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Abstract 
Background:  Peritoneal metastasis (PM) after the rupture of hepatocellular carcinoma (HCC) is a critical issue that negatively affects patient 
prognosis. Machine learning models have shown great potential in predicting clinical outcomes; however, the optimal model for this specific 
problem remains unclear.
Methods:  Clinical data were collected and analyzed from 522 patients with ruptured HCC who underwent surgery at 7 different medical cen-
ters. Patients were assigned to the training, validation, and test groups in a random manner, with a distribution ratio of 7:1.5:1.5. Overall, 78 
(14.9%) patients experienced postoperative PM. Five different types of models, including logistic regression, support vector machines, classi-
fication trees, random forests, and deep learning (DL) models, were trained using these data and evaluated based on their receiver operating 
characteristic curve and area under the curve (AUC) values and F1 scores.
Results:  The DL models achieved the highest AUC values (10-fold training cohort: 0.943, validation set: 0.928, and test set: 0.892) and F1 scores 
(10-fold training set: 0.917, validation cohort: 0.908, and test set:0.899) The results of the analysis indicate that tumor size, timing of hepatec-
tomy, alpha-fetoprotein levels, and microvascular invasion are the most important predictive factors closely associated with the incidence of 
postoperative PM.
Conclusion:  The DL model outperformed all other machine learning models in predicting postoperative PM after the rupture of HCC based 
on clinical data. This model provides valuable information for clinicians to formulate individualized treatment plans that can improve patient 
outcomes.
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Implications for practice
Early identification of high-risk patients: The development of machine learning models, particularly the deep learning model, provides 
a robust tool for predicting the risk of PM after rHCC surgery. Clinicians can utilize these models to identify high-risk patients early, 
allowing for targeted interventions aimed at preventing the occurrence of PM. This will enable better individualized treatment planning 
and closer monitoring of at-risk patients to improve prognosis. Timing of hepatectomy: The study underscores the importance of early 
staged hepatectomy (SEPH) in reducing the incidence of postoperative PM. Clinicians are encouraged to prioritize SEPH when possible, 
as this approach has been associated with a lower risk of metastasis and better patient outcomes. Surgical timing should be carefully 
evaluated, particularly in cases where SEPH is feasible, to optimize the chances of reducing metastasis. Integration of predictive models 
into clinical workflow: The findings support the integration of machine learning models into the clinical decision-making process. By 
incorporating patient-specific data into these models, healthcare providers can assess postoperative risks more accurately and make 
informed decisions about the frequency of follow-up imaging and the need for early interventions, such as chemotherapy or targeted 
therapies, to address micrometastases. Intraoperative measures: For patients predicted to be at high risk of PM, surgeons can implement 
intraoperative measures, such as peritoneal lavage with sterile water, to reduce the likelihood of peritoneal implantation of free cancer 
cells. This approach may help improve long-term outcomes for patients undergoing surgery for ruptured HCC. Personalized postoperative 
monitoring and treatment: Patients identified as high-risk for PM through these predictive models should be subjected to more frequent 
imaging follow-ups, such as every 3 months, to detect metastases early. In cases where early metastases are identified, more aggressive 
postoperative management, including systemic therapies, can be initiated promptly.

Introduction
Hepatocellular carcinoma (HCC) rupture is a life-threatening 
complication with a notable incidence in some parts of Asia. 
Additionally, male patients, those with larger tumors, and 
patients with advanced liver disease are at higher risk of HCC 
rupture.1 Patients with ruptured liver cancer usually present 
with acute abdominal pain, hypotension, and shock, symp-
toms caused by massive intraperitoneal hemorrhage result-
ing from the tumor rupture. In some cases, patients may also 
exhibit hepatic tenderness and upper abdominal masses.2 
The exact pathological mechanisms of HCC rupture have 
not been fully elucidated but may be related to the follow-
ing factors: increased tension in the liver capsule caused by 
the large tumor size, increased vascular fragility, and vascular 
rupture triggered by external trauma or hypertension. Tumor 
necrosis, hemorrhage, and rapid growth within the tumor 
may further predispose it to rupture.1 Rupture of HCC has 
been considered a highly fatal complication with an acute 
phase mortality rate of 25%-75% if effective interventions 
are not taken.1 However, staged curative surgery is currently 
recognized as a treatment method for ruptured hepatocellular 
carcinoma (rHCC).3 In some early stage rHCC patients, sur-
gical intervention can achieve a prognosis similar to that of 
non-ruptured HCC patients.4 Nevertheless, multiple studies 
have shown that intra-abdominal implantation metastasis of 
liver cancer, especially after HCC rupture, often occurs, and 
postoperative abdominal cavity implantation metastasis has a 
significant impact on the prognosis of rHCC patients.5,6 The 
appearance of peritoneal implantation metastasis after rHCC 
surgery will result in worse survival. Therefore, it is crucial to 
prevent such negative outcomes from occurring.

The cause of intra-abdominal metastasis is generally 
believed to be the preoperative presence of free cancer cells 
in the abdominal cavity, especially in ruptured HCC. These 
cancer cells are considered as some tumor-active “seeds” that 
have spread stealthily in the peritoneal cavity.7 At the same 
time, surgery-induced cancer cell dissemination and decreased 
immune function promote the implantation and growth of 
free cancer cells, especially beneath the liver, since the sur-
rounding tissues of the liver often adhere to tumor cells after 
forming adhesions with the tumor.8-10 During liver cancer 
resection, contamination is more likely to occur around the 

liver. For rHCC patients who develop PM, their postoperative 
prognosis will significantly deteriorate. Roussel et al6, using 
multicenter data from Europe, observed that the OS rate for 
rHCC patients with peritoneal metastasis (PM) was inferior 
to that of single-lesion intrahepatic recurrence patients, but 
the risk factors for PM were not clear. In addition, Asian 
researchers have also shown that the occurrence of PM is 
associated with poorer prognosis.11,12 Therefore, predicting 
postoperative PM after rHCC surgery is crucial, and efforts 
should be made to prevent its occurrence. Early interventions 
should be performed for high-risk patients of postoperative 
PM to prolong their survival.

