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This paper presents an effective optimization method using the Kriging surrogate model combing with modified rectangular
grid sampling to reduce the stent dogboning effect in the expansion process. An infilling sampling criterion named expected
improvement (EI) is used to balance local and global searches in the optimization iteration. Four commonly used finite element
models of stent dilation were used to investigate stent dogboning rate. Thrombosis models of three typical shapes are built to test
the effectiveness of optimization results. Numerical results show that two finite element models dilated by pressure applied inside
the balloon are available, one of which with the artery and plaque can give an optimal stent with better expansion behavior, while
the artery and plaque unincluded model is more efficient and takes a smaller amount of computation.

1. Introduction

Atherosclerosis is one of the most serious forms of cardiovas-
cular disease which is one of the principal causes of mortality.
Currently, three of the most common treatments for a
narrowed or weakened coronary artery disease are coronary
artery bypass grafting, percutaneous transluminal coronary
balloon angioplasty, and percutaneous transluminal coronary
stenting with the aid of coronary balloon angioplasty. Of
these, the coronary stent market increased rapidly because
of their high initial success rate, minimal invasive nature,
and improved long-term effectiveness compared to coronary
artery bypass grafting or coronary balloon angioplasty.When
a stent is used, it is collapsed to a small diameter and put
over a balloon-tipped tube called a catheter.With the balloon
inflating the stent expands, locks in place, and forms a scaffold
to hold the artery open and improve blood flow. Although
stent technology has been greatly improved since its incep-
tion, many problems remain in which related to restenosis
(i.e., the artery that was opened begins to become narrowed
again within months of the procedure). This phenomenon

is related to both arterial injury and inflammatory response
of the wall against the stent struts. Therefore, efforts aiming
at reducing the injury caused by stent implantations remain
very meaningful.

Previous studies indicated that the dogboning phe-
nomenon (i.e., the ends of a stent opening first during expan-
sion), which is due to nonuniform balloon-stent expansion,
has a significant impact on thrombosis and hyperplasia
development [1, 2]. This mechanical injure, that is, caused
by the warped struts in the stent is often thought to induce
an inflammatory response, which results in thrombosis and
affects artery restenosis [3–6]. The effects of balloon length
and compliance on vascular stent expansion were investi-
gated by Cui et al. [7]. It is also believed that the stent
designmay affect stent expansion performance, including the
dogboning phenomenon. Thus, it is important in stenting to
predict and optimize the dogboning effect before manufac-
turing the stent.

There are many published studies that investigated the
mechanical properties of stent expansion. The mechanical
properties of balloon-stent system expansion were simulated
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by the loading of radial displacement applied on inner
surface of balloon [3, 8]. It is a simplified loading which
can reduce the amount of computation but not close to the
real. In addition, a time-related pressure was applied on the
balloon surface to analyze the characteristics of balloon-
stent system dilation [4, 5]. This loading is much close to
the real situation but the interaction between the stent and
the vessel wall was not considered. Moreover, multicontact
including plaque/stent, balloon/stent, and plaque/balloon
was considered and the radial displacement on balloon was
used to dilate the balloon-stent system [6]. Clearly, this FEA
model is more complete, but the loading is still simplified.
Subsequently, the balloon-stent system dilation in narrowed
artery was modeled with the loading mode of a time-related
pressure applied on inner surface of balloon [9]. This FEA
model with the internal pressure loading is much closer to
the real situation, but it takes alot of computing because
of nonlinearities, such as elastoplasticity, large deformation,
and multicontact. In the present paper, the four common
finite elementmodels of stent expansionmentioned above are
used to design optimization for reducing dogboning effect,
respectively.

The dogboning rate is an important index for assess-
ing the quality of stent expansion [10]. It is a nonlinear,
implicit function of the geometrical parameters and inter-
nal pressure loads for the stent, these are typically evalu-
ated by the solution of the finite element method (FEM).
Depending on the fidelity of simulation for stent dilation, it
can become computationally expensive, limiting structural
optimization of the stent. Therefore, it is challenging to
reduce the computational cost of predicting the dogboning
rate during the optimization process. Consequently, some
approximationmodels are widely used during engineering to
construct simplified approximations for the analysis codes,
providing a surrogate model of the original code. In the
present paper, we use Kriging models as alternatives to
traditional second-order polynomial response surfaces for
constructing global approximations for stent optimization.
The Kriging model [11, 12], a semiparametric approach that
does not rely on any specific model structure, is much more
flexible than approaches based on parametric behavioral
models [13].

