDNA (cox1) dataset for the insect-like (arthropod) springtail

Cryptopygus antarcticus travei Déharveng, 1981 (Collembola, Isotomi-

dae) from sub-Antarctic Marion Island. This existing dataset

(which forms part of a broader project; see [35,36]) demonstrates

both genetic and metabolic differentiation among these springtail

populations [37], hence we use it to examine the relationship

between metabolic rate and mtDNA (cox1) mutation rate. Using

data on relative intra-specific genetic divergence, we test the

hypotheses, that: (1) mass-specific metabolic rate (the trait) is

positively correlated with mtDNA genetic distance (i.e., mutation

rate) among C. a. travei individuals; and (2) this trait is dependent

on the underlying mtDNA tree.

Methods

Location and Sample Collection
Marion Island (46u549S, 37u559E) forms part of an isolated

archipelago in the Indian Ocean sector of the Southern Ocean.

Adult specimens of the springtail C. a. travei were collected from six

locations across the island (Figure 1) during a 3-week period in

April 2007. Extreme care was taken to ensure all samples

approximated a similar body mass. We make the assumption that

factors such as generation time and longevity did not differ greatly

among samples/populations; this was not possible to measure, but

it seems reasonable. After collection, samples were kept outside the

laboratory for a minimum of one day and a maximum of three

days in order to maintain near-natural field conditions. Individuals

were then moved to plastic vials containing a moist Plaster-of-Paris

base and moss shoots as a food source, and stored at 10u60.5uC in

a Sanyo MIR incubator (Sanyo E & E Europe, Loughborough,

UK) (12:12 L:D) for 24 h prior to metabolic rate measurement.

Metabolic Rate Measurements
The method employed to measure rates of oxygen consumption

followed that of [36]. In brief, a fiber-optic oxygen sensing system

(Ocean Optics Inc., Florida, USA) was used to monitor oxygen

partial pressure (pO2) over time for individual animals in a closed

respirometry system calibrated by the manufacturer for multiple

temperatures and oxygen percentages.

Following calibration, individual animals that had been starved

for 24 h were placed in a custom-made 40 ml chamber [36], into

which the oxygen probe was inserted. During a 3 h period,

temperature and pO2 in the chamber were recorded continuously

using oxygen sensing software (OOISensor ver. 1.05, OceanOptics

Inc., USA). Temperature during runs was held at 10u60.1uC
using a Sable Systems PTC-1 cabinet (Sable Systems, Las Vegas,

USA). This measurement temperature was slightly higher than the

average summer microhabitat temperature later measured at

Marion Island [36], however, was selected primarily for

comparability to existing metabolic rate work on springtails in

continental Antarctica [36].

Upon completion of a run, partial pressure profiles were used to

calculate oxygen consumption rates for each individual, and an

estimate of individual animal mass was used to express

corresponding oxygen consumption rates on a mass-specific basis

(see [36] for further information, including quality control).

Photographs of individual springtails were measured using image

analysis software (Leica Application Suite, Leica Microsystems,

South Africa) and mass was estimated using the relationship:

Springtail Rate Variation
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W = 6.1894L3.11961029 (after [38]), where W = mass (mg), L =

length (mm), as modelled for the nominate subspecies C. a.

antarcticus on maritime Antarctic Signy Island.

DNA Extraction, Amplification and Sequencing
Mitochondrial DNA cytochrome c oxidase I (cox1) sequences

were obtained from all individuals for which a metabolic rate was

measured (n = 45). Extraction, thermal cycling and sequencing

conditions are outlined in [35].

Haplotype Network Analysis
TCS ver. 1.21 [39] was used to estimate a haplotype network using

the statistical parsimony algorithm of [40] and a connection limit of

95%. Metabolic rate data was grouped into three roughly equal-sized

categories corresponding to ‘low’ (,0.0010 mlO2.mg21.hr21; n = 17),

‘medium’ (0.0010#x#0.0020 mlO2.mg21.hr21; n = 11), and ‘high’

(.0.0020 mlO2.mg21.hr21; n = 17) (see Figure 2) and mapped onto

this network to give a graphical representation of any relationship

between mutation rate and metabolic rate. These groupings are for

visualisation purposes only, and were not used in the statistical

analyses.