Therefore, we used a multicenter prospective maintained 
dataset to construct various machine learning models for pre-
dicting the occurrence of postoperative PM and compared 
these models. By employing multiple machine learning mod-
els, clinicians can intervene early in high-risk rHCC patients 
and improve their prognosis. We present this article in accor-
dance with the STROBE reporting checklist.

Materials and methods
Patient selection
We retrospectively analyzed 522 rHCC patients who under-
went radical hepatectomy in a prospectively maintained data-
base collected on a continuous basis at 7 centers between 
December 2018 and December 2021. Postoperative perito-
neal implantation metastatic in patients with ruptured liver 
cancer refers to the spread of free cancer cells from the pri-
mary site into the peritoneal cavity after ruptured liver cancer 
surgery and the formation of new tumor nodules or metasta-
ses by growing on the peritoneal surface or abdominal organs 
through implantation, with the metastases confirmed by 2 
experienced imaging specialists together. In routine postoper-
ative follow-up, the detection of nodules or omental nodules 
on the surface of abdominal organs and the presence of intra-
peritoneal fluid on computed tomography (CT) and magnetic 
resonance imaging (MRI) suggest PM. R0 margin is a con-
dition where no residual cancerous tissue is seen on patho-
logical examination, and an R1 margin is a condition where 
residual cancerous tissue is found to be present within the 
surgical margin on pathological examination. Postoperative 
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pathology was issued jointly by 2 experienced pathologists. 
All patients were subjected to strict inclusion and exclusion 
criteria, inclusion criteria were (1) HCC confirmed by pathol-
ogists, (2) 2 preoperative imaging findings suggestive of tumor 
rupture, (3) R0 resection, and (4) no prior history of HCC or 
other malignancies; exclusion criteria were (1) previous anti-
tumor therapy, (2) combination of other types of tumors, and 
(3) incomplete clinical data. This study was approved by the 
Ethics Committees of Wuhan Tongji Hospital, Zhongshan 
People’s Hospital, Huangshi Central Hospital, Shenzhen 
Baoan District People’s Hospital, Shenzhen Longhua District 
People’s Hospital, Affiliated Hospital of Qinghai University, 
and General Hospital of Central Theater Command, and 
informed consent was obtained from all patients. This 
study also adhered to the Strengthening the Reporting of 
Observational Studies in Epidemiology (STROBE) statement.

Treatment approach
Seven medical centers adopted a unified and standardized 
treatment strategy. All patients with rHCC were admitted 
to the Intensive Care Unit for close monitoring, and those in 
the acute phase received appropriate treatment to maintain 
hemodynamic stability, including fluid resuscitation and blood 
transfusion if necessary. Transarterial embolization/ chemoem-
bolization and conservative therapy were the main treatment 
options for hemodynamic instability caused by acute abdomi-
nal bleeding. For patients with preserved liver function in whom 
bleeding could not be controlled or was ineffective, emergency 
surgery was performed. The aim of emergency surgery was to 
perform curative intent resection on resectable tumors while 
simultaneously achieving hemostasis. For resectable rHCC 
patients who did not require emergency surgery, staged delayed 
hepatectomy was performed after a detailed professional eval-
uation upon admission, provided that bleeding had stopped 
and hemodynamics were stable after initial treatment.

Based on prior studies conducted at our Center, 2 distinct 
approaches were established for partial hepatectomy after 
HCC rupture: staged early partial hepatectomy (SEPH), 
performed within ≤8 days, and staged delayed partial hepa-
tectomy (SDPH), performed more than 8 days post HCC rup-
ture.13 Preoperative assessment included imaging (abdominal 
ultrasound, enhanced CT, and abdominal MRI), cardiopul-
monary and renal evaluation, serology, Model for End-Stage 
Liver Disease score, Child-Pugh score, albumin-bilirubin 
score, 3D liver reconstruction, etc. All rHCC patients who 
underwent hepatectomy received curative intent resection. 
During the process of liver segment resection, the Pringle 
maneuver was used for hepatic inflow occlusion if necessary. 
All patients underwent multi-disciplinary treatment before 
surgery to determine the optimal surgical approach and post-
operative management.

Data collection and feature selection
The patients’ demographic characteristics, preoperative labo-
ratory findings, and surgical details were collected and ana-
lyzed. After data collection, all 22 variables were included in 
the model, and feature selection was performed using univar-
iate analyses to screen for potential predictors with a P-value 
less than.05. Variables were then included in a multivariate 
logistic regression model, and recursive feature elimination 
was applied to further select the most informative features, 
using a random forest (RF) algorithm to calculate feature 
importance scores (Table 1).

Machine learning models development
After the feature selection process, 4 different machine learn-
ing models were developed and trained to predict the risk 
of PM after hepatic rupture in HCC patients: classification 
tree model (CTM), RF, support vector machine (SVM), and 
a fully connected neural network model. The classification 
tree recursively splits the dataset to create a decision tree for 
classifying new data points. RF is an ensemble method that 
combines multiple decision trees for improved accuracy. SVM 
finds the hyperplane that maximally separates classes, while a 
fully connected neural network model utilizes interconnected 
layers of neurons to learn complex relationships between 
inputs and outputs.