In terms of stent optimization, the expansion behaviors of
several stents with different given geometries were compared
in terms of dogboning, foreshortening, elastic recoil, and
so forth. [5]. It is easy to perform and analyze the effective
factors, but the obtained “optimal stents” are only better
combinations of geometry parameter levels, not the optimal
solution in the design space. An adaptive optimization
method based on Kriging surrogate model with a “space-
filing” sampling strategy named rectangular grid is here
proposed to minimize the absolute value of dogboning rate
of the stent in expanding process. Kriging surrogate model
can build an approximate function relationship between the
stent dogboning rate and design variables (the geometri-
cal parameters of the stent), replacing the expensive FEM
reanalysis of dogboning rate in the optimization.The adaptive
process is implemented by EI function. It can balance local
and global search and tend to find the global optimal design.

The optimization iterations are based on the surrogate model
for reducing the high computational cost.

2. Materials and Methods

2.1. Finite Element Models. ANSYS finite element package
was used to perform the numerical simulations. A typical
diamond-shaped coronary stent (shown in Figure 1) was
investigated in this study. A balloon with an 11.4mm length
and a 0.12mm thickness was placed inside the stent. Its
outside diameter was equal to the inside diameter of the stent.
The stent was not in contact with the plaque at the beginning
of the dilatation process.Theoutside surface of the plaquewas
adhered to the inner surface of the artery.

Bilinear elastic-plastic, hyperelastic (Mooney-Rivlin) and
linear isotropic (nearly incompressible) materials are here
assumed for the slotted tube stents, balloon, and tissue
(plaque and artery), respectively. All the material properties
inputted are based on the data available from previous studies
[2, 9].

The four FEA models are here constructed. LRD model
(shown in Figure 2(a)) is loaded by a radial displacement
applied on the inner surface of balloon to expand the diam-
eters of stent from 2.54mm to 4.54mm. This is to allow the
stenotic segment to be opened corresponding to the health
artery (diameter 4.54mm in this study). It is discretized
by 11815 elements and 10180 nodes, in which the plaque,
artery, stent, and balloon consist of 500 solid elements, 330
solid elements, 5103 solid elements, and 600 shell elements,
respectively. The contact pairs of balloon/stent, plaque/stent,
and balloon/plaque consist of 5282 contact elements. LPV
model (shown in Figure 2(b)) is the same as LRD model
except the loading method. This model is loaded by a time-
related pressure (shown in Figure 3). It should be noted that
the pressures are varied with different stent geometries. The
binary-search method was used to find the pressures used to
dilate the proximal region of the stents (see Figure 1) to the
nominal diameter (4.54mm in this study) after unloading.
This was done to allow the stenotic segment to be opened
in agreement with a health artery (diameter 4.54mm in this
study) after stent dilation. LPC model (shown in Figure 2(c))
is similar to LPV model except the constant pressure. The
last one is SMPV model which has the same loading method
as LPV model, but artery and plaque were not considered
(shown in Figure 2(d)). It is discretized by 8004 elements
and 8444 nodes, in which the stent and balloon consist of
5103 solid elements and 600 shell elements, respectively. Only
one contact pair of balloon/stent consists of 2301 contact
elements.

