
To Control False Positives in Gene-Gene Interaction
Analysis: Two Novel Conditional Entropy-Based
Approaches
Xiaoyu Zuo1., Shaoqi Rao1,2*., An Fan1., Meihua Lin2, Haoli Li2, Xiaolei Zhao2, Jiheng Qin2

1 Department of Medical Statistics and Epidemiology, Sun Yat-Sen University, Guangzhou, China, 2 Institute of Medical Systems Biology and Department of Medical

Statistics and Epidemiology, Guangdong Medical College, Dongguan, China

Abstract

Genome-wide analysis of gene-gene interactions has been recognized as a powerful avenue to identify the missing genetic
components that can not be detected by using current single-point association analysis. Recently, several model-free
methods (e.g. the commonly used information based metrics and several logistic regression-based metrics) were developed
for detecting non-linear dependence between genetic loci, but they are potentially at the risk of inflated false positive error,
in particular when the main effects at one or both loci are salient. In this study, we proposed two conditional entropy-based
metrics to challenge this limitation. Extensive simulations demonstrated that the two proposed metrics, provided the
disease is rare, could maintain consistently correct false positive rate. In the scenarios for a common disease, our proposed
metrics achieved better or comparable control of false positive error, compared to four previously proposed model-free
metrics. In terms of power, our methods outperformed several competing metrics in a range of common disease models.
Furthermore, in real data analyses, both metrics succeeded in detecting interactions and were competitive with the
originally reported results or the logistic regression approaches. In conclusion, the proposed conditional entropy-based
metrics are promising as alternatives to current model-based approaches for detecting genuine epistatic effects.
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Introduction

Over the past years, genome-wide association analysis has

greatly facilitated the identification of common genetic factors that

were relevant to complex diseases. Based on the common disease

common variants hypothesis [1,2,3], the single-point association

approaches, as a conventional technique, were prevailing in

detecting predominant risk variants. Although abundant suscep-

tible common variants have been identified, their effectiveness in

interpreting and dissecting complex genetic architectures predis-

posing to complex diseases remains limited. Only a small

proportion of disease heritability can be accounted for, with a

great large number of trigger variants that interplay with the main

genetic factors being untouched [4,5]. As a growing conception in

recent years, most complex diseases are primarily resulted from

the dynamic processes of the biological networks (e.g. pathways)

involving multiple gene-gene and gene-environment interactions

[6]. Genome-wide analysis of gene-gene interactions has been

deemed as an inevitable avenue to identify the more involved

genetic components contributing to complex diseases that are

undetectable in current single-point association analysis frame-

works [7,8,9,10].

Numerous methods or algorithms for detecting gene-gene

interactions have been developed. In general, they can be

categorized into two classes: model-based and model-free, based

on whether a explicit interaction model is assumed. The former is

to explicitly model and estimate, e.g. the odds ratio or relative risk,

to measure the interaction effects in a dichotomous phenotype (e.g.

affected or unaffected). This class of methods is usually based on

the generalized linear model framework, and is superior when the

true interaction pattern is prior known. However, substantial bias

and power loss might occur if the model is incorrectly assumed,

which is often the case in practice where the true model is

unknown. In this sense, a model-free method has its own merits

(i.e. robust to model misspecifications) being used in a genome-

wide interaction analysis. Random forest [11], ensemble decision

tree [12], multi-dimensionality reduction [13] and entropy-based

methods [14,15,16,17] are widely used model-free techniques for

detecting the epistatic effects or more strictly the joint effects

between genetic loci.

The entropy-based methods have received increased attention

in recent years. Several entropy-based statistics or metrics have

been developed for detecting non-linear dependence [18,19] in

contingency table, or synergy [20] between genetic loci in

association studies, and have shown their power in detecting
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interaction [14,15,16,17]. Mutual information (MI), a metric

measuring the dependence between two attributes [21], has been

widely applied as a metric or integrated in the ensemble

approaches for an interaction analysis [17,22,23,24], for its merits

of capturing non-linear dependence and the model-free nature.

One typical application is the mutual information based on the

joint genotype distribution (named as GenoMI in this study), which

measures the association between a SNP pair (e.g. loci G and H)

and the disease status (D). By defining S as the joint genotypes of G

and H, which have 9 possible values, GenoMI can be formulated as:

GenoMI~
X
s[S

X
d[D

pS,D(s,d) log
pS,D(s,d)

pS(s)pD(d)

� �
, ð1Þ

where pS,D(s,d), pS(s) and pD(d) are the joint probability mass

functions of S and D, marginal probability mass functions of S and

D, respectively. If cases and controls have the same joint genotype

distribution, GenoMI equals to zero. With large sample size, GenoMI

approximately follows x2
(v)=2N [25], where N is the total sample

size and the degree of freedom, v, equals to 8. GenoMI is plausible

to detect interaction because interaction can generate discrepan-

cies in joint genotype distribution between cases and controls.

