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Abstract: Dipeptidyl peptidase IV (DPP-IV) is an enzyme responsible for the degradation of the incretin hormone glucagon-like 
peptide-1 (GLP-1). DPP-IV plays a significant role in regulating blood glucose levels by modulating the activity of GLP-1. In the 
context of diabetes, DPP-IV inhibitors effectively block the activity of DPP-IV, hence mitigating the degradation of GLP-1. This, in 
turn, leads to an extension of GLP-1’s duration of action, prolongs gastric emptying, enhances insulin sensitivity, and ultimately results 
in the reduction of blood glucose levels. Nonetheless, reported adverse events of DPP-IV inhibitors on T2DM patients make it 
essential to understand the activity and mechanism of these drugs, particularly viewed from the perspective of finding the effective and 
safe add-on medicinal plants, to be implemented in clinical practice. This review is intended to bring forth a thorough overview of 
plants that work by reducing DPP-IV activity, from computational technique, enzymatic study, animal experiments, and studies in 
humans. The articles were searched on PubMed using “Plants”, “DPP-IV”, “DPP-IV inhibitor”, “GLP-1”, “Type 2 diabetes”, 
“diabetes”, “in silico”, “in vitro”, “in vivo”, “studies in human”, “clinical study” as the query words, and filtered for ten years of 
publication period. Eighteen plants showed inhibition against DPP-IV as proven by in silico, in vitro, and in vivo studies; however, 
only ten plants were reported for efficacy in clinical studies. Several plant-based DPP-IV inhibitors, eg, Allium sativum, Morus Alba, 
Curcuma longa, Pterocarpus marsupium, and Taraxacum officinale, have established their functional role in inhibiting DPP-IV and 
have proven their effectiveness through studies in humans earning them a prominent place in therapeutic discovery. 
Keywords: antidiabetics, antioxidants, diabetes mellitus, incretin hormone, medicinal plants

Introduction
As the world information society has grown, so has the number of the population with sedentary behavior. This term 
refers to any activity that requires a minimal amount of energy to maintain when a person is awake. This can include 
sitting, leaning, or lying down. Previous works have demonstrated that this less-active behavior is inextricably linked to 
all-cause mortality, eg, due to heart and blood vessel dysfunction, and type 2 diabetes mellitus (T2DM).1,2 The 
prevalence of T2DM in young people and adolescents is rising dramatically. The most predisposing causes of T2DM 
in elderly patients are being overweight with a lineage of DM, and a sedentary lifestyle.3 Adult-onset diabetes or non- 
insulin-dependent diabetes is a polygenic syndrome in which genetic and environmental health risks combine, leading to 
insulin resistance in the liver and muscles, and reducing the number of pancreatic β-cells. Most patients who suffer from 
T2DM are overweight, and the disease may go undetected for a long time as the patients move through the asymptomatic 
“pre-diabetes” stage.4 Chronic complications of DM lead to the impairment and malfunction of the organ.5 Therefore, 
achieving close to normal glucose levels is considered the main objective of DM management, which can be accom-
plished by the administration of oral hypoglycemic drugs.

Medications for DM fall into one of five categories, each with its unique mechanism of action: those that increase 
insulin secretion (eg, sulfonylureas and glinides), those that decrease the absorption of glucose in the intestine (eg, 
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acarbose), drugs belonging thiazolidinediones and biguanides classes, drugs that decrease the reabsorption of glucose in 
the urine (eg, gliflozin), and drugs that target the incretin system (eg, DPP-IV inhibitors and GLP-1 analogs). Side effects 
of anti-DM medications include urinary tract infections (UTI), ketoacidosis, hypoglycemia, and weight gain. In addition 
to posing insurmountable obstacles to establishing effective dosing regimens in a clinical context, patients with DM may 
experience a decline in quality of life (QoL) due to side effects from their medication.6 Therefore, discovering plant- 
derived DPP-IV inhibitors is always challenging.

In this article, we discuss plants with DPP-IV inhibitory activity through in silico modeling, in vitro enzymatic, 
in vivo animal experiments, and studies in humans. The mechanism by which DPP-IV inhibitors affect glucagon-like 
peptide-1 (GLP-1) levels and their effect on insulin were also described.

Glucagon-Like Peptide-1 (GLP-1): The Incretin Hormone Secretion
The rationale behind the increased production of insulin in response to meals when glucose is consumed orally, as 
opposed to intravenous administration, despite similar plasma glucose levels, can be attributed to the insulinotropic 
actions of incretin hormones. The enteroendocrine cells (EECs) in the digestive tract release incretin, which is crucial to 
the signalling process. EECs are part of the intestinal lining, which also includes mucus-secreting cells and absorptive 
epithelial cells. The EECs secrete hormones that function in food ingestion, abdominal peristaltic, stomach emptying, 
glucose balance, and regulation of hunger, among other functions. These hormones are released in response to nutrients 
and non-nutritional chemicals that either act on sensory transporters and receptors or on cellular metabolism. The primary 
secretions of EECs have allowed for their classification. GLP-1 is the incretin hormone that elevates insulin levels. GLP- 
1 and peptide YY (PYY) are secreted by L-cells, cholecystokinin (CCK) by I-cells, secretin by S-cells, glucose- 
dependent insulinotropic polypeptide (GIP) by K-cells, and gastrin by G-cells. I-cells and K-cells are duodenal EEC 
cells, L-cells are located in the ileum and colon.7 Intestinal and pancreatic GLP-1 receptors on vagal afferent neurons 
have revealed a pathway of communication between the intestines, the pancreas, and the brain. Similar to the GLP-1 
EECs, the brain is capable of synthesizing GLP-1. The amazing scope of action of GLP-1 is highlighted by the fact that it 
influences eating behavior by communicating across the stomach, the brain, and the pancreas. Because of these roles, 
GLP-1 has been successful in the pharmacological control of T2DM.8,9 It has been extensively studied that the 
carbohydrates, proteins, and lipids of a meal may promote GLP-1 production from GLP-1 EECs.10