The fully connected deep neural network model used 2 hid-
den layers, comprising 128 and 64 neurons, respectively. All 
layers, except the final one, used ReLU activation functions, 
while the last layer used a sigmoid activation function.

For the CTM, we used the CART algorithm with default 
hyperparameters, including a maximum depth of 3 and a 
maximum number of 10 leaf nodes. These hyperparameters 
control the complexity and size of the resulting decision 
tree. The maximum depth restricts the number of levels or 
layers in the tree, limiting its overall complexity and pre-
venting overfitting. The maximum number of leaf nodes 
specifies the maximum number of terminal nodes or leaves 
in the tree, allowing for a more compact representation of 
the model while still capturing important patterns in the 
data. For the RF model, we used 500 decision trees with a 
maximum depth of 10 and a minimum number of samples 
required to split each node set to 2. For the SVM model, we 
used a radial basis function (RBF) kernel with C = 1 and 
gamma = 0.1.

Model evaluation
We divided the entire dataset into a training set (70%), a val-
idation set (15%), and a test set (15%). The training set was 
used for model training and cross-validation, the validation 
set was used for hyperparameter tuning, and the test set was 
used to evaluate the model’s final generalization capability. 
The test set data were completely independent of the model’s 
training and tuning processes. To enhance the model’s robust-
ness and reduce bias from a single data split, we performed 
10-fold cross-validation on the training set. Specifically, the 
training set was randomly divided into 10 non-overlapping 
subsets, with 9 subsets used for training and the remaining 
1 subset used for validation in each iteration. This process 
was repeated 10 times to ensure that each subset served as a 
validation set once. We calculated performance metrics (such 
as receiver operating characteristic [ROC]-area under the 
curve [AUC], accuracy, recall, F1 score, etc.) for each fold and 
reported the average performance and standard deviation for 
each model. After completing the 10-fold cross-validation, we 
used the validation set for hyperparameter tuning. By adjust-
ing parameters such as regularization strength and learning 
rate, we selected the model configuration that performed best 
on the validation set. Once hyperparameter tuning was fin-
ished, we conducted an independent evaluation of the final 
model using the test set. The test set data were never involved 
in the model’s training or validation and were used to assess 
the model’s generalization ability. We reported the perfor-
mance metrics of the model on the test set, including ROC-
AUC, accuracy, recall, and F1 score.
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Table 1. Baseline characteristics of patients with rHCC undergoing resection in the training, validation, and test cohorts (n = 522).

Training cohort (n = 366) Validation cohort (n = 78) Test cohort (n = 78) P-valueb

Gender .649

 � Male 309 (84.4) 67 (85.9) 69 (88.5)

 � Female 57 (15.6) 11 (14.1) 9 (11.5)

Age (years) .324

 � <60 322 (88.0) 64 (82.1) 66 (84.6)

 � ≥60 44 (12.0) 14 (17.9) 12 (15.4)

Tumor max length .654

 � ≤8 cm 267 (73.0) 55 (70.5) 60 (76.9)

 � >8 cm 99 (27.0) 23 (29.5) 18 (23.1)

Tumor number .702

 � Single 275 (75.1) 60 (76.9) 62 (79.5)

 � Multiple 91 (24.9) 18 (23.1) 16 (20.5)

AFP .966

 � ≤400 ng/mL 177 (48.3) 39 (50.0) 38 (48.7)

 � >400 ng/mL 189 (51.7) 39 (50.0) 40 (51.3)

Cirrhosis .576

 � No 283 (77.3) 59 (75.6) 56 (71.8)

 � Yes 83 (22.7) 19 (24.4) 22 (28.2)

Differentiation grade .534

 � Edmondson-Steiner I/II 224 (61.2) 49 (62.8) 53 (67.9)

 � Edmondson-Steiner III/IV 142 (38.8) 29 (37.2) 25 (32.1)

Child-Pugh .410

 � A 295 (80.6) 58 (74.4) 60 (76.9)

 � B 71 (19.4) 20 (25.6) 18 (23.1)

BCLC stage .174

 � A 200 (54.6) 49 (62.8) 50 (64.1)

 � B 166 (45.4) 29 (37.2) 28 (35.9)

MVI .681

 � No 217 (59.3) 42 (61.8) 44 (64.7)

 � Yes 149 (40.7) 26 (38.2) 24 (35.3)

Satellite foci .759

 � No 229 (62.6) 48 (61.5) 52 (66.7)

 � Yes 137 (37.4) 30 (38.5) 26 (33.3)

HBsAg .971

 � No 50 (13.7) 11 (14.1) 10 (12.8)

 � Yes 316 (86.3) 67 (85.9) 68 (87.2)

ALB .943

 � ≤35 g/L 166 (45.4) 37 (47.4) 36 (46.2)

 � >35 g/L 200 (54.6) 41 (52.6) 42 (53.8)

ALT .512

 � ≤50 U/L 291 (79.5) 58 (74.4) 59 (75.6)

 � >50 U/L 75 (20.5) 20 (25.6) 19 (24.4)

AST .136

 � ≤40 U/L 208 (56.8) 38 (48.7) 36 (46.2)

 � >40 U/L 158 (43.2) 40 (51.3) 42 (53.8)

ALP .527

 � ≤100 U/L 288 (78.7) 62 (79.5) 74 (84.1)

 � >100 U/L 78 (21.3) 16 (20.5) 14 (15.9)

GGT .811

 � ≤60 U/L 211 (57.7) 47 (60.3) 43 (55.1)

 � >60 U/L 155 (42.3) 31 (39.7) 35 (44.9)

Perioperative factors

 � Blood loss (mL)a 350 [150-1200] 370 [200-1300] 420 [140-1250] .316c
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We evaluated the models with several performance metrics, 
including accuracy, AUC-ROC, sensitivity, specificity, posi-
tive predictive value, and negative predictive value. We also 
performed a grid search to find the optimal hyperparameters 
for each model. For the classification tree and RF models, we 
varied the maximum depth and the minimum number of sam-
ples required to segment each node. For the SVM model, we 
changed the C and gamma parameters. For the deep neural 
network model, we changed the number of neurons in each 
hidden layer.