Indeed, GenoMI has shown its power for constructing genetic

association network for rheumatoid arthritis [26].

However, many entropy-based metrics have potentially suffered

from a risk of inflated false positive error (type 1 error) in testing

the interaction hypothesis, induced by the main effects of loci. In

an interaction analysis, the false positive error is an undesirable

error and requires great efforts to control. Nevertheless, this issue

has received limited attention. Very recently, it was in detail

discussed by Ueki and Cordell [27], who systematically investi-

gated the inflated type 1 error associated with several existing

methods, for example the logistic regression-related metrics.

Theoretically, the joint effect of two loci predisposing to disease

could be decomposed into the main effects for the individual loci

and the interaction effects derived from some specific genotypic or

allelic combinations between the loci. Based on a generalized

linear model (e.g. logistic regression model), the main effects and

the interaction effect for two loci G1 and G2 can be expressed as:

ln
P

1{P

� �
~b0zb1G1zb2G2zb12G1G2:

A reasonable way to detect interactions is to partition the joint

effect of the two loci and directly test whether b12 equals to 0,

which, however, is very complicated in model-free methods. Some

widely used model-free methods are not able to distinguish the

interaction effect from the joint effect. For example, the rationale

for GenoMI to detect interaction is the presence of the interaction-

induced variation in the joint genotypic distribution between cases

and controls. However, such genotypic fluctuation can also be

generated by the main effect, even if the interaction does not exist.

Thus, there is a potential risk of inflated false positive error in

GenoMI, as well as other entropy-based statistics, in the presence of

main effect. This problem and its solution, unfortunately, have not

been well addressed.

Inspired by the work of Ueki and Cordell [27], who investigated

this issue associated with the model-based approaches, we

attempted to solve this problem in the model-free settings. In this

study, we first showed the problem of inflated false positive in using

GenoMI metric to detect interaction via extensive computer

simulations. Then, to remedy this problem, we proposed and

derived two conditional mutual information (CMI) based metrics

(i.e. based on genotypic information metric, named as GenoCMI,

and based on gametic information metric, named as GameteCMI,

respectively) to enhance the capability of the information-based

metrics to control type 1 error induced by the main effect. Finally,

we systematically evaluated the two proposed metrics for detecting

genuine interactions (epistasis), in terms of type 1 error control and

statistical power, by using large-scale simulations and applications

to two real data examples.

Materials and Methods

CMI metric based on genotype
CMI is a fundamental concept in information theory, defined as

the reduction of the uncertainty of variable X due to the

knowledge of variable Y when variable Z is given. In statistical

Table 1. Description of simulation schemas.

Schemaa ORG
b ORH

b ORGH
b Kc Description

1 – – – 0.02 Global null hypothesis of no main effect and interaction effect

2 ! – – 0.02 Only locus G has a main effect (ORG = 2.0 and 3.0, respectively). Assume a common
disease model.

3 ! ! – 0.02 Both loci have main effects (ORG = ORH = 2.0 and 3.0, respectively). Assume a
common disease model.

4 ! – – 0.0001 Similar to 2, but assuming a rare disease model.

5 ! ! – 0.0001 Similar to 3, but assuming a rare disease model.

6 ! – – 0.02 Similar to 2, but assuming a 1:2 case/control ratio (PA = 1/3).

7 ! ! – 0.02 Similar to 3, but assuming a 1:2 case/control ratio (PA = 1/3).

8d – – ! 0.02 Loci G and H have an interaction effect, but no main effect at both loci.

9d ! – ! 0.02 Loci G and H have an interaction effect, with main effect at locus G (ORG = 2.0).

aIn each schema, three two-locus interaction models (additive 6 additive, dominant 6 dominant and recessive 6 recessive) were evaluated.
bORG, ORH, and ORGH denote the main effect for locus G, main effect for locus H, and their interaction effect, respectively. ‘‘!’’ indicates that the effect is present. ‘‘–’’
indicates that the effect is absent.
cDisease prevalence (baseline penetrance).
dFor Schemas 8 and 9, the interaction effect ORGH was increased from 1.0 to a value at which the power of the optimal metric achieved 100% at significance level 0.01.
doi:10.1371/journal.pone.0081984.t001
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perspective, the null hypothesis under CMI is conditional

independence, assuming that X and Y are mutually independent

across each stratum of Z.