Moreover, the glucose uptake across cell membranes are affected by mediators, among those is sodium-coupled 
glucose transporters (SGLT), that play a crucial role in arbitrating glucose’s influence on GLP-1 release from EECs. 
Depolarization of the membrane, brought on by the influx of Na+ ions, activates the voltage dependent calcium 
channels (VDCC) and the exocytosis of GLP-1-containing vesicles.11 Amino acids affect the secretion of GLP-1 by 
a similar mechanism mediated by Na+ ions.12 G protein-coupled receptors (GPCRs) as GPR142 and CASR are 
activated by oligopeptides.13,14 Long-chain fatty acids are recognized by GPR40 and GPR120, whereas shorter fatty 
acids are recognized by other GPCRs.15 In pharmaceutical treatments for diabetes and obesity, one of the primary 
objectives is to increase the amount of GLP-1 that is secreted, and as a result, a lot of work has been put into figuring 
out the molecular processes that cause GLP-1 to be secreted. The decrease of stomach capacity and increase of 
stomach pressure in gastric bypass and other weight-loss surgeries are caused by GLP-1 secretion and stomach 
emptying (Figure 1).16,17

Most of GLP-1 in the lower brain stem occurs in the nucleus tractus solitarius (NTS), where it is produced by GLP-1 
producing pre-proglucagon (PPG) neurons18 in respond to the release of GLP-1 in the peripheral. The vagal nerve is 
stimulated when the gastrointestinal GLP-1 binds to its receptor (GLP-1r), and eventually triggers the NTS PPG neurons 
to release GLP-1.19 Hence, there is a positive correlation between the secretion of GLP-1 in the periphery and the 
secretion of GLP-1 in the brain. As a whole, it shows that NTS PPG neurons and EECs respond differently to the same 
stimuli for GLP-1 release. Hormonal cues and vagal activity activate PPG neurons in the NTS, while dietary intake is the 
major activator for GLP-1 release from EECs. NTS PPG neurons integrate various inputs via excitatory, inhibitory, and 
neuro-modulatory influences before sending the signal to other central nodes. To further understand the mechanism on 
how GLP-1 work, the intracellular GLP-1 signaling pathway on insulin secretion is provided in the next section.
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Pancreatic Insulin Secretion and the GLP-1 Signaling Pathway
Larger amounts of cyclic adenosine monophosphate (cAMP) are resulted from the stimulation of adenylate cyclase by GLP-1r 
via the activation of GPCRs (Gs).20 Accumulation of cAMP has been connected to intracellular signaling through protein 
kinase A (PKA) and other cAMP dependent pathways (eg, EPAC). GLP-1 may trigger a series of processes within the cell, 
including insulin synthesis, when it activates these pathways.21–23 Inhibition of ATP-regulated K+ channels, enhancement of 
L-type VDCC activity, and activating the non-specific cation channels via PKA and EPAC, are all effects of GLP-1 that have 
been well-established.24 These procedures activate the secretion of insulin in response to calcium and increase calcium influx. 
In instance, preventing the depolarization of the glucose-affected membrane by inhibiting ATP-regulated K+ channels increase 
a cell’s sensitivity to glucose. Stimulation of phospholipase C (PLC) and protein kinase C (PKC) is associated with 
heterotrimeric G protein subunit (Gq), which may be triggered by the GLP-1r. Strong evidence for a function for PLC/PKC 
in promoting insulin secretion can be obtained by imaging cytosolic/submembranous diacylglycerol (DAG), a PKC activator.25

It is confirmed that in patients with T2DM, the activity of pancreatic β-cells declines with time, thus, increasing this 
activity is essential to restore normal insulin secretion. GLP-1 can stimulate β-cells development from human 
precursor cells in rats, as well as stimulate their proliferation and inhibit their death.26,27 By activating the transcription 
and expression of insulin genes via both PKA-dependent and -independent signaling pathways, GLP-1 restores insulin 
storage and reduces β-cell depletion. Several kinases involved in cell signaling are activated in β-cells as a feedback to 

Figure 1 Schematic on GLP-1 secretion in the L-cell. Glucose arising from carbohydrate metabolism is transported at the luminal face of the L-cell via sodium-glucose 
cotransporter-1 (SGLT-1), which is coupled with Na+ influx, depolarizing the cell membrane (ΔΨ), opening VDCC, increasing intracellular Ca2+ levels, and triggering 
exocytosis of GLP-1 containing granules at the L-cell’s basolateral face. Increased intracellular ATP from glucose metabolism closes KATP channels, potentiating GLP-1 
release. Long-chain fatty acids interact with G protein-coupled receptors (GPR40 and GPR120), triggering intracellular Ca2+ release to prompt GLP-1 release. Amino acids 
affect the secretion of GLP-1 by a similar mechanism mediated by Na+ ions. 
Abbreviations: GLUT2, glucose transporter 2; GLP-1, glucagon-like peptide-1; GLP-2, glucagon-like peptide-2; Trpc3, transient receptor potential channel 3, VDCC, 
voltage-dependent calcium channel; SGLT1, sodium/glucose co-transporter 1.
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GLP-1 secretion. PKA activation in β-cells controls the insulin gene transcription factor of pancreatic and duodenal 
homeobox 1 (Pdx-1) by speeding its migration to the nucleus and subsequent uniting to the gene promoter in the 
nucleus. The GLP-1r activates the PKA pathway, which in turn upregulates the expression of the genes for cyclin D1 
and insulin. T-cell factor-like 2 (TCFL2) and β-catenin are essential for this pathway.28 GLP-1-induced PKA activity 
controls NFAT transcription factor activation via a calcium/calcineurin mechanism.29 PKA is a nuclear enzyme that 
activates cAMP-response element binding protein (CREB), a transcription factor essential for the survival and growth 
of β-cells. GLP-1 also boosts the growth of β-cells via the CREB-mediated synthesis of insulin receptor substrate-2 
(IRS-2), which in turn stimulates the PI3-kinase/Akt/PKB signaling pathway and cyclin D1 expression via cAMP and 
CREB.30,31 Moreover, the secretion of betacellulin via non-receptor cytoplasmic tyrosine kinase (Src) stimulates the 
epidermal growth factor (EGF) receptor, resulting in increased PI3-kinase and Akt/PKB activity and the proliferation 
of β-cells.32

Thus far we are aware that despite food, stimulation of nerve activity, and other hormones can modulate the release of 
GLP-1. The hormone somatostatin decreases the production of GLP- 1. GLP-1 is rapidly degraded by an enzyme, namely 
dipeptidyl peptidase-IV (DPP-IV).