The best-performing model was selected based on its AUC-
ROC score and F1 score.

Follow-up
Patients were reviewed with imaging in the first month after 
discharge, followed by follow-up every 3 months for the first 
year and every 6 months thereafter, with imaging (eg, enhanced 
CT and abdominal MRI) and laboratory tests (including liver 
and kidney function tests, electrolytes, and tumor markers) 
performed at each follow-up visit. OS was defined as the time 
from the date of surgery to death. Follow-up continued until 
May 30, 2023.

Data analysis
Continuous variables were presented as median with their 
respective ranges, while categorical variables were expressed 
as frequencies with percentages. For comparing categorical 
variables, the chi-square or Fisher’s exact test was used. 
Survival rates for OS were analyzed using Kaplan–Meier 
curves with the log-rank test. To evaluate factors influenc-
ing OS after hepatectomy, both univariate and multivariate 
Cox regression analyses were performed. In the multivariate 

regression analysis, only variables with a significance level 
of P < .05 from the univariate analysis were included. The 
backward stepwise approach was used for variable entry. An 
automated iteration number selection method was imple-
mented to ensure model convergence and smooth fitting. To 
mitigate treatment selection bias and other potential con-
founding factors, an inverse probability treatment weight-
ing (IPTW) analysis was conducted. Propensity scores were 
calculated through a logistic regression model that incor-
porated several covariates, including age, sex, serum total 
bilirubin level, Child-Pugh class, background liver disease, 
tumor-node-metastasis (TNM) stage, tumor size, and tumor 
number.

Statistical analyses were executed using SPSS 25.0 software, 
with P-values < .05 (2-sided) considered statistically signifi-
cant. Python (version 3.7.6; Python Software Foundation) 
was used for machine learning model building. Sample size 
estimation was performed using PASS software (version: 
11.0). Additionally, R software was used to generate Kaplan–
Meier curves, ROC curves, and PR curves.

Results
Baseline information table for rHCC patients in the 
training group, validation group, and test group
A retrospective collection was conducted on 522 patients who 
underwent radical surgery at 7 central hospitals. The patients 
were randomly allocated into training, validation, and test 
cohorts using a 7:1.5:1.5 ratio, comprising 366 patients in the 
training cohort, 78 patients in the validation cohort, and 78 
patients in the test cohort. The inclusion and exclusion pro-
cess of the patients is visually represented in Figure 1. In the 

Training cohort (n = 366) Validation cohort (n = 78) Test cohort (n = 78) P-valueb

Perioperative blood transfusion .807

 � No 220 (60.1) 45 (57.7) 49 (62.8)

 � Yes 146 (39.9) 33 (42.3) 29 (37.2)

Timing of hepatectomy .995

 � SEPH 241 (65.8) 51 (65.4) 51 (65.4)

 � SDPH 125 (34.2) 27 (34.6) 27 (34.6)

Hepatectomy time .569

 � ≤220 minutes 194 (53.0) 46 (59.0) 40 (51.3)

 � >220 minutes 172 (47.0) 32 (41.0) 38 (48.7)

Extent of hepatectomy .703

 � Major hepatectomy 188 (51.4) 39 (50.0) 36 (46.2)

 � Minor hepatectomy 178 (48.6) 39 (50.0) 42 (53.8)

Time of inflow occlusion (minutes) 14 [9-18] 13 [8-17] 14 [9-19]

Postoperative PM .311

 � No 314 (85.8) 68 (87.2) 62 (79.5)

 � Yes 52 (14.2) 10 (12.8) 16 (20.5)

aMedian (range).
bχ2 test with Yates’ correction.
cWilcoxon rank-sum test.
The values in parentheses are percentages unless indicated otherwise.
Abbreviations: AFP, alpha-fetoprotein; ALBI, albumin-bilirubin grade; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; BCLC, Barcelona Clinic Liver Cancer; GGT, γ-glutamyl transpeptidase; HBsAg, hepatitis B surface antigen; HCC, hepatocellular 
carcinoma; MVI, microvascular invasion; PM, peritoneal metastasis; rHCC, ruptured hepatocellular carcinoma; SEPH, staged early partial hepatectomy; 
SDPH, staged delayed partial hepatectomy; TACE, transcatheter arterial chemoembolization.

Table 1. Continued
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training cohort, there were 309 male patients, accounting for 
84.4% of the total. Among the patients, 99 had tumors with 
a max length greater than 8 cm, representing 27.0%. The 
majority of patients (275 individuals) had solitary tumors. 
Before surgery, the liver function of most patients was graded 
as Child-Pugh A, with 295 patients, constituting 80.6% of 
the cohort. Furthermore, a majority of patients underwent 
SEPH, with 241 patients, making up 65.8%. No statistically 
significant differences (P > .05) were observed in all variables 
between the 3 groups. Detailed data for both patient groups 
are presented in Table 1.

