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Abstract: DC magnetization is generally considered to suppress the usual local magnetic permeability
variation and increase the penetration depth for magnetizing-based eddy current testing (MB-ECT)
of ferromagnetic materials. In fact, such simple explanations lead to rough nondestructive evaluation
and cause new neglected non-uniform magnetic characteristics. Hence, the “perturbation” of the
internal magnetic field variation is analyzed using a magnetic dipole model and the mechanism of
magnetic permeability perturbation in MB-ECT is revealed. The theoretical analysis and simulations
show that a significant permeability perturbation always appears around a defect and presents
opposite features with strong and weak magnetization. Furthermore, experimental results indicate
that the hidden signal component arising from the local permeability perturbation is critical for both
far-side surface and near-side surface defects in the MB-ECT method.

Keywords: magnetic permeability perturbation; non-destructive testing (NDT); magnetizing-based
eddy current testing (MB-ECT); magnetic flux leakage (MFL); DC magnetization

1. Introduction

Eddy currents have many applications in microwave heating and nondestructive
evaluation for various metallic materials because of its easy realization, high sensitivity,
and low cost [1–5]. Dr. Foster works to perfect eddy current testing (ECT) technology in
theory and promotes the practical application of nondestructive evaluation in the industry
worldwide [6]. With the development of the ECT method, considerable attention is focused
on the theoretical model and analytical solutions in ECT [7–9], application research on new
ECT probes [10–13], and signal inversion to reconstruct the defect [14,15].

It is widely accepted that the ECT method is primarily on the electromagnetic field
disturbance caused by the conductivity change of a defect, but it is effective for defects
in the surface layer of material due to the limited penetration depth of the eddy current.
Therefore, for ferromagnetic materials, a direct current (DC) magnetization is always
applied to the object and is called the MB-ECT method [16]. The DC magnetization is
explained to reduce the “skin effect” by magnetic saturation of the wall and causes a
lower permeability and a greater penetration depth of the eddy current [17]. Additionally,
it also suppresses the usual local permeability variations in the material and eliminates
an enormous source of noise [18]. A typical explanation is described in the standard
ASTM E309-16: “the material under examination is effectively rendered nonmagnetic, this
condition allows an eddy current system to measure and detect electrical resistivity and
geometrical variations independent of concurrent variations in magnetic properties” [19].
In theoretical study, a simplified model with uniform magnetic properties is frequently
used for a general analysis of electromagnetic detection. D.L. Atherton et al. apply the
enhanced magnetization field to the regions of the excitation coil and the detection coil
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in the far-field eddy current testing. They recognized that the magnetic properties of the
material changed, but they simply reduced the relative permeability of the material in
the strong magnetization field from 70 to 5, according to the decreasing phase of the µ-H
curve in the simulation model, without considering the real magnetic property change
and its distribution [20]. Additionally, several studies present analytical solutions for an
impedance change in eddy current testing with depth-varying magnetic permeability [21].

In summary, researchers in both academia and engineering generally believe that
magnetic permeability is evenly distributed in materials after magnetization; that is, the
macroscopic discontinuities will not change the uniformity of the permeability distribu-
tion [22], as shown in Figure 1. Consequently, researchers seldom note the permeability
variation in space caused by a defect in ferromagnetic materials. The “uniformity theory”
about permeability is based on a uniform change of a magnetic field within a material;
however, the internal magnetic field is strongly affected by a discontinuity under the DC
magnetization and the permeability varies greatly with the level of the applied field. It is
worth noting that the previous simple equivalent of permeability may result in insufficient
MB-ECT measurements and applications.
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Figure 1. Traditional view of the magnetic permeability in the MB-ECT method. (a) non-ferromagnetic
material, (b) ferromagnetic material.

In this paper, we further analyze the magnetic field perturbation caused by the defect
in ferromagnetic materials based on a magnetic dipole model. Furthermore, we highlight
that a permeability perturbation mechanism essentially exists in both the above-region
and the side-region of the defect, which completely differs from the previous “uniformity
theory” used in the present MB-ECT method. Finally, we primarily aim to reveal the
non-negligible role of a permeability perturbation to establish a real MB-ECT theory system
to obtain an accurate and comprehensive evaluation of MB-ECT technology.