Combined Metabolic Rate and DNA Mutation Rate
Analyses

To explore whether metabolic rate is correlated with evolu-

tionary rate (distance from the ‘ancestral’ haplotype), we took two

approaches. In doing so, we rely on four assumptions: (1) that

different haplotypes experience similar diurnal and annual

temperature regimes; (2) that the temperature-dependence of

metabolic rate is constant among haplotypes; (3) that seasonal

variation in respiratory acclimation is constant among haplotypes;

and (4) that distinct populations are not so distinct as to preclude

the grouping together of metabolic rate measurements (since

individuals with metabolic rates falling into all of our pre-defined

‘low’, ‘medium’, and ‘high’ categories are present in each of the

populations, we feel this last assumption is justified). We also make

use of the assumption commonly employed in studies of

population genetics – that the haplotype which is most frequent

and geographically widespread corresponds to the ‘ancestral’

haplotype [see 41]. We recognise that violation of any of these

assumptions may violate our analytical approaches.

Of our two approaches, the first was based on the haplotype

network directly; we calculated two test statistics that were

designed to measure: (1) if similar haplotypes had similar metabolic

rates, and (2) if haplotypes that were further from the putative root

of the network had higher metabolic rates. The significance of

these two test statistics was assessed using a randomisation test. The

second approach was to perform correlation analysis on a set of

trees generated using Bayesian analyses in the program BAYES-

TRAITS ver. 1.0 ([42]; available from www.evolution.rdg.ac.uk).

These approaches are outlined in more detail below.

Randomisation test analyses. The first test statistic, T1,

was the sum, over all pairs of haplotypes whose distance in the

haplotype network was less than k, of the absolute value of the

Figure 1. Geographic locations on Marion Island referred to in the text. Inset: Marion Island’s location in the Indian Ocean.
doi:10.1371/journal.pone.0009686.g001

Springtail Rate Variation
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difference in metabolic rate:

T1 kð Þ~
X

i

X

j[Nk ið Þ
m ið Þ{m jð Þj j

where an individual j is in the neighbourhood Nk(i) of an individual

i if the distance in the haplotype network between i and j is less

than k, and m(i) is the metabolic rate of individual i.

The second test statistic, T2, was the sum, over all directed edges

(u,v) in the haplotype network, of the average metabolic rate of

individuals at node v minus the average metabolic rate of all

individuals at node u.

The null distribution of each of these test statistics was

determined by reassigning the metabolic rates to individuals at

random without replacement (i.e., shuffling the metabolic rates)

1000 times, each time recalculating the test statistic. The most

prevalent haplotype was used as the putative root of the network,

and all edges were directed away from the root. For each test

statistic we report a p-value, which is the proportion of the 1000

randomisations that the value of the test statistic was higher than

for the real (un-shuffled) metabolic rates.

BAYESTRAITS (correlation) analyses. BAYESTRAITS imple-

ments two models of continuous trait evolution: the standard

constant-variance random walk model (Model A), in which the

given trait evolves randomly (i.e., with no overall tendency to increase

or decrease) along a phylogenetic tree; and a directional random walk

model (Model B), in which the trait tends to either increase or

decrease along the tree, leading to the expectation that mutational

steps from the root will be correlated with the trait value [42].

In the standard BAYESTRAITS approach Model A and Model B

are compared in order to test the hypothesis that tips further from

the root have different average trait values from tips nearer the

root due to directional selection [42]. Here, we use BAYESTRAITS in

a novel way, however, the hypotheses tested produce the same

patterns: if there is a causal link between mass-specific metabolic

rate and mutation rate (as suggested by the lines of reasoning given

in the Introduction) then metabolic rates will be higher for tips that

are further from the presumed root of the tree (i.e., that have

higher mutation rates) (Model B pattern), whereas if there is no

direct correlation between metabolic rate and mutation rate there

should be no trend of higher metabolic rates for tips that are

further from the presumed root of the tree (Model A pattern).