Structure and the Active Site of DPP-IV
DPP-IV (Figure 2a) is a transmembrane glycoprotein serine dipeptidyl dipeptidase. This enzyme catalyzes the breakdown of 
GLP-1 to generate GLP-1 amide and the N-terminal histidine–alanine dipeptide. The primary structure of this enzyme 
reveals a short amine-terminal cytoplasmic domain of 6 amino acid residues, a longer transmembrane domain of 22 amino 
acid residues, and a larger portion of 738 amino acid residues. The catalytic domain (amino acid residues 506–766), a short 
flexible stalk (amino acid residues 29–39), and areas rich in glycosylation (amino acid residues 101–350) and cysteine 
(amino acid residues 55–100, 351–497) make up the extracellular domain.33 DPP-IV consists of a β-propeller and a catalytic 
α/β hydrolase, consists of the catalytic triad Ser630, Asp708, and His740, in its extracellular domains. The β-propeller is 
composed of highly glycosylated (where adenosine deaminase attached to) and cysteine-rich sections. Most of the DPP-IV 
activity in plasma comes from membrane-free DPP-IV protein, which can be cleaved by metalloproteases (MMPs).33,34

The active site of DPP-IV comprises of S2, S1, S’1, S’2 subsites and the S2 extended subsite (depicted in Figure 2b). 
S2 extensive subsite composed of Val207, Ser209, Phe357, and Arg358. S2 subsite composed of Arg125, Phe357, 
Arg358 as well as Glu205, Glu206, and Arg669. S1 subsite composed of Val711, Trp659, Tyr662, Ser630, Val656 
Tyr666, and Asn710. S’1 subsite composed of Pro550, Ser630, Phe357, Tyr547, Tyr631, and Tyr666. S’2 subsite 
composed of Trp629, Tyr547, His740, and Ser630.

Because of these subsites, DPP-IV inhibitors were classified into: (1) class I inhibitors which establish 
interactions with the core S1 and S2 subsites and form a covalent bond with Ser630 in the catalytic triad; (2) 
class II inhibitors which occupy the S1’ and/or S2’ subsites in addition to the S2 subsite; and (3) class III 
inhibitors which build interactions with the S1, S2, and S2 extensive subsites. By creating salt bridges, DPP-IV 
inhibitors have a profound effect on the S2 subsite amino acids Glu206 and Glu205. Glu206 and Glu205 are the 
residues with which sitagliptin, an established DPP-IV inhibitor, forms the strongest bonds, through the amine 
group in the drug. In the S1 subsite, Tyr662 and Tyr666 interact weakly with the trifluorophenyl ring of sitagliptin. 
Interaction between the triazolopyrazine moiety of sitagliptin and Phe357 is strong due to the presence of π-π 
stacks interaction. There is also moderate interaction between the CF3 group of sitagliptin and Arg358.35–37

Adverse events (AEs) linked with DPP-IV inhibitors (sitagliptin, saxagliptin, linagliptin, vildagliptin, and alogliptin) extracted 
from the FDA Adverse Event Reporting System (FAERS) from 2004 to 2019 were defined as gastrointestinal nonspecific 
inflammation and dysfunctional conditions, hypersensitivity, severe cutaneous adverse reactions, and noninfectious diarrhoea.38 

The reported adverse events of DPP-IV inhibitors have led to the perspective of finding effective and safe add-on medicinal plants.

Plant-Based DPP-IV Inhibitor with Antioxidant Properties
DM and its complications, including insulin resistance and insufficiency, have been linked to oxidative stress (OS), thus, 
this disease may be related to decreased levels of antioxidant enzymes such as catalase (CAT), superoxide dismutase 
(SOD), and glutathione peroxidase (GSH-Px). Lack of these enzymes may give rise to the production of reactive oxygen 
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species (ROS) and eventually, the development of diabetes complications via the increase of the susceptibility of tissues 
to oxidative stress.39 In patients with DM, glucose and free fatty acids are excessively oxidized to ROS, leading to the 
intrinsic apoptosis of β-cells. Cytochrome C is then liberated into the cytoplasm followed by the translocation of pro- 
apoptotic proteins, Bax and Bak, across the mitochondrial outer membrane. Apoptosis is triggered when caspase-9 is 
activated by cytochrome C, which also activates caspases 3 and 7.40,41

Plant-based antioxidants such as kinsenosides and flavonoids have demonstrated antidiabetic activity, and these 
compounds also help to maintain the health and function of pancreatic β-cells in animal models.40,41 The expression 
of pro-apoptotic genes increases in diabetics, while anti-apoptotic gene expression decreases. Flavonoids were reported 
to protect the growth of β-cells by reducing the expression of these genes.40 Antioxidants from plants that also inhibit 
DPP-IV, are thought to be the best way to maintain the function of β-cells thus treating DM.42

Figure 2 (a) 3D structure of human dipeptidyl peptidase-IV in complex with a potent selective inhibitor, alogliptin (indicated by red arrow) (PDB ID 2ONC; PDB DOI 
https://doi.org/10.2210/pdb2ONC/pdb; Resolution 2.55 Å; deposited by Feng et al, 2007. Total structure weight: 346.99 kDa); (b) DPP-IV binding subsites for the inhibitors 
which are numbered from the cleavage point to the S2, S1, S1’, S2’, and S2 extensive subsites. Class I inhibitors bind to S1 and S2 subsites; Class II inhibitors to S2’, S1’, and 
S2 subsites; Class III inhibitors to S1, S2, and S2 extensive subsites. Adapted from Biochem Biophys Res Commun, 434(2), Nabeno M, Akahoshi F, Kishida H, et al. A 
comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. 191–196, Copyright (2013), with permission from Elsevier.35
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Plant-Derived DDP-IV Inhibitors from in silico, in vitro, in vivo, to Studies 
in Humans
Phytoconstituents with health benefits are generally utilized to treat potentially life-threatening diseases. Indigenous 
plants have been used to treat diabetes long before insulin and other synthetic anti-DM drugs were introduced, and they 
still become the focus of interest of anti-DM researches.43 Comprehensive studies of plants with inhibitory activity 
against DPP-IV are listed in Tables 1–4, respectively.