The pattern of the transient nonuniform stent expansion
based on the four FEA models is shown in Figure 4. Based
on LPV, LPC, and SMPV model, the radial displacement
in the distal region of the stent is larger than the proximal
displacement at the second instant shown in Figures 4(a) and
4(c). However, the radial displacement in the distal region
of the stent is closed to the proximal displacement since the
third instant is shown in Figures 4(a) and 4(c), corresponding
to the final phase of the expansion and unloading. These
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Figure 1: Stent model and geometric variables (mm). WLS, WTS and WDS are the width of the struts.
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Figure 2: FEMmodels. (a) LRDmodel: loaded by a radial displacement to expand the diameters of stent from 2.54mm to 4.54mm. (b) LPV
model: loaded by a pressure to expand the diameters of stent from 2.54mm to 4.54mm. (c) LPC model: loaded by a constant pressure.
(d) SMPV model: without artery and plaque, loaded by a pressure to expand the diameters of stent from 2.54mm to 4.54mm.

results are compared favorably with those reported in the
literature [10, 14, 15] while based on LRD model; the radial
displacement in the distal region of the stent is almost equal
to the radial displacement in the proximal region of the stent
because of the constant displacement loaded on the inner
surface of balloon (shown in Figure 4(b)).

2.2. Optimization Problem. Generally, the dogboning effect
exists throughout the expanding process. It usually reaches
its maximum in the beginning of loading [16, 17], but the
struts are not in contact with the vessel wall. From 25ms
to 32ms, the stent approaches an approximately cylindrical

shape (corresponded to regime of the third and fourth
instant appeared during the expansion of stent shown in
Figures 4(a) and 4(c)), and the dogboning effect is relatively
small, but stent radial displacement reaches the maximum,
pushing against the artery. The dogboning observed during
this period can cause serious transient mechanical injury to
vessel wall. The dogboning rate of stent is here defined as

Dogboning Rate =

𝑑

distal
radial − 𝑑

proximal
radial

𝑑

proximal
radial

, (1)

where 𝑑

distal
radial and 𝑑

proximal
radial are the distal and proximal radial

displacements of stent, respectively. Because the radial of
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Figure 3: Time-related pressure.

stent reaches its maximum at the ending time of loading
process (i.e., 32ms), moreover, the 𝑑

distal
radial is very large, which

will induce transient mechanical damage to vessel wall, the
optimization problem of the coronary stent for expanding
process can be defined as follows:

Min 𝑓 (x) =
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radial (x) − 𝑑

proximal
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𝑑
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radial (x)













S.t x ≤ x ≤ x,

(2)

where x is a vector of design variables, which consists of the
geometrical parameters such as WDS, WTS, WLS, and 𝑇

in Figure 1, 𝑓(x) is an objective function, and 𝑑

distal
radial(x) and

𝑑

proximal
radial (x) are the distal radial displacement and proximal

radial displacement of stent at the 32ms for LPV, LPC, and
SMPVmodels, while for LPDmodel, they are the distal radial
displacement and proximal radial displacement of stent after
unloading. x and x are lower and upper limits of the design
variables (here 0.22 ≤ WDS ≤ 0.34, 0.22 ≤ WTS ≤ 0.34,
0.2 ≤ WLS ≤ 0.3, 0.1 ≤ 𝑇 ≤ 0.14).

2.3. Kriging Model

2.3.1. Approximation Method. The Kriging model is de-
scribed as a way of modeling a function as a realization of
a stochastic process, so it is named the “stochastic process
model”, which can be written as

𝑦 (x𝑖) = 𝐹 (𝛽, x𝑖) + 𝑧 (x𝑖) = f𝑇 (x𝑖)𝛽 + 𝑧 (x𝑖) (3)

in which x𝑖 = {𝑥

𝑖

1
, 𝑥

𝑖

2
, . . . , 𝑥

𝑖

𝑚
} is the 𝑖th sample point with 𝑚

variables; 𝑦(x𝑖) is an approximate function fitted to 𝑛 sample
points; f(x𝑖) is a linear or nonlinear function of x𝑖; 𝛽 is the
regression coefficient vector to be estimated; and 𝑧(x𝑖) is the
stochastic function, with a mean of zero and a variance 𝜎

2.