2. Mechanism

In a magnetized state, the magnetic dipoles inside a material are connected end to end
such that the positive and negative charges only appear on the cross section of the material,
such as on the side of a defect. The property generated by the magnetic charges is often
calculated by using a magnetic dipole model [23,24]. The opposite magnetic polarities with
a line density of σs are assumed to be uniformly distributed on the walls of a rectangle
defect. The magnetic charges distributed over the length dy of the left sidewall of the defect
are described as dp = σsdy. The magnetic field generated by the magnetic charges can be
expressed by

dH =
dp

4πr2
→
r (1)

As schematically illustrated in Figure 2, the magnetic field caused by the magnetic
charges at point P(x0, y0) can be calculated by

Hx(x0, y0) =
∫ d

0
σS(x0+w)

2π[(x0+w)2+(y0+y)2]
dy +

∫ d
0

−σS(x0−w)

2π[(x0−w)2+(y0+y)2]
dy

= σS
2π (tan−1 d(x0+w)

(x0+w)2+y0(y0+d)
− tan−1 d(x0−w)

(x0−w)2+y0(y0+d)
)

(2)
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Figure 3. Dynamic magnetic action inside the material without any discontinuities, which is ob-
tained by using the finite element method and magnetized by an encircling coil with a current den-
sity of 7 × 106 A/m2. (a–c) show the magnetic field lines, the magnetic vector, and the magnetic con-
tour, respectively. 

However, when there is a slot in the material, the magnetic flux travels through the 
interior of the material but is inhibited by the slot. The existing slot makes part of the 
magnetic flux twist abruptly to the region above it, while the remaining flux leaks out of 
the material into the vicinity of the crack, producing a magnetic flux leakage (MFL) [25]. 

Figure 2. Magnetic field distribution based on the magnetic charges model.

It can be seen from Equation (2) that Hx(x, y) is an even function and Hx(x, y) de-
creases with an increase in |x|. The discontinuity orientation is perpendicular to the
magnetization direction (the x direction), and the internal magnetic field of the material is
primarily along x. In this case, the change in the x component is consistent with Hsum(x, y).
Therefore, we primarily analyze the x component of the magnetic field and use Hd(x, y) to
represent Hx(x, y) in Figure 2.

The magnetic field in the material consists of not only the Hd(x, y) caused by the
magnetic charges presented in Figure 2 but also the original magnetic field without the
slot Hb(x, y). When there is no slot in the material, the magnetic field lines are in the
same direction as the incident field lines outside the material. Thus, the magnetic flux
travels directly through the interior of the material without any perturbation, as shown
in Figure 3a,b, which were obtained by FEA. The magnetic field is distributed evenly
throughout the material without any magnetic field perturbation, as indicated in Figure 3c.
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tour, respectively. 
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the material into the vicinity of the crack, producing a magnetic flux leakage (MFL) [25]. 

Figure 3. Dynamic magnetic action inside the material without any discontinuities, which is obtained
by using the finite element method and magnetized by an encircling coil with a current density
of 7 × 106 A/m2. (a–c) show the magnetic field lines, the magnetic vector, and the magnetic
contour, respectively.

However, when there is a slot in the material, the magnetic flux travels through the
interior of the material but is inhibited by the slot. The existing slot makes part of the
magnetic flux twist abruptly to the region above it, while the remaining flux leaks out of
the material into the vicinity of the crack, producing a magnetic flux leakage (MFL) [25].
The magnetic field tends to be channeled through the material, forming a magnetic flux per-
turbation phenomenon in the ferrous body, as shown in Figure 4a,b, which were obtained
by FEA. The rectangular defect has the size of 1.2 mm (length) and1.5 mm (height). The
magnetizer uses encircling coils with a current density of 7 × 106 A/m2. Figure 4a–c shows
the magnetic field lines, the magnetic vector, and the magnetic contour, respectively. As a
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result, the internal magnetic field is distributed unevenly throughout the material with the
magnetic field perturbation, as indicated in Figure 4c.
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Figure 4. Dynamic magnetic action inside the material obtained by using the finite element method.
The rectangular defect has the size of 1.2 mm (length) and1.5 mm (height). (a–c) shows the magnetic
field lines, the magnetic vector, and the magnetic contour, respectively.