Comparison of baseline characteristics between the 
PM and no-PM groups in all rHCC patients before 
and after IPTW
Baseline characteristics comparison before IPTW revealed 
that among 522 patients, 444 (85.1%) had no postoperative 
PM (No-PM group) and 78 (14.9%) experienced postoper-
ative PM (PM group). In the No-PM group, there were 380 
males (85.6%) and 64 females (14.4%), with 58 patients 
(13.1%) aged 60 years or older and 386 patients (86.9%) 
aged below 60 years. In the PM group, there were 65 males 
(83.3%) and 13 females (16.7%), with 12 patients (15.4%) 
aged 60 years or older and 66 patients (84.6%) aged below 
60 years. The 3 groups exhibited imbalance in variables 
such as gender, Barcelona Clinic Liver Cancer (BCLC) stage, 
alpha-fetoprotein (AFP), cirrhosis, differentiation grade, 
microvascular invasion (MVI), satellite foci, hepatitis B sur-
face antigen, timing of hepatectomy, perioperative blood 
transfusion, times of hilar inflow occlusion (HIO), and time 
of inflow occlusion. The PM group had a higher frequency 
of blood loss and perioperative blood transfusion, as well 

as a significantly higher proportion of delayed liver resec-
tion in advanced stages. After IPTW, the baseline character-
istics of the 3 groups were balanced (Table S1). See Figure 
S1 for standardized mean difference (SMD) changes before 
and after IPTW matching. Before IPTW, the OS rates of the 
No-PM group at 1-, 3-, and 5-year were 66.4%, 36.6%, and 
25.8%, respectively, while in the PM group, the rates were 
51.3%, 15.4%, and 11.5%, respectively. There was a signif-
icant statistical difference in survival between the 2 groups 
(P < .05). After IPTW, there remained a statistically signifi-
cant difference in OS rates between the 2 groups (P < 0.05) 
(Figure S2). Multivariate COX regression analysis suggested 
BCLC staging (hazard ratio [HR] = 1.823 [1.389-2.397], 
P < .001, AFP (HR = 1.655 [1.312-2.078], P < .001), tumor 
max length (HR = 1.655 [1.312-2.078], P < .001), differen-
tiation grade (HR = 1.590 [1.278-1.979], P < .001), MVI 
(HR = 1.701 [1.304-2.219], P < .001), s foci (HR = 2.259 
[1.788-2.852], P < .001), AST (HR = 1.466 [1.121-1.916], 
P = .005), ALP (HR = 1.670 [1.207-2.310], P = .002), GGT 
(HR = 1.351 [1.028-1.776], P = .031), timing of hepatec-
tomy (HR = 2.081 [1.681-2.713], P < .001), extent of hepa-
tectomy (HR = 1.778 [1.317-2.556], P < .001), and PM 
(HR = 1.388 [1.179-1.988], P < .001) (Table S2). The com-
parison of postoperative complications between the 2 groups 
did not show any statistically significant difference, and only 
Distant metastasis of liver cancer was statistically different 
(P < .001) (Table S3).

Model characteristics of different predictors of 
postoperative PM and the ROC curve
Based on the results of the multivariable logistic regression 
analysis, a logistic model was constructed (Table 2). The 

Figure 1. Flow chart for inclusion and exclusion of rHCC patients in 7 centers.

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae341#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae341#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae341#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae341#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae341#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae341#supplementary-data
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Table 2. Univariate and multivariate logistic regression analyses of risk factors associated with PM following hepatectomy for rHCC in the training 
cohort.