The spatial correlation function between stochastic functions
is given by

corr [𝑧 (x𝑖) , 𝑧 (x𝑗)] = 𝑅 (𝜃, x𝑖, x𝑗)

=

𝑚

∐

𝑙=1

exp [−𝜃(𝑥

𝑖

𝑙
− 𝑥

𝑗

𝑙
)

2

] ,

(4)

where 𝑅(𝜃, x𝑖, x𝑗) is the Gaussian correlation function with
𝜃, which characterizes the spatial correlation between two
samples. Parameters can be estimated by maximizing the
likelihood of samples

̂𝛽 =

f𝑇𝑅−1y
f𝑇𝑅−1f

�̂�

2
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(y − f𝑇̂𝛽)
𝑇

𝑅

−1
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𝑛

̂
𝜃 = min {𝜓 (𝜃) ≡ |𝑅|
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𝑠

𝜎

2
} ,

(5)

where f = [𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
].The estimates ̂𝛽 and �̂�

2 can then be
obtained from (5).

2.3.2. Predictor. The function value 𝑦(x∗) at a new point x∗
can be approximately estimated as a linear combination of the
response values of sample Y:

𝑦 (x∗) = c𝑇Y. (6)

Themean squared error (MSE) of this predictor is minimized
with unbiased estimation, which gives

𝑦 (x∗) = f (x∗) ̂𝛽 + r(x∗)𝑇𝛾, (7)

where

𝛾 = 𝑅

−1
(Y − F̂𝛽)

r (x∗) = [𝑅 (𝜃, x
1
, x∗) , . . . 𝑅 (𝜃, x

𝑛
, x∗)] .

(8)

Thus, we can predict the function value 𝑦(x∗) at every new
point x∗ by using (7).

As mentioned above, the Kriging model is an interpo-
lation model, and the Kriging predictor is a predictor that
minimizes the expected squared prediction error subject to
(i) being unbiased and (ii) being a linear function of the
observed response values.

2.3.3. Sampling Strategy. A modified Rectangular Grid
(MRG) approach was used to provide sample points for
building the Kriging model. Defining the range of 𝑚 input
variables as 𝑙

𝑗
≤ 𝑥
𝑗
≤ 𝑢
𝑗
, 𝑗 = 1, . . . , 𝑚, the number of levels

in the 𝑗th dimension is 𝑞
𝑗
. Then, the approach is performed

as follows:

(1) Contract the ranges of the variables as

𝑙
𝑗
≤ 𝑥
𝑗
≤ �̂�
𝑗
, �̂�
𝑗
= 𝑢
𝑗
−

1

2

𝑢
𝑗
− 𝑙
𝑗

𝑞
𝑗
− 1

, 𝑗 = 1, . . . , 𝑚. (9)
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(1) The first instant (time = 0ms)

(2) The second instant (time = 15ms)

(3) The third instant (time = 25ms)

(4) The fourth instant (time = 32ms)

(5) The fifth instant (time = 37ms)

(6) The sixth instant (time = 42ms)

(a) Pattern of the stent expansion for LPV
and LPC models

(1) The first instant

(2) The second instant

(3) The third instant

(4) The fourth instant

(5) The fifth instant

(b) Pattern of the stent expansion for LRD
model

(1) The first instant (time = 0ms)

(2) The second instant (time = 15ms)

(3) The third instant (time = 25ms)

(4) The fourth instant (time = 32ms)

(5) The fifth instant (time = 37ms)

(6) The sixth instant (time = 42ms)

(c) Pattern of the stent expansion for SMPV
model

Figure 4: Pattern of the stent expansion based on the four FEA models.

(2) Perform RG sampling in the contracted space as
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(10)

(3) Add a stochasticmovement to each dimension of each
sample point as

𝛼
𝑖𝑗

2

𝑢
𝑗
− 𝑙
𝑗

𝑞
𝑗
− 1

, (11)

where 𝛼
𝑖𝑗

∈ [0, 1] is from a uniform distribution.
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2.3.4. Expected Improvement (EI). The simplest way for
optimization is to find the minimum of the response surface
which is interpolated through the Kriging method. This way
can easily lead to a local minimum, even if iterations are
performed. Fortunately, an “expected improvement” function
can balance local and global search. This method has been
viewed as an Effective Global Optimization (EGO) [17]. The
“expected improvement (EI)” method computes the extent
of improvement expected to achieve if sampling at a given
point. Before sampling at some point x, the value of 𝑌(x) is
unknown. Thus, 𝑌(x) can be regarded as a random variable
normally distributed with a mean ŷ(x) and variance 𝜎