Allium sativum
Three isolates of A. sativum (garlic) tubers, namely caffeic acid 3-glucoside, malonyl genistein, and calenduloside 
E (oleanolic acid 3-O--d-glucosiduronic acid), were computationally studied to examine their binding mode to DPP-IV. 
Of the three isolates, caffeic acid 3-glucoside revealed the weakest affinity with a docking score of −7.436 kcal/mol, 

Table 1 In silico Study

Plant Compound Name Binding Energy 
(kcal/mol)

Amino Acid Residues 
Involved in the 
Interaction (Hydrogen 
Bond)

Amino Acid Residues 
Involved in the 
Interaction 
(Hydrophobic Bond)

Reference

Liliaceae family

Allium sativum Caffeic acid 3-glucoside −7.436 Asn711, Ser631, Glu203, 

Tyr548, Glu203, Tyr663, 

Arg123, His124, Tyr667

N/A [44]

Malonylgenistin −7.438 Val207, Arg358, Ser630, 

Ser209, Phe357, Tyr662

Tyr662, His740, Tyr666, 

Val711

Calenduloside E −10.172 Glu204, Ile205, Trp630, 

Arg123, Tyr548 

Phe355, Tyr548, Tyr667

Malvaceae family

Urena lobata β-Sitosterol −6.59 N/A N/A [45]

Gossypetin −5.20 N/A N/A [45]

Chrysoeriol −4.66 N/A N/A [45]

Mangiferin −7.66 N/A N/A [45]

Stigmasterol −7.42 N/A N/A [45]

Moringaceae family

Moringa oleifera Urethane −84.99 Asn710, Glu205, Glu206 Val656, His704 [46]

Isothiocyanate −81.10 His740, Arg125, Ser630, 
Asn710, Tyr662, Tyr547, 

Ser630

N/A [46]

Dipeptide −47.36 Tyr547 N/A [46]

Zingiberaceae family

Curcuma longa Calebin A −98.721 Glu206, Tyr662, Ser552, 
Cys551, Tyr585

N/A [47]

Curcumin −66.765 N/A N/A [48]

(Continued)
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Table 1 (Continued). 

Plant Compound Name Binding Energy 
(kcal/mol)

Amino Acid Residues 
Involved in the 
Interaction (Hydrogen 
Bond)

Amino Acid Residues 
Involved in the 
Interaction 
(Hydrophobic Bond)

Reference

Solanaceae family

Withania coagulans Withasomnine −6.6 N/A N/A [49]

Withanolide E −7.6 N/A N/A [49]

Withanone −7.9 N/A N/A [49]

Withaferine A −8.1 N/A N/A [49]

Withangulatin A −8.8 N/A N/A [49]

Withacoagulin H −8.9 N/A N/A [49]

Withanolide D −9.2 N/A N/A [49]

Withanolide B −9.5 N/A N/A [49]

Sitoindoside IX −9.8 N/A N/A [49]

Hypoxidaceae family

Curculigo latifolia Phlorizin −10.9 Arg125, Asp545, Asp454, 

Gln553, Lys554, Trp629

Tyr547 [50]

Scandenin −9.3 N/A Trp629 [50]

Pomiferin −9.6 Asp556, Asp560 Trp629 [50]

Berberine −8.9 Gln553, Ser630 Tyr547 [50]

Monobenzone −7.4 Ser630 N/A [50]

Mundulone −9.3 Ser630, His740 Trp629 [50]

Dimethycaffeic acid −7.1 Gln553, Ser630 Tyr547 [50]

Rutaceae family

Melicope latifolia Methyl p-coumarate −5.7 N/A N/A [51]

Melicope glabra Trans-decursidinol −7.7 Glu206, Arg125, Ser630, 

Glu205

Glu205, Tyr666 [52]

Swermirin −5.4 Lys122, Asp739 His740, Arg125 [52]

Methyl 3,4,5- 

trimethoxycinnamate

−5.6 Arg125, Tyr547, Arg669, 

Val 207, Tyr662

Tyr666, Glu205 [52]

Renifolin −7.8 Glu206, Glu205, Asn710, 

Arg125, Ser630

Tyr547, Phe357 [52]

4’,5,6,7- 

tetramethoxyflavone

−7.7 Arg125, Ser630, His740, 

Asn710, Tyr547, Val207

Glu205, Phe357 [52]

(Continued)
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Table 1 (Continued). 

Plant Compound Name Binding Energy 
(kcal/mol)

Amino Acid Residues 
Involved in the 
Interaction (Hydrogen 
Bond)

Amino Acid Residues 
Involved in the 
Interaction 
(Hydrophobic Bond)

Reference

Isorhamnetin −7.8 Glu206, Arg358, Tyr547 Phe357, Tyr666 [52]

Quercetagetin-3,4’- 

dimethyl ether

−7.9 Ser209, Arg125, Tyr631 Glu205, Glu206, Tyr666, 

Phe662

[52]

5,3’,4’-trihydroxy 

-6,7-dimethoxyflavone

−8.1 Glu206, Arg125, Asn710, 

His740, Ser630

Glu205 [52]

2-methoxy- 

5-acetoxyfruranogermacr- 

1(10)-en-6-one

−6.3 His126, Arg125 Glu205, Tyr666, Phe357 [52]

Apiaceae family

Angelica keiskei 4-hydroxyderricin −7.42 Glu206 Phe357 [53]

Xanthoangelol −7.81 Glu205, Glu206 Phe357 [37]

Fabaceae family

Glycyrrhiza uralensis Licochalcone A −6.16 Glu203 N/A [54]

Licochalcone B −6.29 Arg123, Ser631, Arg670, 

His741

N/A [54]

Abbreviation: N/A, Not applicable.