Univariate analysis Multivariate analysis

Variables Number Percent P OR 95% CI P OR 95% CI

Gender .605

 � Male 309 84.4 Ref –

 � Female 57 15.6 1.187 0.619-2.279

Age (years) .872

 � <60 322 88.0 Ref –

 � ≥60 44 12.0 1.125 0.649-1.648

Tumor max length (cm) .001 .660

 � <8 267 73.0 Ref –

 � ≥8 99 27.0 1.660 1.354-2.614

Tumor number .442

 � Single 275 75.1 Ref –

 � Multiple 91 24.9 1.261 0.698-2.278

BCLC stage .003 .555

 � A 200 54.6 Ref –

 � B 166 45.4 2.103 1.287-3.437

AFP (ng/mL) .006 .029

 � <400 177 48.3 Ref – Ref –

 � ≥400 189 51.7 2.008 1.220-3.311 2.079 1.076-4.016

Cirrhosis <.001 .266

 � No 283 77.3 Ref –

 � Yes 83 22.7 2.662 1.604-4.416

Differentiation grade <.001 .001

 � Edmondson-Steiner I/II 224 61.2 Ref – Ref –

 � Edmondson-Steiner III/IV 142 38.8 2.363 1.963-3.509 3.377 1.664-5.852

MVI <.001 .008

 � No 217 59.3 Ref – Ref –

 � Yes 149 40.7 2.734 1.672-4.471 1.354 1.165-1.867

Satellite foci <.001 <.001

 � No 229 62.6 Ref – Ref –

 � Yes 137 37.4 2.481 1.774-4.069 1.354 1.165-1.867

HBsAg .057

 � No 50 13.7 Ref –

 � Yes 316 86.3 1.551 0.941-2.164

ALB .847

 � <35 g/L 166 45.4 Ref –

 � ≥35 g/L 200 54.6 1.044 0.644-1.694

ALT (U/L) .240

 � <100 291 79.5 Ref –

 � ≥100 75 20.5 1.390 0.802-2.410

AST (U/L) .051

 � <80 208 56.8 Ref –

 � ≥80 158 43.2 1.637 0.988-2.660

ALP (U/L) .243

 � <100 288 78.7 Ref –

 � ≥100 78 21.3 1.395 0.797-2.440

GGT (U/L) .214

 � <60 211 57.7 Ref –

 � ≥60 155 42.3 2.027 0.843-2.781

Timing of hepatectomy <.001 <.001

 � SDPH 241 65.8 Ref – Ref –

 � SEPH 125 34.2 0.315 0.183-0.611 0.560 0.279-0.890
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area under the ROC curve for the 10-fold training, vali-
dation, and test sets were 0.915, 0.908, and 0.891, respec-
tively (Figure S3). After multiple parameter adjustments, 
the decision tree model was optimized with a maximum 
tree depth of 3, a maximum number of leaf nodes of 10, 
and the Gini index as the splitting criterion. The final deci-
sion tree is depicted in Figure S4, with the area under the 
ROC curve of 0.811 for the 10-fold training set, 0.731 for 
the validation set, and 0.723 for the test set (Figure 2A). In 
the case of the SVM model, an RBF kernel with C = 1 and 
gamma = 0.1 was used, resulting in AUC values of 0.733 for 
the 10-fold training cohort, 0.671 for the validation cohort, 
and 0.623 for the test cohort (Figure 2B). Similarly, after 
multiple parameter adjustments in the RF model, 500 deci-
sion trees were used with a maximum depth of 10, and the 
minimum number of samples required for each split was set 
to 2. The top 5 most important variables in the model were 
identified as tumor max length, timing of hepatectomy, 
AFP level, MVI, and differentiation grade (Figure 3A). The 
ROC curve analysis demonstrated an area under the curve 
(AUC) of 0.888 for the 10-fold training cohort, 0.885 for 
the validation cohort, and 0.847 for the test cohort (Figure 
3B). Finally, for the deep neural network model, 2 hidden 
layers with 128 and 64 neurons, respectively, were used. 

Except for the last layer, which used a sigmoid activation 
function, all other layers used the ReLU activation function. 
The architecture of the model is presented in Figure 4A, and 
the AUC of the ROC curve for the 10-fold training, valida-
tion, and test sets was 0.943, 0.928, and 0.892, respectively 
(Figure 4B).

Evaluation indicators for each model
The best-performing model was the deep learning (DL) 
model, which achieved the highest precision (0.928), recall 
(0.939), accuracy (0.939), F1 score (0.917), and ROC-AUC 
(0.943) in the 10-fold training cohort. In the validation 
cohort, this model also performed well with a precision of 
0.916, recall of 0.910, accuracy of 0.910, F1 score of 0.908, 
and ROC-AUC of 0.928. In the test cohort, this model also 
performed well with a precision of 0.884, recall of 0.887, 
accuracy of 0.887, F1 score of 0.899, and ROC-AUC of 
0.892. On the other hand, the SVM model had the low-
est performance. It obtained a precision of 0.734, recall of 
0.728, accuracy of 0.728, F1 score of 0.745, and ROC-AUC 
of 0.733 in the 10-fold training cohort. In the validation 
cohort, the precision dropped to 0.699, recall to 0.682, accu-
racy to 0.682, F1 score to 0.715, and ROC-AUC to 0.671. 
In the test cohort, the precision dropped to 0.671, recall to 

Univariate analysis Multivariate analysis

Variables Number Percent P OR 95% CI P OR 95% CI

Hepatectomy time (minutes) .715

 � ≥220 194 53.0 Ref –

 � <220 172 47.0 1.412 0.708-2.133

Extent of hepatectomy .078

 � Major hepatectomy 188 51.4 Ref –

 � Minor hepatectomy 178 48.6 1.202 0.856-1.858

Abbreviations: AFP, alpha-fetoprotein; ALBI, albumin-bilirubin grade; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; BCLC, Barcelona Clinic Liver Cancer; GGT, γ-glutamyl transpeptidase; HBsAg, hepatitis B surface antigen; HCC, hepatocellular 
carcinoma; MVI, microvascular invasion; OR, odds ratio; PM, Peritoneal implantation Metastasis; rHCC, ruptured hepatocellular carcinoma; SDPH, 
staged delayed partial hepatectomy; SEPH, staged early partial hepatectomy; TACE, transcatheter arterial chemoembolization.

Table 2. Continued

Figure 2. A represents ROC curves of the classification tree model in the 10-fold training, validation, and test cohorts; B represents ROC curves of the 
SVM model in the 10-fold training, validation, and test cohorts.

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae341#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae341#supplementary-data
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0.655, accuracy to 0.655, F1 score to 0.709, and ROC-AUC 
to 0.623 (Table 3). To assess the robustness of the model in 
a more homogeneous patient population, we conducted a 
subgroup analysis of patients undergoing staged early liver 
resection. We evaluated the model’s performance metrics 
in this subgroup to determine its predictive ability in the 
absence of variability in surgical timing. The model’s perfor-
mance remained robust in the cohort of patients undergoing 
staged early liver resection. In the 10-fold training cohort, 
the ROC-AUC was 0.931, the accuracy was 0.924, the recall 
was 0.917, and the F1 score was 0.906. This indicates that 
even in the absence of variability in surgical timing, the 
model’s ability to predict postoperative PM remains quite 
strong (Table S4).

PM patients’ characteristics and prognosis
The occurrence of peritoneal recurrence was observed in 78 
patients. Table S5 describes the characteristics of these patients. 
A median AFP level of 116 (8-687) ng/mL was detected at the 
time of PM occurrence. Among them, 38 patients underwent 
peritoneal tumor resection, with a survival time of 28.2 ± 4.3 
months, which was the longest prognosis among the 4 treat-
ment methods (Table S5).