2 and
given by the Kriging predictor. If the current best function
value is 𝑌min, then we will achieve an improvement of 𝐼 if
𝑌(x) = 𝑌min−𝐼.The likelihood of achieving this improvement
is given by the normal density function

1

√2𝜋𝜎 (x)
exp[−

(𝑌min − 𝐼 − 𝑦 (x))2

2𝜎

2
(x)

] . (12)

The expected improvement is simply the expected value of the
improvement found by integrating over the following density:

Ε [𝐼 (x)]

= ∫

𝐼=∞

𝐼=0

𝐼{

1

√2𝜋𝜎 (x)
exp[−

(𝑌min − 𝐼 − 𝑦 (x))2

2𝜎

2
(x)

]}𝑑𝐼.

(13)

Using integration by parts, one can show that

Ε [Ι (x)] = 𝜎 (x) [𝑢Φ (𝑢) + 𝜙 (𝑢)] , (14)

where

𝑢 =

𝑌min − 𝑦 (x)
𝜎 (x)

, (15)

and where Φ and 𝜙 are the normal cumulative distribution
and density functions, respectively.

The first term of (14) is the difference between the current
minimum response value 𝑌min and the prediction 𝑦(x) at
x, penalized by the probability of improvement. Hence,
this value is large when 𝑦(x) is small. The second term is
the product of the root mean squared error (RMSE) 𝜎(x)
and the normal density function 𝜙(𝑢). The normal density
function value is large when 𝜎(x) is large and 𝑦(x) is closed
to 𝑌min. Thus, the expected improvement will tend to be
large at a point with a predicted value smaller than 𝑌min
and/or when there is alot of uncertainty associated with the
prediction.

The EI method has the following advantages: it is a
balance between seeking promising areas of the design space
and the uncertainty in the model and can thus allow a small
DOE size; it can avoid searching the areas with large function
values and reduce the computational cost; it can avoid the
addition of somepoints close to each other in the design space
that may lead to instability of the Kriging model.

2.3.5. The Convergence Criterion. The convergence criterion
is here to satisfy

EI (x
𝑘
)

𝑌max − 𝑌min
< 𝜀
1
,







̃
𝑓 (x
𝑘
) − 𝑓 (x

𝑘
)







≤ 𝜀
2
,

(16)

where 𝜀
1
and 𝜀
2
are the convergence tolerances.𝑌max and𝑌min

are the maximal and minimal function values in samples,
respectively. The left-hand side of the equation is a ratio
between the maximal expected improvement and the “active
span” of the responses, which is also referred to as the
maximal “relative EI.” ̃

𝑓(x
𝑘
) is the approximate value of the

objective function obtained by Kriging model in the 𝑘th
iteration. An advantage of this convergence criterion is that
the user can set the “relative” tolerances 𝜀

1
and 𝜀
2
without prior

consideration of the magnitudes of the problem response.

2.4. Optimization Algorithm. Optimization design algorithm
for coronary stent based on Kriging model is described as
follows.

Step 1. Get a set of samples with 𝑛
𝑠
points (each point

corresponding to a group of design variables) using MRG
approach, and run ANSYS program to obtain the objective
function 𝑓(x

𝑖
) for the sample point 𝑖, 𝑖 = 1, . . . , 𝑛

𝑠
. Then,

select a group of the design variables corresponding with
minimum 𝑓(x

𝑖
) as the initial design and set 𝑘 = 1. To be

noticed is that Binary-search method was used to find the
exact pressure to dilate stent at sample point 𝑖, 𝑖 = 1, . . . , 𝑛

𝑠

to nominal diameter for the optimization based on LPV and
SMPV models, respectively.

Step 2. Build an approximate function relationship ̃
𝑓(x)

between the objective function 𝑓(x) and design variables
using Kriging model based on the trial samples obtained.

Step 3. Minimize ̃
𝑓(x) to get a modified design x(𝑘) by

means of Kriging approximate model, then compute the
corresponding ̃

𝑓(x(𝑘)) by ANSYS program.

Step 4. Check convergence: if convergence criteria are satis-
fied, then x∗ = x(𝑘) and stop; else add the modified design
x∗ into the set of samples, and 𝑘 = 𝑘 + 1 go to Step 2. Note
that the initial design will be renewed if the modified design
is better than former initial design.