Table 2 In vitro Study Using Human DPP-IV Inhibitory Screening Kit

Plant (Family) Plant Part Used/  
Compound Used

Solvent IC50 in µg/mL or %  
Inhibitory

Reference

Allium sativum Tubers Methanol 70.88 µg/mL [44]

Urena lobata Roots and leaves Ethanol 1.65 mg/mL [45]

Momordica charantia Fruits Water 28.15% [55]

Moringa oleifera Isothiocyanate N/A 157.694 µM [46]

Camellia sinensis Leaves Water 59% [56]

Curcuma longa Calebin A N/A 55.9% [47]

Curcumin N/A 50% [48]

Morus alba Leaves Water 480 μg/mL [57]

Withania coagulans Fruits Ethanol 63.2% [49]

Curculigo latifolia Roots Water 66.15% [50]

Fruits Water 42.79% [50]

Eugenia jambolana Fruits N/A 278.94 µg/mL [58]

Gymnema sylvestre Leaves N/A 773.22 µg/mL [58]

(Continued)
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Table 2 (Continued). 

Plant (Family) Plant Part Used/  
Compound Used

Solvent IC50 in µg/mL or %  
Inhibitory

Reference

Pterocarpus marsupium Bark N/A 273.73 µg/mL [58]

Glycyrrhiza uralensis Licochalcone A N/A 347.93 [54]

Licochalcone B N/A 797.84 [54]

Melicope latifolia Bark Chloroform 37.16 µg/mL [51]

Methyl p-coumarate N/A 911.44 µM [51]

Melicope glabra Leaves Chloroform 169.40 μg/mL [52]

Bark Chloroform 332.31 μg/mL [52]

Taraxacum officinale Whole plant Acetone 44.85% [55]

Whole plant Ethanol 43.69% [55]

Coptis chinensis Berberine N/A 13.3 μM [59]

Angelica keiskei Yellow sap Ethanol 5.94 μg/mL [37]

Yellow sap Ethyl acetate 34.03 μg/mL [37]

Xanthoangelol N/A 10.49 μM [37]

4-hydroxyderricin N/A 81.44 μM [53]

Table 3 In vivo Study

Plant Model Category Dose Duration of 
Treatment (Days)

Result Reference

Liliaceae family

Allium sativum STZ-induced SD rats 500 mg/kg BW 56 ↓Blood glucose, ↑ insulin 
serum, ↓ HbA1C

[60]

Malvaceae family

Urena lobata High fructose diet- 

induced Sprague- 
Dawley rats

1000 mg/kg 28 ↑GLP-1 bioavailability, 

↓blood glucose, ↑insulin 
serum

[61]

Cucurbitaceae family

Momordica charantia STZ-induced Wistar 

rats

10% 84 ↓Fasting blood glucose, 

↑insulin-positive pancreatic 
beta cells

[62]

Moringaceae family

Moringa oleifera Alloxan-induced 

Sprague-Dawley rats

50 mg/day 56 ↓Blood glucose [63]

Theaceae family

Camellia sinensis High fat diet Sprague- 

Dawley rats

250 mg/5 mL per kg 9 ↑Oral glucose tolerance, 

↑insulin serum, ↑β-cell mass

[56]

(Continued)
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compared to that of malonyl genistein and calenduloside E which was −7.438 kcal/mol and −10.172 kcal/mol, 
respectively. Moreover, the in vitro testing of the tuber extract revealed an inhibition towards DPP-IV (IC50 of 70.9 
g/mL).44 In addition in vivo study in streptozotocin-induced rats showed a significant elevation of blood insulin and 
a reduction in blood glucose and HbA1c levels at week-8 post fresh garlic extract intervention.60 Randomized controlled 
trials involving sixty T2DM patients revealed a significant decrease of fasting plasma glucose (FPG), total cholesterol, 
LDL-C, triglycerides in 6 weeks after garlic powder tablets administration.69

Table 3 (Continued). 

Plant Model Category Dose Duration of 
Treatment (Days)

Result Reference

Moraceae family

Morus alba STZ-induced Wistar 

rats

0.5 g/kg/day 28 ↓Blood glucose, ↑insulin 

serum

[64]

Solanaceae family

Withania coagulans High sucrose- 

induced Wistar rats

400 mg/kg 28 ↑β-cell mass, ↓blood 

glucose, ↑insulin serum, ↑% 

insulin sensitivity

[49]

Hypoxidaceae family

Curculigo latifolia High fat diet and 

STZ-induced 

Sprague-Dawley rats

200 mg/kg 28 ↑Insulin serum, ↓plasma 

glucose

[61]

Myrtaceae family

Eugenia 
jambolana

STZ-induced Wistar 

albino rats

15 mg/kg 56 ↓Fasting blood glucose [58]

Apocynaceae family

Gymnema sylvestre STZ-induced Wistar 

rats

120 mg/kg 21 ↑Insulin serum, ↓blood 

glucose

[65]

Fabaceae family

Pterocarpus marsupium STZ-induced Wistar 
rats

1% 60 ↑Insulin serum, ↓blood 
glucose

[66]

Asteraceae family

Taraxacum officinale STZ and 

nicotinamide-induced 
Wistar rat

1000 mg/kg polyherbal 

with Momordica 
charantia extract

28 ↓Blood glucose [55]

Ranunculaceae family

Coptis chinensis STZ and high 

glucose-induced 
Wistar rats

180 mg/kg 168 ↓Fasting blood glucose, 

↓glycosylated hemoglobin 

[67]

Apiaceae family

Angelica keiskei STZ-induced mice 800 mg/kg 28 ↓Fasting blood glucose [68]

Notes: ↓ = Decrease; ↑ = Increase. 
Abbreviation: STZ, Streptozotocin.
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Table 4 Studies in Human

Plant Dosage Form Sample 
Size

Gender Clinical 
Conditions

Standard 
Drug

Design of the Study Length of 
Therapy (Days)

Efficacy or 
Clinical 
Outcomes

Adverse 
Effect

Reference

(Patients) Male 
(%)

Liliaceae family

Allium 
sativum

Garlic tablets 60 55% T2DM with fasting 
blood sugar level 

between 100 to 

130 mg/dL.