In the analyses presented here, we determine significance of

results based on the use of Bayes Factors as described in the

BAYESTRAITS manual ([42]; www.evolution.rdg.ac.uk). The use of

Bayes Factors applies logic similar to that used in likelihood ratio

tests, except the marginal likelihoods of two models are compared

rather than their maximum likelihoods. The marginal likelihood

(approximated by the harmonic mean of the maximum likelihoods

in BAYESTRAITS when the Markov chain has run for a sufficient

number of iterations; see BAYESTRAITS manual) of a model is the

integral of the model likelihoods over all values of the model’s

parameters and over all tree results. Thus, to compare two models,

the Bayes Factor ‘test statistic’ is: 2(log[harmonic mean(better

model)] – log[harmonic mean(worse model)]; any positive value

favours the dependent model, but conventionally, a ratio .2 is

taken as ‘positive’ evidence, .5 as ‘strong’ evidence and .10 as

‘very strong’ evidence for support of one model over the other

([42]; www.evolution.rdg.ac.uk).

We initially ran MODELTEST ver. 3.7 [43] in PAUP* on the cox1

dataset to determine the best model of evolution for subsequent

Bayesian analyses – both the hierarchical Likelihood Ratio Test

(hLRT) and Akaike Information Criterion (AIC) returned the

HKY model. We then used the program BAYESPHYLOGENIES to

generate a Bayesian phylogeny estimation over 100,000,000

iterations, sampling every 100,000th tree (Pf = 100,000) using the

HKY model. We reviewed the resulting files in TRACER ver. 1.4.1

[44] to check convergence and proceeded with a tree file (with

10% burn-in discarded) of 900 trees, to BAYESTRAITS analysis.

All our analyses used the sub-program ‘CONTINUOUS’ within the

software package BAYESTRAITS. We felt that the most appropriate

approach was to use the program in MCMC mode (vs. ML mode)

on a set of trees generated by Bayesian analyses. Such trees come

from the posterior distribution, i.e., they are sampled in proportion

to their likelihood given the sequence alignment data and the

model of sequence evolution; this means that running BAYES-

TRAITS in MCMC mode is effectively averaging over the tree

estimate or treating it as a nuisance parameter.

As we required rooted, fully-resolved trees, we assigned an

arbitrary individual bearing the most common haplotype (see

Figure 2) to the outgroup and forced the analysis to retain zero

Figure 2. Bar-graph of metabolic rate categories. Metabolic rate data is grouped into three roughly equal-sized categories corresponding to
‘low’ (,0.0010 mlO2.mg21.hr21; n = 17; light grey bars), ‘medium’ (0.0010#x#0.0020 mlO2.mg21.hr21; n = 11; medium grey bars), and ‘high’
(.0.0020 mlO2.mg21.hr21; n = 17; dark grey bars).
doi:10.1371/journal.pone.0009686.g002
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length branches (using the pset collapse = no command in PAUP*)

rather than collapsing branches. We note that this approach may

affect the comparison of Model A and B in BAYESTRAITS as an

incorrect root node may hamper the detection of trait evolution,

hence we repeated our analyses assigning another arbitrary

individual bearing the most common haplotype to the root node

and checked for concordance of results.

First, we used BAYESTRAITS (in MCMC mode) to examine the

correlation between the root-to-tip distance (i.e., mutation rate) of

our phylogenetic estimates and the trait (mass-specific metabolic

rate) under both the Random Walk (Model A) and Directional

(Model B) models of trait evolution. Initial runs showed that the

MCMC chain was not mixing well. This problem was solved by

scaling the metabolic rate dataset up by a factor of 1,000, and by

lowering the ratedev parameter to 0.002 (Mark Pagel, personal

communication). Second, we performed additional analyses under

Model A to investigate whether metabolic rate was dependent on

the underlying tree. This was assessed by calculating the Bayes

Factor for a comparison between a model in which the lambda (l)

parameter was freely estimated versus a model in which it was set

to 0 (the latter corresponds to variation in the trait being entirely

independent of the underlying phylogeny).