Discussion
Malignant tumors of the abdominal organs often present a 
challenging issue of intra-abdominal implantation and metas-
tasis post resection, particularly in cases of ruptured liver 
cancer. Previous researchers have reported varying rates of 
postoperative PM in different HCC patients, ranging from 
7.7% to 40.7%, significantly higher than that observed in 
non-ruptured HCC patients.7,14 The covert and infiltrative 
growth of these tumors into other organs renders subsequent 
surgical intervention more difficult, and other treatment 
options are relatively suboptimal, severely impacting postop-
erative survival and quality of life. In our multicenter cohort 
of 522 patients with rHCC, a total of 78 patients developed 
postoperative PM. This subgroup of patients exhibited sig-
nificantly poorer prognosis, with a 1-year OS rate of 51.3%. 
These findings are consistent with previous research, as 
demonstrated by Roussel et al6, whose results indicated that 
patients with postoperative PM had lower OS rates compared 
to rHCC patients with solitary tumor recurrence (21.53 
months vs 9.76 months). Therefore, early identification of 
high-risk factors for postoperative intra-abdominal implanta-
tion in rHCC patients and the implementation of appropriate 

Figure 3. Evaluation of the random forest model. A represents the 5 most important variables in the model, and B represents the ROC curves of the 
random forest model in the 10-fold training, validation, and test cohorts.

Figure 4. Evaluation of the deep learning model. A represents the basic framework for deep learning models, and B represents the ROC curves of the 
DL model in the 10-fold training, validation, and test cohorts.

https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae341#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae341#supplementary-data
https://academic.oup.com/oncolo/article-lookup/doi/10.1093/oncolo/oyae341#supplementary-data
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preventive and therapeutic measures are of utmost impor-
tance to reduce the incidence of postoperative PM.

In recent years, the adoption of machine learning analyt-
ics in clinical research has seen a significant rise. Leveraging 
artificial intelligence, these methods demand minimal human 
intervention and possess the capability to autonomously 
explore hyperparameters, effectively reducing biases and sub-
jective errors commonly encountered in predictive models.15,16 
Previous studies have not explored the prediction of postop-
erative PM in rHCC, making the current research novel and 
significant. We developed and validated traditional logistic 
regression models and 4 machine learning-based prediction 
tools using multicenter data. The DL model demonstrated 
the optimal discriminative power for predicting PM (10-fold 
training cohort AUC: 0.943; validation cohort ROC: 0.928; 
test cohort AUC: 0.892), while the RF model exhibited a com-
parable but suboptimal discriminative performance (10-fold 
training cohort AUC: 0.888; validation cohort: 0.885; test 
cohort AUC: 0.847), comparable to the traditional logistic 
regression model, which remained robust in its performance. 
The logistic models accurately predict postoperative PM and 
provide specific insights into the high-risk factors influencing 
PM. Although artificial intelligence allows the development 
of high-performance predictive models, the specific impact of 
each factor on postoperative PM may not be entirely clear, 
and the underlying relationships between these factors remain 
hidden. Taking this into consideration, we constructed deci-
sion trees with relatively shallow depths. From the trees, it 
becomes evident that tumor diameter, microvascular invasion 
(MVI), and timing of hepatectomy are the main branching 
points. Additionally, we calculated the feature importance 
in the RF model, which included the top 5 influential fea-
tures, and represented them using a horizontal bar chart. 
The top 3 important features were tumor diameter, timing 

of hepatectomy, and AFP level. These findings align with the 
results of the traditional logistic regression model, wherein 
AFP, tumor diameter, MVI, and timing of hepatectomy were 
all statistically significant factors.

It is worth noting that the timing of hepatectomy is a signif-
icant predictor of postoperative PM. Previous studies at our 
center have suggested that patients who undergo SEPH have 
better prognoses compared to those who undergo SDPH.13 
Therefore, we recommend performing staged early hepatec-
tomy in resectable rHCC patients. Similarly, in the current 
study, SEPH was found to reduce the risk of postoperative 
PM (OR = 0.560 [0.279-0.890]), further reinforcing its 
importance and providing evidence in favor of staged early 
hepatectomy. However, there are some differences from pre-
vious research.17-21 For instance, Ren et al22 compared the 
incidence of PM between the emergency hepatectomy group 
and the delayed hepatectomy group (40.7% vs 35.3%) and 
found no statistically significant difference. They concluded 
that although patients in the staged group had lower disease-
free survival rates after 6 months, there was no increase in 
recurrence rate or PM incidence. At the same time, previous 
related research has also suggested that both emergency hepa-
tectomy and delayed hepatectomy do not exert a significant 
influence on postoperative PM.14,23 However, this may be 
attributed to the small sample size (n < 50). Additionally, the 
reliance on imaging-based diagnosis for postoperative PM, 
lack of pathological evidence, and variations in postopera-
tive follow-up time may also influence these study outcomes. 
Previous researchers have emphasized that these conclusions 
need validation through large-scale, multicenter studies with 
long-term follow-up. Nevertheless, in our research with a 
substantial sample size and precise follow-up, we observed 
a lower rate of PM in patients who underwent staged early 
hepatectomy (11.1% vs 22.3%). Therefore, considering the 