Denote allele A and B as the risk alleles of the unlinked SNP loci

G and H, respectively. Let i and j (i, j = 0, 1 or 2) represent the

genotypes of loci G and H, respectively, based on the count of risk

alleles. Let D denote the disease status, where D = 1 (D = 0)

indicates affected (unaffected). CMI based on genotypes (GenoCMI)

between two SNP loci can be defined as

GenoCMI~
X

d

X
i

X
j

P(G~i,H~j,D~d)

log
P(G~i,H~j D~dj )

P(G~i D~dj )P(H~j D~dj )

� � ð2Þ

Suppose that the case-control study has PA cases and 1-PA

controls. Let Pij, Pi., and P.j be the joint genotype frequency P(G = i,

H = j), the marginal frequencies P(G = i) and P(H = j), respectively,

in the general population. Let K be the disease prevalence. Then,

after some algebra (for the detailed derivation, see Text S1),

equation (2) can be expressed as:

GenoCMI~

X
i

X
j

Pij

(1{PA)(fij{1)

(1{K)

� �
(lA

ij {lN
ij )z

(fij{K)(PA{K)

K(1{K)
z1

� �
lA

ij

� �

z
X

i

X
j

Pij

(fij{K)(PA{K)

K(1{K)
z1

� �
log

Pij

Pi:P:j

� �� � ð3Þ

where lA
ij ~ log

(fij=K)

(fi:=K)(f:j=K)

� �
, and

lN
ij ~ log

(1{fij)=(1{K)

(1{fi:)=(1{K)ð Þ: (1{f:j)=(1{K)
� �

 !
. fij , fi: and f:j

are the penetrance values of joint genotype i and j, genotype i and

genotype j, respectively. lA
ij measures the logarithmic departure of

the relative risk of joint genotype (RRij ) from the product of the

relative risks of their corresponding marginal genotypes (RRi: and

RR:j ), which implies that no interaction effect between i and j exits

if and only if RRij~RRi:|RR:j [17]. Hence, it corresponds to the

definition of multiplicative interaction defined in terms of relative

risk. The latter term in equation (3) can reduce to zero if loci G and

H are independent in general population, for example, they are in

linkage equilibrium (or unlinked). Note that

lA
ij {lN

ij ~ log
ORij

ORi:OR:j

� �
ð4Þ

is another commonly applied metric for the interaction defined by

odds ratio (OR), where ORij , ORi: and OR:j are the odds ratios of

the joint genotype i and j and their corresponding marginal

genotypes, respectively. Under the rare disease assumption, the

equation (3) can be further reduced to (for the detailed derivation,

see Text S1):

GenoCMI&PA

X
i

X
j

Pij RRij log
RRij

RRi:
:RR:j

� �� �
ð5Þ

The equation (5) indicates that the GenoCMI metric measures the

quantities of interactions between genotypes of loci G and H in

terms of relative risk. If the interaction between genotypes i and j is

absent, the relative risk of the joint genotype ij is expected to equal

the multiplication of their marginal relative risks such that

GenoCMI equals to zero. On the other hand, any departure of

GenoCMI from zero indicates the presence of interaction between

two loci. Under the null hypothesis, the GenoCMI metric

approximately follows x2
(v)=2N distribution where the degree of

freedom (v) is 8 and N is number of individuals (see Text S2) [18].

(3)

Figure 1. Null distribution of the GenoCMI and GameteCMI metrics. A. The empirically null distribution of GenoCMI, compared to its theoretical
distribution x2

(8). B. The empirically null distribution of GameteCMI, compared to its theoretical distribution x2
(2).

doi:10.1371/journal.pone.0081984.g001
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CMI metric based on gametic disequilibrium
Several previous studies have successfully utilized gametic disequi-

librium as a measure to detect interaction [28,29,30,31,32]. Gametic

disequilibrium in turn has a direct impact on the entropy of gamete

[16]. Inspired by these findings, we developed a similar gamete-based

metric (GameteCMI) to the abovementioned GenoCMI to measure

conditional allelic dependence between two unlinked loci. Consider

two unlinked loci G and H with alleles A and B being the risk alleles. Let

hkl be a gamete of loci G and H, where k and l (k, l = 0 and 1) indicates

the carrier states of the risk alleles A and B in the gamete, respectively.