Results

Metabolic Rate Analysis
Average metabolic rate among the six populations ranged from

0.0009 – 0.0029 mlO2.mg21.hr21 (average: 0.001960.0002

mlO2.mg21.hr21 (S.E.M.)). Generalized Linear Model (GLM)

analyses performed in an additional study [37], showed that

metabolic rate differences among populations were significant

(F5,42 = 8.196; P,0.001) and a statistical relation to mass was not

found (F5,42 = 0.531; P = 0.470).

Haplotype Network Analysis
There were a total of 16 unique haplotypes for the cox1 dataset

(GenBank Accession No.s: GQ268918-268931) and the maximum

number of mutational steps between these was nine (Figure 3). The

haplotype network showed a pattern of one most common (i.e.,

presumed ‘ancestral’) haplotype (n = 27) from which several

singletons (and one haplotype with n = 4) were derived. Earlier

work [37] showed that haplotype-sharing among C. a. travei

populations was common, with the number of haplotypes present

in each population relatively high and usually including a proportion

of unique haplotypes. This work also suggested that populations

were genetically differentiated (e.g. Qst values, which measure

population differentiation, were mostly large and significant).

Of the 45 individuals, 17, 11 and 17 corresponded to ‘low’,

‘medium’ and ‘high’ metabolic rate categories, respectively. The

ancestral haplotype had a mixture of individuals with ‘low’,

‘medium’ and ‘high’ metabolic rates, however a visual pattern

where more derived haplotypes (i.e., those with a greater number

of mutational steps from the proposed ancestral haplotype) have

higher metabolic rates was evident in Figure 3. In particular, 11 of

the 15 derived haplotypes (i.e., 73.3%) were from individuals with

‘medium’ or ‘high’ metabolic rates. Thus there appears to be some

support for an overall pattern of metabolic rate structure

coinciding with genetic structure.

Combined Metabolic Rate and DNA Mutation Rate
Analyses

Randomisation test analyses. The randomisation test

analyses we performed were unable to provide statistical support

for relationships among the parameters we tested at a 5% level of

significance. Specifically, for the first test statistic we evaluated,

T1(0) (which measures the similarity in metabolic rates of

individuals with identical haplotypes), P = 0.061, and for T1(1)

(which measures the similarity in metabolic rates of individuals

that differ by at most one mutational step in the network in

Figure 3), P = 0.208. The second test statistic, T2, measures

whether there is a directional change in metabolic rates as we

move away from the putative root of the haplotype network

(Figure 3) and for this test, P = 0.871.

BAYESTRAITS analyses. The 900 trees from the post burn-in

posterior distribution of the BAYESPHYLOGENIES analysis are

summarised as a consensus tree in Figure 4. The lack of

resolved relationships in Figure 4 (in particular the largest

polytomy includes the 27 taxa that form the main group in the

haplotype network) is expected given the haplotype network

(Figure 3) and highlights the importance of averaging over

different possible coalescent histories (i.e., using MCMC mode

in BAYESTRAITS). The branch lengths shown are means (i.e., the

length of a given branch is the average value of that branch length

taken over all the trees it appears in); they indicate that there is

variation in the root to tip distances when the root is chosen to be

an arbitrary taxon from the main haplotype group (Figure 4).