Metformin Single-blind and placebo- 
controlled study. 

Intervention group 
(n=30) garlic tablet 
300 mg three times daily 

and metformin 500 mg 

twice daily. 
Control group (n=30) 

placebo and metformin 

500 mg twice daily

168 Reduction in 
fasting blood 

sugar, total 

cholesterol, 
LDL-C, 

triglycerides.

No AE and SAE 
was observed

[69]

Cucurbitaceae family

Momordica 
charantia

Bitter melon 

capsules

90 55.6% T2DM diabetes, 

a glycosylated 

hemoglobin 
(HbA1c) level no 

greater than 7.5%

N/A Single-center, randomized, 

double blind, placebo- 

controlled study. 
Intervention group 
(n=62) bitter melon 

capsules 2380 mg/day. 
Control group (n=28) 

placebo

84 Reduction in 

fasting blood 

sugar

Gastrointestinal 

symptoms, 

including 
anorexia, 

nausea, 

abdominal 
discomfort, and 

soreness; foamy 

urine; and skin 
rashes. No 

clinically SAE 

was observed

[70]

Moringaceae family

Moringa 
oleifera

Leaf powder 27 N/A T2DM for at least 

1 year

N/A Intervention group 
(n=14) meal 

supplemented with 20 g of 
Moringa oleifera leaf. 

Control group (n=13) 

placebo

180 Reduction in 

blood 

glucose level

N/A [71]

(Continued)
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Table 4 (Continued). 

Plant Dosage Form Sample 
Size

Gender Clinical 
Conditions

Standard 
Drug

Design of the Study Length of 
Therapy (Days)

Efficacy or 
Clinical 
Outcomes

Adverse 
Effect

Reference

(Patients) Male 
(%)

Moraceae family

Morus Alba 1-deoxynojirimycin 

(DNJ) in mulberry 
leaves powder

85 20% Obese persons (BMI 

≥ 25 kg/m2) aged 
20–65 years, who 

had FPG of 100– 

140 mg/dL and/or 2 
-h PPG following 

a 75 g oral glucose 

tolerance test 
(OGTT) of 140– 

199 mg/dL

N/A Randomized controlled 

clinical study. 
Intervention group 
(n=64) 3 groups, single 

dose of 50 g sucrose 
solution (150 mL), mixed 

with mulberry leaf 

powder at weights 2.3; 
4.6; 6.9 g. 

Control group (n=21) 1 

group of placebo.

84 Reduction in 

fasting 
plasma 

glucose 

(FPG) and 
glycated 

hemoglobin 

(HbA1c)

Gastrointestinal 

symptoms 
including 

bloating, 

flatulence, and 
loose stools, did 

not cause 

alteration in 
hepatic and 

renal function, 

no SAE was 
observed.

[72]

Myrtaceae family

Eugenia 
jambolana

Fruits tablet 

(GlycaCare-II® 

polyherbal 

supplement)

69 47.8% Prediabetes and 

newly diagnosed 
T2DM. Prediabetes 

was classified as per 

American diabetes 
association criteria 

HbA1c 5.7–6.4% 

and FBS between 
100 mg/ dL to 

125 mg/dL. Newly 

diagnosed T2DM 
patients had an 

HbA1c value of 6.5– 

7.5% and 
FBS>125 mg/dL

Metformin Randomized, double- 

blind, active-controlled 
clinical trial. 

Intervention group 
prediabetic (n= 17) 
GlycaCare-II 522.5 mg 

twice daily, newly 

diagnosed T2DM (n= 24) 
GlycaCare-II 522.5 mg 

twice daily. 

Control group 
prediabetic (n=17) 

metformin 500 mg a day, 

newly diagnosed T2DM 
(n=16) metformin 500 mg 

a day

120 Reduction in 

Fasting 
blood 

glucose, 

HbA1C, and 
Postprandial 

blood 

glucose

No AE and SAE 

was observed

[73]
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Fabaceae family

Pterocarpus 
marsupium

Bark tablet 

(GlycaCare-II® 

polyherbal 
supplement)

69 47.8% Prediabetes and 

newly diagnosed 

T2DM. Prediabetes 
was classified as per 

American diabetes 

association criteria 
HbA1c 5.7–6.4% 

and FBS between 

100 mg/ dL to 
125 mg/dL. Newly 

diagnosed T2DM 

patients had an 
HbA1c value of 6.5– 

7.5% and 

FBS>125 mg/dL

Metformin Randomized, double- 

blind, active-controlled 

clinical trial. 
Intervention group 
prediabetic (n= 17) 

GlycaCare-II 522.5 mg 
twice daily, newly 

diagnosed T2DM (n= 24) 

GlycaCare-II 522.5 mg 
twice daily. 

Control group 
prediabetic (n=17) 
metformin 500 mg a day, 

newly diagnosed T2DM 

(n=16) metformin 500 mg 
a day

120 Reduction in 

Fasting 

blood 
glucose, 

HbA1C, and 

Postprandial 
blood 

glucose

No AE and SAE 

was observed

[73]

Apocynaceae family

Gymnema 
sylvestre

Leaves capsules 16 N/A T2DM with fasting 

blood sugar level 
was 125 mg/dL or 

above

N/A Intervention group 
(n=8) 1 g/day dosage (in 
two divided doses 12 

hourly). 