The four possible gamete for the diallelic loci G and H, h00, h01, h10 and

h11, represent for gamete ab, aB, Ab and AB, respectively. Analogous to

equation (2), the GameteCMI metric can be defined as:

GameteCMI~
X

d

X
k

X
l

P(hkl ,d) log
P(hkl dj )

P(G~k dj )P(H~l dj )

� �
, ð6Þ

where P(G = k|d) and P(H = l|d) are the frequencies of alleles k and l

under disease status d, respectively. Under the rare disease assumption,

the equation (6) could be reduced to (see Text S1 for details):

GameteCMI&PA

X
k

X
l

qkl RRh
kl log

RRh
kl

RRh
k:
:RRh

:l

 !" #
ð7Þ

(6)

Figure 2. Chi-squared Q-Q plots for the global null hypothesis (Schema 1). Top panels: A. GenoMI; B. GenoCMI; C. GameteCMI. Middle
panels: D. original Wu et al statistic; E. adjusted Wu statistic; F. joint effect statistic. Bottom panel: G. logistic regression model with 1 df test; H.
logistic regression model with 4 df test.
doi:10.1371/journal.pone.0081984.g002
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where qkl , qk: and q:l are the frequencies of gamete hkl, and alleles k

and l in general population, respectively. RRh
kl , RRh

k: and RRh
:l are the

relative risk of gamete hkl, and alleles k and l, respectively. In contrast

to GenoCMI, GameteCMI measures allelic interaction between two

loci. If there is no allelic interaction, the joint risk of k-l allele pair (e.g.

gamete k-l) is of no logarithmic departure from the multiplication of

their marginal risks such that GameteCMI equals to zero. Otherwise,

the amount of this departure indicates the strength of interaction

between the alleles of the two loci. Under the null hypothesis of no

allelic interaction, GameteCMI asymptotically follows x2
(v)=2N, where

the degree of freedom (v) is 2 and N is number of individuals (see Text

S2 for the derivation).

Simulation methods
To evaluate the two proposed metrics, we performed extensive

simulations in varieties of parameter settings. The publicly

available software, genomeSIMLA [33], was used to generate

multi-loci genotypic data for case-control design. The simulations

first generated two chromosomes, one containing 2 LD blocks and

the other containing 1 block. In each LD block, there were

10 SNP loci, and the recombination rates between blocks and

within blocks were randomly chosen between 0.00006 and 0.0004,

and between 0.00000001 and 0.0000001, respectively. After

thousands of generations simulated, we randomly chose the

2050th generation with 1,000,000 individuals as the general

population. Then, we assigned two SNP loci (G and H) located on

different chromosomes to be the disease loci for a dichotomous

Figure 3. Chi-squared Q-Q plots for the recessive model with main effect at one locus (Schema 2). Top panels: A. GenoMI; B. GenoCMI; C.
GameteCMI. Middle panels: D. original Wu et al statistic; E. adjusted Wu statistic; F. joint effect statistic. Bottom panel: G. logistic regression model
with 1 df test; H. logistic regression model with 4 df test.
doi:10.1371/journal.pone.0081984.g003
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disease phenotype. The risk allele frequencies at loci G and H in

the general population were 0.30 and 0.42, respectively. Table 1

summarized the simulation schemas performed in this study. For

each schema, varieties of parameters were simulated and 1000

replicates were generated for each parameter setting.

Schemas 1–7 were used to assess the capability of the two

proposed metrics to control type 1 error under varieties of

parameter settings. Schema 1 assumed lack of both main effects

and interaction effects at both loci (global null hypothesis). Schema

2 assumed that only one locus had main effect, and Schema 3

assumed that both loci had main effects. Both schemas were

assumed under a common disease assumption (prevalence

K = 0.02) and 1:1 case/control ratio (1000 cases and 1000

controls). To assess the influence of disease prevalence, a rare

disease assumption with prevalence K = 0.0001 (in Schemas 4 and

5) was also considered. Moreover, to assess the influence of case/

control ratio, a 1:2 design with 1000 cases and 2000 controls was

carried out (in Schemas 6 and 7). Finally, for power evaluation,

two schemas were designed. In Schema 8, neither of the loci had

main effect, and in Schema 9, one locus had a main effect.

Comparisons with alternative methods
We compared our proposed metrics with several previously

developed statistics. Original Wu et al. statistic [29], the adjusted

Wu statistic [27], and the joint effect statistic [27] were derived

from the generalized linear model framework. GenoMI, the

unconditional information metric, is a widely used metric

integrated with several data mining approaches. In addition, we

used two logistic regression models as the benchmark references,

which theoretically is able to achieve the best performance under

the correct genetic model. It should keep in mind that such an

analysis is unachievable in practice, as we do not know the true

model. The first model coded genotypes at both loci and their

interaction patterns (i.e. additive 6 additive, dominant 6
dominant, or recessive 6 recessive model) as the truly simulated,

then used a 1 df Wald test (named logit_1df in this study) to test

the only interaction term. The second model coded genotypes at

each locus as two independent factor levels, and as a result, this

model had four independent interaction terms (i.e. a saturated

model). Therefore, the Wald test (named logit_4df) had 4 degrees

of freedom. In essence, the second model can be considered

‘‘model-free’’. Several methods (GameteCMI, original Wu et al. and

adjusted Wu statistics) require estimation of gamete frequencies,

which was carried out by using the E-M algorithm implemented in

R library ‘‘haplo.stats’’ (version 1.5.6). The nominal significance of

0.01 was used as the criterion as no multiple tests in each round of

simulation were involved. The empirical type 1 error rate or the

statistical power was calculated as the percentage of significant

results (P,0.01) among the 1000 replicates.