Table 3. Evaluation indicators for each model

Model Precision Recell Accuracy F1 score ROC-AUC 95%CI

Logistic regression

 � Average 10-fold training 0.876 0.883 0.883 0.881 0.915 0.816-0.983

 � Validation 0.866 0.871 0.871 0.869 0.908 0.820-0.989

 � Test 0.854 0.849 0.849 0.854 0.891 0.797-0.982

Classification tree

 � Average 10-fold training 0.817 0.806 0.806 0.801 0.811 0.738-0.905

 � Validation 0.744 0.749 0.749 0.736 0.731 0.678-0.834

 � Test 0.729 0.730 0.730 0.728 0.723 0.661-0.828

Random forest

 � Average 10-fold training 0.881 0.879 0.879 0.864 0.888 0.795-0.968

 � Validation 0.869 0.870 0.870 0.857 0.885 0.806-0.974

 � Test 0.852 0.834 0.834 0.546 0.847 0.784-0.935

Support vector machine

 � Average 10-fold training 0.734 0.728 0.728 0.745 0.733 0.648-0.834

 � Validation 0.699 0.682 0.682 0.715 0.671 0.596-0.776

 � Test 0.671 0.655 0.655 0.709 0.623 0.553-0.704

Deep learning

 � Average 10-fold training 0.928 0.939 0.939 0.917 0.943 0.874-0.992

 � Validation 0.916 0.910 0.910 0.908 0.928 0.845-0.971

 � Test 0.884 0.887 0.887 0.899 0.892 0.799-0.964

Abbreviations: AUC, area under the curve; ROC, receiver operator characteristic.
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comprehensive evidence, we continue to recommend staged 
early hepatectomy for patients. This approach appears to 
yield a lower risk of postoperative PM, which may enhance 
the overall prognosis and improve patient outcomes.

Our model suggests that risk factors for postoperative PM 
include tumor maximum diameter >8 cm, AFP levels ≥400 ng/
mL, presence of MVI, and poorly differentiated tumors, which 
aligns with findings from previous literature.24 Portolani et 
al24 proposed a correlation between peritoneal implantation 
and aggressive tumor biology, with surgical treatment poten-
tially achieving relatively acceptable survival rates. Regarding 
the prevention and treatment of postoperative peritoneal 
implantation, different researchers hold various perspectives. 
Huang et al25 found that a 15-minute lavage with sterile 
distilled water effectively kills tumor cells and significantly 
reduces the incidence of postoperative PM. This control tech-
nique can be considered for practical implementation during 
surgery. Baimas-George et al26 used laparoscopic microwave 
ablation and lavage of the peritoneal cavity in rHCC patients, 
achieving hemostasis and reducing the risk of peritoneal can-
cer, resulting in beneficial outcomes. Similarly, Kwak et al27 
used intraoperative radiofrequency ablation combined with 
distilled water lavage to treat rHCC patients, markedly reduc-
ing the likelihood of postoperative peritoneal implantation.

Deep learning models have superior nonlinear modeling 
capabilities compared to multivariate logistic models, espe-
cially for complex clinical outcomes like postoperative PM, 
where multiple factors may interact in intricate ways. The DL 
models also exhibit higher AUC and F1 scores than logistic 
models. In practical clinical applications, clinical data can be 
integrated with such DL models into medical information sys-
tems. After surgery, the patient’s clinical and pathological data 
will be entered into the machine learning model to predict the 
risk of PM following the procedure. For patients predicted 
to be at high risk, the clinical team will take more intensive 
monitoring and treatment measures based on the model’s 
guidance. It is recommended that for high-risk patients, the 
frequency of imaging exams (such as contrast-enhanced CT 
or MRI) be increased, typically to follow ups every 3 months, 
compared to the standard follow-up frequency, which may be 
6 months or longer. Early identification of metastatic lesions 
can significantly improve patient survival rates. High-risk 
patients may benefit from early chemotherapy or targeted 
therapy to reduce the spread of micrometastases or free can-
cer cells. Intraoperative peritoneal lavage may be used during 
the surgery to reduce the implantation of free cancer cells on 
intra-abdominal organs. Based on the prediction results of the 
machine learning model, physicians can fully discuss the post-
operative treatment plan with the patient and their family, 
helping the patient understand their individualized postoper-
ative risk and participate more actively in treatment decisions. 
This informed medical decision-making approach not only 
improves patient adherence but also enhances their quality of 
life.28 Subsequently, we further analyzed the model’s perfor-
mance in the patient population that underwent only SEPH 
and compared it with the overall patient group. By quanti-
fying performance differences, we identified that the model 
maintains high performance in this specific important cohort. 
Future research could optimize the model by collecting more 
data from patients treated solely with SEPH, enhancing its 
predictive ability in this subgroup.

Although our study represents the first large-sample pre-
diction of postoperative PM in resectable HCC patients, there 
are still some limitations to consider. First, all our samples 

were derived from the Asian region, lacking validation from 
European samples. Notably, the main etiological factor for 
HCC in Asia is Hepatitis B virus (HBV) infection, which 
differs from the predominant factors in Western countries. 
Second, the level of evidence from our research remains 
weaker than prospective clinical trials. Future investigations 
should include more large-scale, multicenter clinical trials 
to strengthen the evidence base. Third, the depth of the DL 
model used in our study is relatively limited. Employing neu-
ral networks with more hidden layers may yield improved 
predictive results.

Conclusion
In this large-scale multicenter Chinese cohort study aimed 
at establishing a postoperative PM prediction model, we 
observed that 14.9% of patients experienced PM. By utilizing 
machine learning methods, we developed accurate prognostic 
tools to predict individualized postoperative PM risk based on 
clinical and pathological characteristics. Among the 5 models 
constructed, the DL model exhibited the highest discrimina-
tive power and F1 score, indicating its superior performance 
in distinguishing and predicting PM outcomes.
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