Control group (n=8) 
placebo

30 Reduction in 

fasting blood 
glucose

No AE and SAE 

was observed

[74]

Asteraceae family

Taraxacum 
officinale 

Root capsules 
(SR2004 polyherbal 

supplement)

119 58.2% T2DM and any 
combination of oral 

hypoglycemics and/ 

or insulin with 
a HbA1c 7.1–10% in 

the last 6 months, 

body mass index 
(BMI) < 45 kg/m2

N/A Single center, unblinded, 
prospective interventional 

study. Intervention 
group (n=119) 10% 
Taraxacum, 2 capsules 

three times a day, 30 

minutes before meals 
taken with water.

84 Reduction in 
blood 

glucose and 

HbA1C 

Minor 
abdominal 

symptoms 

reported in 
sixteen patients 

(16%), no SAE 

was observed.

(Continued)

D
rug D

esign, D
evelopm

ent and T
herapy 2023:17                                                                             

https://doi.org/10.2147/D
D

D
T.S426870                                                                                                                                                                                                                       

D
o

v
e

P
r
e

s
s
                                                                                                                       

3485

D
o

v
e

p
r
e

s
s
                                                                                                                                                          

R
ohani et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 4 (Continued). 

Plant Dosage Form Sample 
Size

Gender Clinical 
Conditions

Standard 
Drug

Design of the Study Length of 
Therapy (Days)

Efficacy or 
Clinical 
Outcomes

Adverse 
Effect

Reference

(Patients) Male 
(%)

Zingiberaceae family

Curcuma 
longa

Curcumin capsules 53 39.6% T2DM, noninsulin 

dependent diabetic, 
aged between 40 

and 70 years old and 

BMI 18.5–35 kg/ m2 

with a diagnose of 1 

to 10 years

N/A Randomized, double- 

blind, placebo-controlled 
trial. 

Intervention group 
(n=25) three capsules of 
500 mg curcumin. 

Control group (n=28) 

placebo

70 Reduction in 

fasting blood 
glucose

No AE and SAE 

was observed

[75]

Ranunculaceae family

Coptis 
chinensis

Berberine pills 201 61.7% Newly diagnosed 

T2DM

N/A Randomized, double- 

blind, placebo-controlled 
trial. 

Intervention group 
(n=98) Berberine 0.6 
g per 6 pills, twice daily 

before meal. 

Control group (n=103) 
placebo

336 Reduction in 

fasting blood 
glucose and 

HbA1C

Gastrointestinal 

symptoms, no 
SAE was 

observed

[76]

Abbreviations: AE, Adverse effect; N/A, Not applicable; SAE, Serious adverse effect; T2DMm, Type 2 diabetes mellitus.
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Momordica charantia
The unripe fruit of M. charantia L. (Cucurbitaceae), generally known as bitter melon, is used as a vegetable in the tropics 
and subtropics countries. The aqueous extract of M. charantia fruits inhibited 28.15% of DPP-IV by in vitro assay.55 The 
number of pancreatic β-cells was reported to increase after oral doses of M. charantia in streptozotocin-induced diabetic 
Wistar rats. There was also a significant reduction in FPG.62 A randomized, placebo-controlled study involving 66 T2DM 
patients showed a reduction of FPG after 12 weeks of M. charantia supplements.70

Moringa oleifera
M. oleifera is abundant in both macronutrients and micronutrients, in addition to other bioactive constituents, all of which 
are essential for maintaining the body’s normal functioning and warding off certain diseases. In silico study of 
isothiocyanate which was found in the seed and leaf of M. oleifera indicated the formation of hydrogen bonds with 
His740 in S’2 subsite, Arg125 in S2 subsite, and Ser630, Asn710, and Tyr662 in S1 subsite of DPP-IV. The benzene ring 
of isothiocyanate builds a pi–pi interaction at with Phe357 in the S’1 subsite with binding energy of −81.10 kcal/mol. 
Isothiocyanate also inhibited DPP-IV with IC50 values of 157.694 µM.46 Furthermore, an in vivo study in alloxan- 
induced Sprague-Dawley rats exhibited diminished blood glucose levels after treatments with M. oleifera leaves.63 The 
hypoglycemic effect of M. oleifera leaves in seventeen T2DM patients has confirmed a reduction of blood glucose 
level.71

Morus alba
The IC50 of aqueous extract of M. alba leaves for DPP-IV inhibitory activity assay was 480 g/mL.57 Significant 
hypoglycemic effects, as measured by lower blood glucose and increased insulin concentration, were also reported in 
streptozotocin-induced Wistar rats.64 Obese people (BMI 25 kg/m2) with FPG between 100–140 mg/dL and/or 2 hours 
postprandial glucose between 140–199 mg/dL fared well in human study. FPG and HbA1c were shown to be lowered by 
consuming M. alba leaves.72

Eugenia jambolana
E. jambolana Lam., or black plum, has been proven for its inhibitory activity against DPP-IV enzyme by in vitro, having 
an IC50 value of 278.94 g/mL.58 In streptozotocin-induced diabetic rats a substantial decrease in FPG was announced 
after a treatment with α-hydroxy succinamic acid, an active component isolated from the fruit-pulp of E. jambolana.77 

E. jambolana fruits extract in the form of polyherbal tablets (GlycaCare-II®) was shown to reduce HbA1c, postprandial 
blood glucose, and FPG by a statistically significant result in prediabetic and newly diagnosed diabetic patients for 120 
days.73

Pterocarpus marsupium
The heartwood of the P. marsupium plant was reported for its DPP-IV inhibitory activity with an IC50 value of 273.73 g/ 
mL.58 Supplementation with P. marsupium bark extracts significantly elevated insulin serum and reduced blood glucose 
in streptozotocin-induced Wistar rats.66 P. marsupium bark extract in the form of polyherbal tablets (GlycaCare-II®) was 
shown to significantly lower HbA1c, FPG, and postprandial blood glucose in both prediabetic and newly diagnosed 
diabetic patients when administered twice daily for 120 days.73