Results

The Null Distributions of the CMI-based Metrics
To empirically determine the asymptotic distributions of the

CMI-based metrics (GenoCMI and GameteCMI), we first simulated a

general population of 1,000,000 individuals with two independent

diallelic loci. Then, we randomly sampled 1,000 individuals from

the general population and randomly assigned their disease status

(independent of genotypes) according to the specified population

prevalence. We repeated 10,000 times to obtain the empirical

distributions of GenoCMI and GameteCMI and compared with their

corresponding theoretical distributions, the central x2
(8) and x2

(2),

respectively (Figure 1). The Kolmogorov-Smirnov test indicated

good goodness-of-fitness of the empirical distributions of GenoCMI

(P = 0.961) and GameteCMI (P = 0.848) with their theoretical ones,

respectively.

Type 1 Error Without Any Main Effect
Figure 2 shows Q-Q plots for the observed distributions of

different metrics calculated in Schema 1 (with the global null

hypothesis of no main effects and interaction effects). All metrics

performed well in this schema, except for the original Wu et al.

statistic that showed obvious inflation in type 1 error, which was

consistent with Ueki and Cordell’s findings [27].

Type 1 Error with One Locus Having a Main Effect
We first evaluated the issue of type 1 error for the two proposed

CMI-based metrics in Schema 2, in which only one locus (G) had a

main effect. The GenoCMI and GameteCMI showed good agreement

between the observed and expected values under two different

main effect settings (ORG = 2.0 and 3.0, respectively). However, an

obvious departure was identified for the GenoMI metric when one

locus (G) had a main effect, supporting our perspective that GenoMI

is unable to distinguish the genuine interaction effect from the joint

Table 2. False positive rates (type 1 error rates) for testing interaction in common disease with main effect at one locus (Schema
2).

Additive Dominant Recessive

1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0

GenoMI 0.009 1.000 1.000 0.013 1.000 1.000 0.006 0.913 1.000

GenoCMI 0.009 0.008 0.010 0.011 0.014 0.009 0.007 0.011 0.011

GameteCMI 0.005 0.003 0.011 0.012 0.015 0.018 0.015 0.007 0.010

original Wu statistic 0.063 0.086 0.069 0.074 0.094 0.088 0.079 0.064 0.061

adjusted Wu statistic 0.004 0.011 0.006 0.009 0.019 0.018 0.012 0.006 0.007

joint effect statistic 0.004 0.009 0.006 0.010 0.016 0.010 0.016 0.010 0.008

logit_1dfa 0.005 0.014 0.007 0.009 0.016 0.013 0.011 0.009 0.010

logit_4dfb 0.009 0.006 0.010 0.008 0.014 0.014 0.009 0.009 0.009

alogistic regression model with 1 df test for the correct genetic model.
blogistic regression model with 4 df test by coding genotypes as factors.
The disease prevalence is assumed 0.02. The significance level is set as 0.01.
doi:10.1371/journal.pone.0081984.t002
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effect well. All three logistic-based statistics also showed satisfac-

tory performance in these parameter settings except for the

original Wu et al. statistic that showed a marked deviation. Except

for GenoMI, genetic models appeared having only subtle influence

on various metrics to control type 1 error, with GameteCMI and

adjusted Wu statistic showing slight inflation in the dominant

model when ORG = 3.0. (see Figure 3 for the recessive model,

Figure S1 for the dominant model and Figure S2 for the additive

model).

The estimated type 1 error rates (at a = 0.01) for testing

interaction in a common disease model (K = 0.02) are given in

Table 2. It is evident that GenoMI could not maintain correct type

1 error when one locus had a main effect, indicating that it is very

sensitive to any departure from the global null hypothesis of no

main effect at both loci and no interaction effect. It is also

interesting to note that the original Wu et al. statistic had a fairly

consistently inflated type 1 error over a range of main effects and

genetic models. All the remaining six metrics or statistics, including

our proposed two conditional information based metrics, adjusted

Wu statistic, the joint effect statistic, the logistic regression model

with 1 df Wald test and the logistic regression model with 4 df

Wald test, had well maintained correct type 1 error rates over

three common genetic models and different sizes of main effect. In

short, these simulations demonstrated that the two proposed CMI-

based metrics could tolerate the influence on type 1 error rate from

the large main effects (e.g. OR = 3) at one locus.