In this optimization problem, MRG method was used to
get the sampling points.The FEM simulation can be seen as a
black-box, in which a vector x of design variables (i.e., WTS,
WDS, WLS, and T) is input and the corresponding response
̃
𝑓(x) (i.e., the absolute value of the dogboning rate) is output.
Kriging surrogatemodel was used as alternative to traditional
second-order polynomial response surfaces for constructing
a global approximate relationship between the objective
function 𝑓(x) and design vector x based on the trial samples.
After the approximate relationship between the objective
function and design vector was constructed, EI function is
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Figure 5: Test models with three different typical cross-section shapes of plaque. (1) Test 1: arc-shaped. (2) Test 2: bar-shaped. (3) Test 3:
streamline-shaped.

Table 1: Optimization results.

WDS (mm) WTS (mm) WLS (mm) 𝑇 (mm) 𝑃 (MPa) Dogboning rate Reduced by

Original stent 0.28 0.28 0.249 0.12
1.948 (LPV/LPC) 0.1452 (LPV/LPC)

—1.9114 (SMPV) 0.0908 (SMPV)
— 0.0582 (LRD)

Optimal stent (LRD) 0.22 0.34 0.2568 0.1355 — 0.0061 89.52%
Optimal stent (LPV) 0.2367 0.22 0.2 0.1 1.7602 9.71𝑒 − 5 99.93%
Optimal stent (LPC) 0.2483 0.2881 0.2 0.1 1.948 0.0027 98.14%
Optimal stent (SMPV) 0.3262 0.2582 0.2056 0.1 1.7491 9.803𝑒 − 5 99.89%

used to balance local and global search and tends to find
the global optimal design. Sequential quadratic programming
optimization algorithm was employed to implement the
design optimization based onmaxEI and obtain themodified
design vector x

𝑘
. The optimization iteration started from an

initial design (here is a sample corresponding with minimum
𝑓(x) in the trial samples). The procedure of building and
maximizing EI continues until the stopping criterions are
reached, such as the criterion described in Section 2.3.5.
The optimization process stops when the Euclidean norm
between real value 𝑓(x(𝑘)) from FEM simulation and predic-
tive value ̃

𝑓(x(𝑘)) from Kriging predictor falls below a given
tolerance 𝜀

1
, and the Euclidean norm between current and

previous iterates falls below a given tolerance 𝜀
2
.

3. Results and Discussion

The optimization converged after 22, 8, 13, and 12 iterations
based on LRD, LPV, LPC, and SMPVmodel, respectively.The
optimization results are shown in Table 1.

LRD model is loaded by a radial displacement applied
on the inner surface of balloon (shown in Figure 2(a)).
This loading mode is a simplified loading which can reduce
computation consume, but it does not match the real load,

weakening the impact of stent geometries (WDS,WTS,WLS,
and T) on dogboning effect. The optimization process based
on LRDmodel may bemore time-consuming.The numerical
results show that the optimal WDS is smaller than WTS,
which does not meet the manufacturer’s design concept.

LPVmodel can give themost realistic simulation of stent-
balloon system expansion in narrowed artery and the optimal
result is reasonable. But this model contains more elements
and nodes, which will complex the FEA simulation of stent
dilation.

LPC model has a same deployment pressure for all
sampling designs of stent in optimization process, resulting
in the expansion of stent at different degree. The optimal
stent based on this model is expanded to the diameter of
5.8158mm which is far greater than the nominal diameter of
health artery (4.54mm in this study). Thus, the optimal stent
based on this FEMmodel is not available.

SMPV model has the same loading method as LPV
model, but does not contain artery and plaque. The interac-
tion between the vessel wall and the balloon-stent systemwas
not considered. However, SMPVmodel is a simplified model
and the FEM simulation is much simpler.

Three typical plaques (shown in Figure 5) are built for
the testing of optimal stents obtained based on SMPV and
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Figure 6: Dogboning rate for original and optimal stents along with time (mSec) of stent dilation.

Table 2: Test results.