Figure 3. Haplotype network for the mtDNA cox1 dataset for
Cryptopygus antarcticus travei from Marion Island. Each large circle
represents a unique haplotype and each line represents one mutational
step. Numbers in parentheses indicate haplotype frequency (when .1),
while ‘p’ indicates an inferred or missing haplotype. Shading indicates
whether individuals with that haplotype have low (,0.010 mlO2.mg21.hr21;
white), medium (0.0010#x#0.0020 mlO2.mg21.hr21; light grey) or high
(.0.0020 mlO2.mg21.hr21; dark grey) metabolic rates. This figure is not to
scale.
doi:10.1371/journal.pone.0009686.g003
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For the first analysis run in BAYESTRAITS (comparing Model A to

Model B), we found that, while Model B had a slightly better

marginal likelihood, the evidence to support this was not strong

(i.e., Bayes Factor ,2) (Table 1). This means our analyses are

unable to reject a model in which metabolic rate is not correlated

with greater genetic distance to the ancestral node.

Figure 4. Majority-rule consensus tree of the 900 post-burnin trees from the BAYESPHYLOGENIES analysis. Metabolic rates and population
codes of individuals are presented at tree tips. Population codes correspond to: CD = Cape Davis, KA = Katedraal, KD = Kildalkey Bay, MP = Mixed
Pickle, SW = Swartkops Point, TR = Trypot Beach. Branch lengths (shown by the scale bar in the bottom-left of the figure) are averages over the
length of the branch in the trees in which it appeared.
doi:10.1371/journal.pone.0009686.g004

Springtail Rate Variation
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However, in our subsequent BAYESTRAITS analysis examining

the lambda parameter within Model A, we found a Bayes Factor

.10 between the model where l was estimated and the model

where l= 0 (Table 1). This means there is strong evidence that

l?0, i.e., that metabolic rate is dependent on the underlying

mtDNA tree.

Discussion

Metabolic rate, body size, generation time and effective

population size vary through evolutionary time. These changes

likely introduce substantial noise to comparisons of physiology and

life-history parameters with rate of evolution. Despite this, several

researchers have reported observing correlations between rate of

evolution and other factors [5,45,46]. This includes work that

looked at evolutionary rates in two lineages of Hawaiian Drosophila

species and showed that population-level phenomena can be

important in understanding evolution at the molecular level

[26,47]. Metabolic factors were also highlighted as important

correlates (if not actual determinants) of variation in evolutionary

rates of hummingbirds, whose metabolism may be great enough to

alter substitution rates at the level of the nuclear genome [6]. Slow

mitochondrial evolution in turtles has been shown to potentially

correlate with generation time and/or metabolic rate [23] and

further studies supporting the metabolic rate hypothesis include

the work on aging in human tissues [21], a rate assessment

performed for marine turtles [16], and a study of tube-nosed

seabird evolution [12].

In contrast, several studies have failed to find support for the

metabolic rate hypothesis [3,4,24,48], or have conversely supported

body temperature [3], generation time [2], speciation [49,50], or

some combination of these factors [51]. Most recently, a study on the

New Zealand tuatara noted the highest rate of molecular change

recorded in a vertebrate, but contrastingly slow tempos of metabolism

and growth, and a long generation time for this reptile [52].

The current study is among the first to examine this clearly

complex relationship at the intra-specific level, and began with

what appeared to be a degree of support for the proposed

relationship between metabolic rate and DNA mutation rate. This

support was in the graphical form of a haplotype network onto

which metabolic rates were mapped. However, the results of our

analyses that tested for a direct correlation between these variables

while accounting for the underlying phylogeny were unable to

strongly corroborate this initially suggestive pattern in C. a. travei.

In other words, there is not strong evidence that metabolic rate

directly increases or decreases with evolutionary distance of

individuals from the putative root of the tree. Conversely,

subsequent analysis within a BAYESTRAITS lambda framework

provided strong evidence (Bayes factor .10) for the hypothesis

that metabolic rate is dependent on the underlying tree. This was

also weakly supported by the randomisation test statistic T1(0),

which tested if identical haplotypes had more similar metabolic

rates than expected by chance, and had a P-value of 0.061. Thus,

we conclude that, while we find no strong evidence to suggest that

metabolic rate and mutation rate (when measured as the root to

tip path length) are correlated directly, there is an indirect

relationship between these two variables, such that lineages with

related mtDNA also have similar metabolic rates.