Figure 4. Chi-squared Q-Q plots for the recessive-recessive model with main effect at both locus (Schema 3). Top panels: A. GenoMI; B.
GenoCMI; C. GameteCMI. Middle panels: D. original Wu et al statistic; E. adjusted Wu statistic; F. joint effect statistic. Bottom panel: G. logistic
regression model with 1 df test; H. logistic regression model with 4 df test.
doi:10.1371/journal.pone.0081984.g004
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Type 1 Error with Both Loci Having Main Effects
We further investigated the issue of type 1 error in detecting

interactions when both loci had main effects under a common

disease model (disease prevalence K = 0.02). Figure 4 shows the Q-

Q plots for Schema 3 under a recessive-recessive two-locus disease

model. Again, markedly inflated type 1 error was observed for

GenoMI and the original Wu et al. statistic. All the remaining

metrics or statistics, including the proposed GenoCMI and

GameteCMI, had maintained the correct type 1 error rate.

However, in the dominant-dominant interaction model, the

gamete-based statistics (GameteCMI and the adjusted Wu statistic)

appeared not being so effective to maintain the correct type 1 error

as well. This inflation was more salient when the sizes of main

effect became larger (see Figure 5). In this case GenoCMI and the

joint effect statistic were comparable to the two logistic regression

models. Finally, the inflation of type 1 error was most pronounced

under the additive-additive interaction model, in which none of

the tested approaches could maintain correct type 1 error rate

except for the logistic regression with 1 df test and the logistic

regression with 4 df test (see Figure 6).

The Influence of Disease Prevalence on Type 1 Error
To assess the influence of disease prevalence (K) on the type 1

error rate, we also considered the scenarios of a rare disease

(K = 0.0001) in Schemas 4 (with one locus having a main effect)

and 5 (with both loci having main effects). Figure 7 shows the Q-Q

plots with K = 0.02, 0.0001 when one locus had a recessive main

effect (ORG = 2.0). The size of K appeared to have little effect on

Figure 5. Chi-squared Q-Q plots for the dominant-donimant model with main effect at both locus (Schema 3). Top panels: A. GenoMI;
B. GenoCMI; C. GameteCMI. Middle panels: D. original Wu et al statistic; E. adjusted Wu statistic; F. joint effect statistic. Bottom panel: G. logistic
regression model with 1 df test; H. logistic regression model with 4 df test.
doi:10.1371/journal.pone.0081984.g005
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the Q-Q plots. A similar pattern also figured in both the dominant

model (see Figure S3) and the additive model (see Figure S4),

respectively.

For the situation of both loci having main effects (ORG

= ORH = 2.0), disease prevalence also had little effect on the Q-

Q plots for the recessive-recessive genetic model (see Figure 8) and

the ones for the additive-additive model (see Figure S6). However,

in dominant-dominant model, GameteCMI and the adjust Wu

statistic appeared to suffer from consistently inflated type 1 error

under different sizes of K (see Figure S5), which suggested that

these gamete-based approaches were sensitive to the two-locus

genetic model, but not to disease prevalence. In short, all metrics

or statistics were not sensitive to disease prevalence.

The Influence of Case/control Ratio on Type 1 Error
We further evaluated the influence of case/control ratio (PA) on

type 1 error under a common disease model (K = 0.02, in Schemas

6 and 7). Little effect of the case/control ratio on Q-Q plots for all

seven metrics or statistics was observed in the presence of main

effect at one locus (data not shown). When both loci had main

effects (ORG = ORH = 2.0), only subtle differences in Q-Q plots

between different sizes of PA were observed for different genetic

models (see Figure 9 for the recessive-recessive model, Figure S7

for the dominant-dominant model, and Figure S8 for the additive-

additive model).

Figure 6. Chi-squared Q-Q plots for the additive-additive model with main effect at both locus (Schema 3). Top panels: A. GenoMI; B.
GenoCMI; C. GameteCMI. Middle panels: D. original Wu et al statistic; E. adjusted Wu statistic; F. joint effect statistic. Bottom panel: G. logistic
regression model with 1 df test; H. logistic regression model with 4 df test.
doi:10.1371/journal.pone.0081984.g006
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Power Evaluation
We designed two simulation experiments (Schema 8, without

main effect, and Schema 9, with main effect at one locus) for

power evaluation. Since the original Wu et al. statistic suffered

from the risk of inflated type 1 error even in the scenario of no

main effect, we excluded it from power evaluation. Given the fact

that GenoMI was very sensitive to main effect, we also did not assess

its statistical power in the presence of main effect.