According to the magnetic contour in Figure 4c, the magnetic field of the regions
around the defect provide notably different features; the magnetic field above the defect
is stronger, while the magnetic field at the sides of the defect is weaker. The magnetic
field perturbation is analyzed in detail and presented in Figure 5, where three different
regions are considered, namely, region M1, region M2, and region N. Hb(x, y) and Hd(x, y)
are the original magnetic field without a defect and the magnetic field caused by the
magnetic charge, respectively. Hside is the magnetic fields of regions M1 and M2. Habove is
the magnetic fields of regions N. µabove, µside, and µnormal are the permeability of regions M1
and M2, the permeability of region N, and the permeability of the region far from the crack,
respectively. The magnetic charges produce a negative magnetic field in regions M1 and
M2 where the direction of Hb(x, y) is in the opposite direction of Hd(x, y) in the material.
On the contrary, the magnetic charges produce a positive magnetic field in region N, where
Hb(x, y) and Hd(x, y) are in the same directions. Furthermore, regions M1 and M2 result in
an enhanced Hside, while region N is characterized by a weakened Habove, as presented in
Figure 5. {

Hside = Hb − Hd region M1 and M2

Habove = Hb + Hd region N
(3)
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From the perspective of the physical properties, the nonlinear permeability µ f
(µ = f (H)) of a ferromagnetic substance reaches a maximum and later declines due to sat-
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uration, as shown in Figure 5 [26]. The complete µ−H curve of the ferromagnetic material
is divided into ascending and descending stages according to the peak µm.

In the ascending stage,
µside > µnormal (4)

µabove < µnormal (5)

In the descending stage,
µside < µnormal (6)

µabove > µnormal (7)

Therefore, the magnetic permeability perturbation caused by the far-side surface
defect not only occurs in the space above the defect, but also occurs in the side space of
the defect, and a non-uniform distribution of magnetic permeability is formed inside the
material. The phenomenon of this non-uniform permeability distribution is called the
“permeability perturbation”. It is worth noting that the permeability of a material varies
with the magnetization state of the material. This does not mean that the properties of the
material have actually changed, but moved to different points on the µ−H curve.

The above analysis is based on the far-side surface defects, but the magnetic permeabil-
ity perturbations appear not only in far-side surface defects but also in the internal defects
(not surface breaking defect) and near-side surface defects, so the location of the defects is
further considered, as shown in Figure 6. The defects are located inside the material and
do not touch the upper and lower surfaces, as shown in Figure 6b,c. The magnetic charge
generating magnetic field forms the magnetic field perturbation in the regions above the
defect and the region below the defect, which are recorded as the N1 and N2. In the left
and right regions of the defect, the magnetic field perturbation is symmetrically distributed
about the centerline of the defect. However, in the upper and lower regions of the defect,
due to the limitation of the diffusion range, the magnetic field perturbation changes with
the buried depth of the defect. As the buried depth of the defect is gradually reduced, it
eventually evolves into the near-side surface defect, as shown in Figure 6d. At this time, the
magnetic field perturbation regions M1 and M2 move to the vicinity of the near-side surface,
and the magnetic field perturbation region N moves to the region directly below the defect.
In the process of (a–d) shown in Figure 6, the magnetic permeability perturbation regions
M1 and M2 move upward in the y direction while the N region is divided into N1 and N2,
eventually moving from the top of the defect to the bottom of the defect in the y direction.
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3. Simulation and Experiment
3.1. Verification via FEM

The ANSYS software (Mechanical APDL) was used for the FEM analysis. A 2D
axisymmetric model is built to analyze the magnetic permeability perturbation around the
defect, as shown in Figure 7. The local refinement is used to make the solution results more
accurate. The wall thickness used for the simulation is 7.5 mm. The B-H curve of the No.45
steel in GB (Chinese National Standards) used in ANSYS is shown in Figure 8.
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Figure 8. B-H curve of the material used in ANSYS.