Testing for a direct correlation between DNA mutation rate and

metabolic rate as well as several other life history traits is rendered

difficult for several reasons [4]. For example, we cannot assume

that relative rates of oxygen radical production in gonad cells are

effectively measured by whole body metabolic rate estimates [3],

and although evolutionary rates reflect the evolutionary history of

each lineage, life history variables are measured in the present time

and retain little information about the way they may have changed

over time across a lineage [14]. In addition, metabolic rate is

clearly not the only causative force leading to DNA damage [34]

and a variety of factors are likely to contribute to the likelihood of

any mutations becoming fixed in the population (e.g. protein

function, purifying selection, population size) [53].

In relation to C. a. travei from Marion Island, it is certainly

possible that differences among individuals relate to different

selective pressures among different populations. In particular,

populations from the western side of the island (SW, MP, CD)

have higher mean metabolic rates than populations located on the

eastern side of the island (KA, KD, TR) (Figure 1), and this may

suggest underlying environmental differences among locations.

Such variation over sufficient timescales may initiate selection

processes in certain loci.

Finally, the mtDNA cox1 gene may not be ideal for testing these

relationships and the sequence lengths employed here (516 bp)

may also be insufficient. Indeed, close inspection of the BAYE-

SPHYLOGENIES tree file generated in this study revealed that many

different coalescent histories are compatible with the data (as

expected given the haplotype network; Figure 3), and this could

obscure any association between mutation rate and metabolic rate.

Unfortunately, this limitation, which essentially relates to a poor

phylogenetic signal in our dataset, lies at the heart of the intra-

specific approach and is likely to represent the most severe

hindrance to studies of this type.

Although we stand by the a priori assumption underlying our

research (that a functional relationship exists between mtDNA

haplotype and metabolic rate based on the relationship between

metabolism, oxidative stress and DNA mutation; see Introduc-

tion), we must acknowledge the limits of our approach in

discriminating between the effects of metabolic rate and other

important factors which cause variation in evolutionary rate (i.e.,

population size and/or selection coefficients operating at the

molecular level). With this in mind, we intend our results to be

interpreted as a ‘first step’ in the analysis of this complicated issue

to expand the metabolic theory of ecology, and hope that they

stimulate further studies of mutation rate at the intra-specific level.

In particular, we recommend that future work include further

analysis following our methodological approach and using

phylogenetically independent contrasts (PICs; see [27]). Closely

related sister taxa with differing life history variables such as

generation time, body size, colonisation histories, population size,

potential selection coefficients and of course, metabolic rates

would provide fertile ground for future study of this issue.

Examinations at the intra-specific level using larger datasets and

including multiple genetic loci (including nuclear genes) are also

envisaged as steps to further enlarge our preliminary demonstra-

Table 1. Harmonic mean of log likelihood values of
metabolic rate and DNA mutation rate correlation tests.

Model
Harmonic mean of log
likelihood values Bayes Factor

A 277.4104 0.8476

B 276.5628

A(l= est) 277.0837 21.9678

A(l= 0) 299.0515

All tests performed in BAYESTRAITS on the springtail Cryptopygus antarcticus travei
from sub-Antarctic Marion Island.
doi:10.1371/journal.pone.0009686.t001
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tion. These latter suggestions in particular would aid the process

by giving greater power (i.e., phylogenetic signal) to statistical tests

such as the ones performed here. Indeed, we strongly recommend

that analyses of this type be repeated as larger datasets become

available, and expect that recent advances in DNA sequencing

technology allowing higher throughput (e.g. of complete mtDNA

genomes) are likely to make such studies feasible in the near future.

Finally, our work highlights the need for development of new

statistical approaches that seek to accommodate coalescent

processes which could potentially drive variation in branch lengths

independently of any underlying variation in mutation rate. We

look forward to such advances and the contribution they may

make to the generation of general conclusions concerning sources

of rate heterogeneity.
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