Figure 10 shows the performance in terms of statistical power

for detecting genuine dominant-dominant interaction effects. In

absence of main effect at both loci, GenoMI appeared to have

highest power, followed by GameteCMI, the logistic regression with

1 df test and GenoCMI. The proposed GenoCMI and GameteCMI

achieved comparable performance to the logistic regression with

1 df test in this scenario, with .80% power at ORGH = 2.0 or

above. The adjusted Wu statistic, the joint effect statistic and the

logistic regression with 4 df test appeared to be more conservative

in this case. In the presence of main effect at one locus, GameteCMI

and the logistic regression model with 1 df test achieved the best

performance. GenoCMI had comparable or relatively higher

statistical power compared to the adjusted Wu statistic, the joint

effect statistic and the logistic regression model with 4 df test.

Figure 11 shows the power curves for detecting the additive-

additive interaction effect. In the case of no main effect at either

locus, GenoMI outperformed other approaches as well, but was

closely followed by GameteCMI. GenoCMI appeared to have

Figure 7. Chi-squared Q-Q plots for the recessive model with main effect at one locus, when disease prevalence varied (Schema 4).
Assuming the presence of main effect at one locus (ORG = 2.0). Top panels: A. GenoMI; B. GenoCMI; C. GameteCMI. Middle panels: D. original Wu et al
statistic; E. adjusted Wu statistic; F. joint effect statistic. Bottom panel: G. logistic regression model with 1 df test; H. logistic regression model with
4 df test.
doi:10.1371/journal.pone.0081984.g007
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comparable performance to the adjusted Wu statistic, the joint

effect statistic and the logistic regression model with 1 df test. The

logistic regression model with 4 df test, which did not assume any

genetic models, was the most conservative in this case. All metrics

or statistics, except for the logistic regression model with a 4 df test

for interaction, achieved .90% power at ORGH = 1.5 or above.

The same pattern was also identified in the presence of main effect

at one locus.

Figure 12 shows the power curves under the recessive-recessive

interaction model. In the scenario of neither loci having main

effect, GenoCMI appeared to have the best performance among all

metrics or statistics, with .80% power at ORGH = 3.0 or above,

followed by the logistic regression with 1 df test and GameteCMI in

order. Interestingly, GenoMI performed relatively poor in this

scenario. In the presence of main effect at one locus, GenoCMI

again outperformed other approaches. GameteCMI seemed to have

comparable performance to the logistic regression with 1 df test

under the correct genetic model and better performance than the

adjusted Wu statistic and the joint effect statistic as well.

Application to Real Data Examples
To evaluate the utility of the entropy-based metrics in detecting

gene-gene interactions in the real settings, we analyzed several

published datasets. The first example was about the epistatic

interaction between the hemoglobin (Hb) and a+-thalassemia genes

on protecting against malaria. The S variant of Hb gene, located

Figure 8. Chi-squared Q-Q plots for the recessive-recessive model with main effect at both loci, when disease prevalence varied
(Schema 5). Assuming main effect at both locus (ORG = ORH = 2.0). Top panels: A. GenoMI; B. GenoCMI; C. GameteCMI. Middle panels: D. original Wu
et al statistic; E. adjusted Wu statistic; F. joint effect statistic. Bottom panel: G. logistic regression model with 1 df test; H. logistic regression model
with 4 df test.
doi:10.1371/journal.pone.0081984.g008
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on chromosome 11, is known to be responsible for sickle-cell

disease. The a+-thalassemia gene, located on chromosome 16, can

cause the a+-thalassemia if defective alleles are produced.

Although the hemoglobin (Hb) and a+-thalassemia genes can

result in undesirable blood disorders, numerous evidence indicate

a protective role for the mutant genes against the more severe

manifestations of malaria. However, the mechanisms underlying

this protection are poorly understood, in particular much less is

known about the a+-thalassemia gene and how it exerts anti-

malaria effects when inherited in combination with the Hb gene.

Here we analyzed a datum from a birth cohort study of the

incidence of hospital admission with malaria and severe malaria

from Kilifi District Hospital on the coast of Kenya in Africa [34].

In this cohort, 2104 children were genotyped. The Hb gene was

genotyped as HbAA and HbAS, representing the wild type and

mutant type, respectively The wild-type homozygote, heterozygote

and mutant homozygote genotypes of the a+-thalassemia gene

were encoded as aa/aa, 2a/aa, and 2a/2a, respectively. For

comparison, the logistic regression models based on different

genotypic coding (corresponding to the dominant-dominant model

and additive-additive model, respectively), and based on coding

the Hb and a+-thalassemia gene as dummy variables, were also

provided. The results of three entropy-based metrics, including

our proposed two CMI-based metrics, are summarized in Table 3.