The permeability perturbation around the defect is obvious compared with plots
of materials without any defects in Figure 9a. This magnetic permeability perturbation
is similar to a “bubble” shape, and the magnetic permeability is not a simple one-way
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perturbation, but rather a bubble-like distribution diffusion exists. It is difficult to describe
this difference by means of cloud image display. Therefore, by calculating and extracting
the permeability information on the path to be analyzed, the characteristics of magnetic
permeability perturbation can be described more accurately.
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Figure 9. Relative permeability distribution obtained by simulations. (a–c) show the magnetic per-
meability distribution under no-defect, strong magnetization, and weak magnetization, respectively.
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The weak magnetization corresponds to the rising phase (C) of the magnetization
curve in Figure 5 and the strong magnetization corresponds to the decreasing phase
(D) of the magnetization curve in Figure 5. The corresponding current densities under
strong magnetization and weak magnetization are 1.2 × 106 A/m2 and 7 × 106 A/m2,
respectively. It can be seen that the defect produces a positive magnetic field and forms
the “convex” feature of permeability under weak magnetization and the “concave” feature
under strong magnetization as expected. In contrast, the permeability change curves
of the path p = 6.75 mm (Figure 5) show a “concave” feature in both cases, as shown in
Figure 9e, as a result of the electromagnetic properties of the crack. The curve under
strong magnetization shows a “double-peak” feature, resulting from the negative magnetic
field and an increase in the permeability of region A. The noted permeability perturbation
arising from the defect is quite different from the well-known one, i.e., the DC magnetization
suppresses the local permeability variations in the material and promotes the uniform
distribution of the magnetic permeability inside the material.

The finite element analysis of the defects with different buried depths is performed
to obtain the magnetic permeability distribution cloud around the defect, as shown in
Figure 10. Consistent with the previous analysis, magnetic permeability perturbation
occurs around the defects of different buried depths. For the far-side surface defect, the
magnetic permeability perturbation mainly occurs on the side regions and above region
of the defect and spreads to the surface layer of the material. It is worth noting that
in Figure 10b,c, magnetic permeability perturbations are formed in the regions around
the internal defects, especially above and below the defects, which spread to the near-
side surface and the far-side surface of the material. For the surface defect, the magnetic
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permeability perturbation region above the defect gradually disappears, but the magnetic
permeability perturbation regions on both sides of the defect move to the surface layer to
form a discontinuity region with the defect.
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Figure 10. Permeability cloud map of different buried depth defects. (a) far-side surface defect; (b)
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3.2. Verification via Experiments

In this section, a set of experiments are performed on the steel plates to verify the
effect of the magnetic permeability perturbation by steps 1–3, as shown in Figure 11. The
specimens were 45# steel plates with different thicknesses t2. The widths of the steel plates
are both 100 mm and the thicknesses are 7.5 mm and 11.5 mm, respectively. The rectangular
longitudinal section cracks were produced on the positive side and opposite side of the
specimens, and all the cracks were machined by electric discharge machining. The DC
magnetic field is provided by a magnetizer based on only one encircling coil (2000 turns)
with a current of I = 16 A. The inner diameter and the outer diameter of the encircling coil
are 140 mm and 174 mm.
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The probe consists of a single excitation coil and two differentially connected receiving
coils. The inside diameter and outside diameter of the coils are 3 mm and 4 mm, respectively.
The excitation coil is wound with 50 turns of 0.13 mm copper wire, the dc resistance and
inductance of which are 2.4 Ω and 11.819 µH, respectively. The receiving coil is wound with
150 turns of 0.05 mm copper wire, the dc resistance and inductance of which are 15.7 Ω
and 89 µH, respectively. The AC excitation voltage is 0.8 V and the operating frequency
is 80 kHz. A copper plate with a thickness of t1 is used to shield the eddy current field in
some steps.

As shown in Figure 12a,b, the far-side surface defect cannot be detected by only the
AC excitation, owing to the skin effect of the eddy current; meanwhile, the signal amplitude
is significantly reduced but not disappeared as in the case of the shield (t1 = 1 mm), where
there exists both the AC and DC excitation. In the MB-ECT method, several magnetic lines
of force pass through the specimen and exit out of the positive side, which is a mutated
disturbed field compared to the moving induction coil. The copper shield does not affect
the MFL signal, but it affects the AC excitation as a result of the skin effect under the AC
magnetic field.
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surface defect of an 11.5 mm thick specimen.

For a thicker specimen (t2 = 11.5 mm), the magnetic flux leakage is too small to be
detected due to the magnetic shielding of the wall despite the fact that the DC magnetization
is applied to the specimen. In addition, the copper shield affects the AC excitation owing
to its skin effect and there is no response from the far-side surface defect. In addition, when
the thickness of the material increases, the permeability perturbation in the surface layer of
the material becomes weaker, which results in a smaller testing signal.