Test model Stent WDS (mm) WTS (mm) WLS (mm) 𝑇 (mm) 𝑃 (MPa) Dogboning rate Reduced by

Test 1
Original stent 0.28 0.28 0.249 0.12 1.948 0.1452 —
Optimal stent based on LPV 0.2367 0.22 0.2 0.1 1.7602 9.71𝑒 − 5 99.93%
Optimal stent based on SMPV 0.3262 0.2582 0.2056 0.1 1.7950 0.0643 55.72%

Test 2
Original stent 0.28 0.28 0.249 0.12 1.9745 0.1856 —
Optimal stent based on LPV 0.2367 0.22 0.2 0.1 1.7868 0.0270 85.45%
Optimal stent based on SMPV 0.3262 0.2582 0.2056 0.1 1.8140 0.0914 50.75%

Test 3
Original stent 0.28 0.28 0.249 0.12 1.9555 0.1617 —
Optimal stent based on LPV 0.2367 0.22 0.2 0.1 1.765 0.0062 96.17%
Optimal stent based on SMPV 0.3262 0.2582 0.2056 0.1 1.7914 0.0492 69.57%
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LPVmodels.The dilations of original stent and optimal stents
based on SMPV and LPV models in three typical stenosed
arteries are respectively simulated to get the dogboning rates
of them. Table 2 shows the results of the test, in which, the
dogboning rates of stent dilation in narrowed arteries of the
three typical plaques are significantly reduced, especially for
the optimal stent based on LPV model.

Based on LPV model, after optimization the dogboning
rates of stent dilation in the three test models are respectively
reduced by 99.93%, 85.45% and 96.17%, while based on
SMPV model, those are respectively reduced by 55.72%,
50.75%, and 69.57%, as shown in Table 2. It is clearly that
LPV model is more suitable for stent optimization based
on FEM model. But LPV model contains more elements
and nodes, which will complex the FEA simulation of stent
dilation. Furthermore, Binary-search method was used to
find the exact pressures to dilate the diameters of stent at
sample points to nominal diameter and this will take a lot
of computation. The optimal stent obtained by using SMPV
model can also decrease the dogboning rates of stent dilation
in narrowed artery with the three typical plaques. It is not as
significantly as that obtained by using LPV model. Because
WDS, WTS, and WLS of the optimal stent based on SMPV
model are larger than those of the optimal stent based on LPV
model, higher deployment pressures are needed to dilate stent
diameters to nominal diameter in stenosed artery. When the
optimal stent obtained from SMPV model is placed inside
stenosed artery, stent dilation will be constrained by the
raised plaque at the proximal parts of stent, so that the distal
parts of stent will open first, which can cause dogboning
effect. This is the reason why the dogboning effect of the
optimal stent based on SMPV model dilation in stenosed
arteries cannot be dismissed. But SMPV model contains
fewer elements and nodes.Therefore, the corresponding FEA
simulation is much simpler.

The time-dogboning rate curves for original and optimal
stents are shown in Figure 6 for the stent expansion process
in three test models. The dogboning effect reaches the
maximumat the prophase of loading stage and is reduced and
remained in an almost constant value after stent expansion
(corresponded to regime of the third and fourth instants,
with the loading time from 25 to 32ms, appeared during the
expansion of the stent shown in Figures 4(a) and 4(c)). The
radial displacement during this period reaches its maximum,
and there is a strong effect of mutual contact between stent
and artery wall. The dogboning observed during this period
can cause serious transient mechanical injury. From the three
test results, it can be seen that both the optimal stents based
on LPV and SMPVmodels observed in the current study can
reduce the dogboning significantly, especially for the optimal
stent based on LPV model.

4. Conclusions

In this paper, the design optimizations based on four com-
mon FEM models of stent expansion are investigated to
reduce the dogboning effect by using an adaptive optimiza-
tion method based on Kriging surrogate model. Plaques of
three typical shapes are built for general testing of optimal

stents. The results show that both LPV model and SMPV
model can be used for stent optimization based on FEM
model. The optimal stents based on both LPV and SMPV
models can decrease dogboning effect significantly, especially
for the optimal stent based on LPV model.
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