Gymnema sylvestre
G. sylvestre, which grows wild in many countries of Asia, Africa, and Australia, is still consumed as a nutritional 
supplement because of the numerous health benefits. It is widely used in both conventional medicine and alternative like 
Ayurveda to lower blood sugar levels.78 In vitro results of G. sylvestre leaves extracts confirmed a potential DPP-IV 
inhibitor with an IC50 value of 773.22 µg/mL.58 Tthe aqueous fraction of G. sylvestre ethanol extract significantly 
dropped the serum glucose and lipids in streptozotocin-induced, high-fat-induced obesity rats.65 As a supplement, 
G. sylvestre reduced glucose by 37%, cholesterol by 13%, transglutaminase by 5%, and low-density lipoproteins 
(LDL) by 19%, according to a human study including 32 adult patients with T2DM.74
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Taraxacum officinale
In many countries, T. officinale is consumed as food, while in others, it is utilized in medicinal applications for the 
management and treatment of T2DM.79 The acetone extract of T. officinale showed the strongest inhibitory activity 
against DPP-IV followed by the ethanol extract by in vitro study. In streptozotocin-nicotinamide-induced diabetic rats, 
a polyherbal combination of T. officinale and M. charantia ethanol extracts was successful in decreasing plasma glucose 
comparable to glibenclamide and metformin.69 A single-center, unblinded, prospective interventional study conducted on 
119 patients with T2DM treated with SR2004, containing the root extract of T. officinale in combination with other plants 
for 12 weeks, confirmed a reduction of HbA1c, blood glucose, total cholesterol, and serum triglycerides.80

Curcuma longa
The rhizomes of C. longa L. have been utilized in India and China as an effective treatment for diabetes. Curcumin, the major 
component in turmeric, exhibits strong anti-oxidative, anti-inflammatory, and anticancer properties.81 Docking scores of 
curcumin, which is targeted to DPP-IV for the purpose of lowering blood glucose, resulted a value of −66.765 kcal/mol indicating 
that the binding site for curcumin is most stable in S1, whereas S2 and S3 require stronger connections.48 Calebin A, another 
constituent of C. longa, interacts with the active site residues of DPP-IV, with the side-chain carboxylate oxygen and backbone 
carbonyl group of Glu206 in S2 subsite, Ser552, Cys551, and Tyr585 (docking score of −98.72 kcal/mol).47 An in vitro study 
towards the DPP-IV showed that curcumin had a higher inhibitory rate than that of P32/98 and resveratrol.48 The inhibitory rate of 
calebin A showed a maximum % inhibition of 55.9% at 26.3 mM.47 Moreover, a study in fifty-three T2DM patients treated with 
either 1500 mg of curcumin or a placebo capsule 3x/day for 10 weeks resulted in a considerably reduced mean values for BMI, 
abdominal circumference, and FPG in curcumin-treated patients. Homeostatic Model Assessment of Insulin Resistance or 
Pancreatic B Cell Function (HOMA-IR or HOMA-B) demonstrated no difference, as were HbA1c, insulin, malondialdehyde, 
total antioxidant capacity, or pancreatic β-cell function.75

Coptis chinensis
C. chinensis has been traditionally used to lower blood sugar in China. Berberine is its main active component.82 

Berberine was reported could inhibit human recombinant DPP-IV (IC50 of 13.3 M).59 C. chinensis (80, 120, and 180 mg/ 
kg) showed significant decrease in HbA1c, free fatty acid, total cholesterol, apolipoprotein B, and triglyceride of 
diabetic-induced animal models.67 Treatment with berberine 2x/day for 12 weeks resulted in a significant decrease in 
FPG and HbA1c in 98 T2DM patients.76

Conclusion
To prevent the breakdown of GLP-1 and maintain blood glucose levels, Allium sativum, Momordica charantia, Moringa 
oleifera, Morus alba, Eugenia jambolana, Pterocarpus marsupium, Gymnema sylvestre, Taraxacum officinale, Curcuma 
longa, and Coptis chinensis have established their functional role at molecular level, by in vitro, and in vivo studies. 
Moreover, these plants have proven their effectiveness through studies in humans. Based on our findings Allium sativum 
(caffeic acid 3-glucoside, malonylgenistin, calenduloside E as the active constituents), Morus Alba, Curcuma longa 
(calebin A and curcumin), Pterocarpus marsupium, and Taraxacum officinale have confirmed the best potential earning 
them a prominent place in DPP-IV inhibitor discovery. Regeneration of pancreatic β-cell mass and their mechanism to 
prevent oxidative stress in T2DM are additional benefits.

Abbreviations
A sativum, Allium sativum; ADA, adenosine deaminase; AE, Adverse effect; C. chinensis, Coptis chinensis. C. longa, 
Curcuma longa; cAMP, cyclic adenosine monophosphate; CAT, catalase; CCK, cholecystokinin; CREB, cAMP-response 
element binding protein; DAG, diacylglycerol; DM, diabetes mellitus; DPP-IV, dipeptidyl peptidase-IV; E. jambolana, 
Eugenia jambolana; EECs, enteroendocrine cells; EGF, epidermal growth factor; EPAC, exchange protein directly 
activated by cAMP; G. sylvestre, Gymnema sylvestre; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, 
Glucagon-like peptide 1; GSH-Px, glutathione peroxidase; HbA1c, glycated hemoglobin; M. oleifera, Moringa oleifera; 
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M.alba, Morus alba; M.charantia, Momordica charantia; MMPs, metalloproteases; N/A, not applicable; NTS, nucleus 
tractus solitarii; OS, oxidative stress; Pdx-1, pancreatic and duodenal homeobox 1; P. marsupium, Pterocarpus marsu-
pium; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C; PYY, peptide YY; RNS, reactive nitrogen 
species; ROS, reactive oxygen species; SAE, serious adverse effect; SGLT, sodium-coupled glucose transporters; SOD, 
superoxide dismutase; STZ, streptozotocin; T. officinale, Taraxacum officinale; T2DM, type 2 diabetes mellitus; TCFL2, 
T-cell factor-like 2; VDCC, voltage dependent calcium channels; Wnt, wingless/integrated; βTC, betacellulin.
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