The skin depth is about 0.347 mm based on µ = 10 and σ = 3.3 e7 S/m (conductivity).
The skin depth is sufficiently small enough that the far side is more than 3δ (the effective
inspection depth). For the far-side surface defect, the permeability perturbation above the
defect causes the eddy current perturbation. However, the near-side surface defect and
the permeability perturbation on both sides of the defect all have an effect on the eddy
currents in the surface layer. In fact, the two factors work together under DC magnetization
and cannot be separated, which makes it impossible to determine the signal source from
a single set of signals. Therefore, when we conduct experiments on the near-side surface
defect, the relationship between the signal amplitude and the magnetizing current is
mainly considered.

Figure 13 shows the detection results of near-side surface defect. As shown in
Figure 13, it can be clearly noticed that there is a gradual decline in the signal ampli-
tude and then it increases, presenting the “concave” feature. Actually, the MFL increases
with the magnetization current [27]. However, the equivalent current source of the defect
would not be affected by the magnetization, and therefore the permeability perturbation
in the side-region accounts for the “concave” feature and it is not always beneficial for
detection. To conclude, not only does the proposed permeability perturbation have an
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effect on the far-side surface defect, but it also acts as the signal source for the near-side
surface defect.
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4. Discussion

Based on the previous analysis, the permeability perturbation always appears with
the existence of defects, including a near-side surface defect and a far-side surface defect,
as shown in Figure 14. According to the equivalent source method, the defect is equivalent
to a current source and the disturbed field caused by the crack is equivalent to a field
due to the equivalent current source. In the MB-ECT method, the total disturbed field
mainly consists of the disturbed field caused by the crack, the disturbed field caused by the
permeability distortion, and the magnetic leakage field, which is equivalent to the current
source Jmag, as described in Equations (8) and (9) [28]. Actually, the skin effect always limits
the eddy current to reach the far-side surface defect (buried depth > three times penetration
depth) even if the permeability decreases to one, and then Equation (5) can be expressed as
Equation (10).

∇× Hde f = σEde f + Jmag (8)

Jmag = Jde f + Jdst + JMFL (9)

Jmag = Jdst + JMFL (10)

where Jmag is the total equivalent eddy current density, Jdst, Jde f , and JMFL are, the equiva-
lent current density due to the permeability perturbation, the crack itself, and the magnetic
flux leakage, respectively.

The source of Jdst for the near-side surface defect is different from the source of the
far-side surface defect. The permeability perturbation of region A plays a leading role for
the near-side surface defect, while the permeability perturbation of region B is the main
signal source for the far-side surface defect owing to the skin effect of the eddy current.
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5. Conclusions

In summary, the DC magnetization for ferromagnetic materials in MB-ECT method is
not as simple as traditional descriptions such as “the magnetization suppresses the magnetic
characteristic anomaly and increases the penetration depth”. From the perspective of the
magnetic dipole, the additional magnetic field produced by magnetic charges attached
to the defect result in local magnetic field perturbations. In this case, the permeability
perturbation in the vicinity of a defect is primarily related to the magnetic field perturbation
in the material as a result of the nonlinear µ-H curve. Hence, it is extremely unwise to make
such a hypothesis in the standard that the material under DC examination can be equivalent
to homogeneous media in the MB-ECT method. The permeability in the above-region and
side-region of the defect always change in opposite directions due to the negative magnetic
field and positive magnetic field produced by the magnetic charges. The permeability
perturbation always appears along with the existence of defects, including the near-side
surface defects such as cracks, pits, and corrosions, and the far-side surface defects, such
as corrosions and eccentric wears. Different perturbation features present under different
magnetization fields and act as an important disturbed source to the magnetic sensors.
Furthermore, for a deeper defect, the permeability perturbation around the defect spreads
to the surface layer of the material and is detected by the sensors, forming a new detection
method named the permeability perturbation testing (MPPT). The clarity and the discovery
of the mechanism of permeability perturbation and its effects are of benefit for enriching
the theoretical system and enhancing the evaluation accuracy of the MB-ECT method.
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