For comparison, Table 3 also lists the P-values obtained by using

the Poisson regression, originally reported by Williams et al. [34],

Figure 9. Chi-squared Q-Q plots for the recessive-recessive model with main effect at both loci, when case/control ratios varied
(Schema 7). Assuming main effects at both locus (ORG = ORH = 2.0) and disease prevalence 0.02. Top panels: A. GenoMI; B. GenoCMI; C. GameteCMI.
Middle panels: D. original Wu et al statistic; E. adjusted Wu statistic; F. joint effect statistic. Bottom panel: G. logistic regression model with 1 df test;
H. logistic regression model with 4 df test.
doi:10.1371/journal.pone.0081984.g009
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and P-values obtained by using logistic regression with 1 df test

and 4 df test, respectively. Our results showed that P-values

obtained by using GenoMI, GenoCMI and GameteCMI were smaller

than those obtained by using Poisson regression analysis.

GameteCMI achieved lower P-values compared to logistic regression

with either 1 df test or 4 df test, whereas P-values obtained by

using GenoCMI were comparably higher than those obtained by

using the two logistic regression based tests.

The second example was composed of several studies concern-

ing the interaction between SNP309 in MDM2 gene (MDM2

309T.G, located on chromosome 12) and codon72 polymor-

phism in p53 gene (p53 72Arg.Pro, located on chromosome 17)

predisposing to different cancers. The p53 gene encodes a tumor

suppressor protein (p53) that is involved in cell cycle regulation as a

trans-activator and acts as a tumor suppressor in many cancers.

The mutant p53 72Arg.Pro is credited with a more efficient

transcriptional activation and suppression of cell growth [35]. The

MDM2 gene is a target gene of the TP53 protein, meanwhile, an

important negative regulator of the p53 tumor suppressor. The

mutant of MDM2 309T.G is proposed to elevate the expression of

the product of MDM2, which binds the p53 protein and targets its

proteasomal degradation, thereby attenuating its response and

diminishing its tumor suppressor function [36]. Investigation of the

p53-MDM2 interaction could provide valuable insight into the

mechanisms underlying tumor oncogenesis afforded by these

genes. In this example, we evaluated four phenotypes in three

different populations, including gastric cardia cancer in Han

population[37], lung cancer in Han population[38], hepatocellular

carcinoma in patients infected with HBV in Korean population

[39], and breast cancer nested in Nurse Health Study and Nurses’

Health Study II [40]. The variants in p53 and MDM2 are Pro and

G, respectively. Table 4 shows the P-values obtained by using three

entropy-based metrics including two proposed CMI-based metrics.

The P-values from the two logistic regression methods with either

1 df test or 4 df test were used for comparison. The P-values of

GameteCMI in all the four cancer phenotypes were smaller than

that of logistic regression analyses, while the P-values of GenoCMI

were smaller than or similar to those of logistic regression with 1 df

Figure 10. Power curves for testing interaction under the dominant-dominant interaction model. A. Assuming no main effect at both
loci (ORG = ORH = 1.0); B. Assuming main effect at one locus (ORG = 2.0). G-MI: GenoMI; G-CMI: GenoCMI; H-CMI: GameteCMI; Wu-adj: Adjusted Wu
statistics; JE: Joint Effects statistics; Logit_1 df: logistic regression model with 1 df test; Logit_4 df: logistic regression model with 4 df test. Disease
prevalence was chosen at 0.02.
doi:10.1371/journal.pone.0081984.g010

Figure 11. Power curves for testing interaction under the additive-additive interaction model. A. Assuming no main effect at both loci
(ORG = ORH = 1.0); B. Assuming main effect at one locus (ORG = 2.0). G-MI: GenoMI; G-CMI: GenoCMI; H-CMI: GameteCMI; Wu-adj: Adjusted Wu statistics;
JE: Joint Effects statistics; Logit_1 df: logistic regression model with 1 df test; Logit_4 df: logistic regression model with 4 df test. Disease prevalence
was chosen at 0.02.
doi:10.1371/journal.pone.0081984.g011
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test and were smaller than those obtained by using logistic

regression with 4 df tests. In conclusion, these two real data

applications demonstrated that GameteCMI and GenoCMI achieved

optimal or nearly optimal performance compared to the bench-

mark logistic regression based test.

Discussion

In this study, we attempted to solve the potential false positive

problem associated with current model-free or data mining

approaches for genome-wide interaction analysis, by using the

entropy-based metrics as examples. Inspired by the work of Ueki

and Cordell [27] who studied the similar issue associated with

model-based approaches, we first mathematically and empirically

demonstrated that the widely used mutual information based

metric (GenoMI) was not able to distinguish the genuine interaction

effect from the joint effect. In particular, when the main effects at

two loci were large, the inflation of type 1 error in testing

interaction effect was much salient. To remedy this issue, we

proposed to use two conditional mutual information (CMI) based

metrics (named as GenoCMI and GameteCMI, respectively). By

mathematical derivations and extensive simulations, we showed

that the two CMI-based metrics worked well to control false

positive error in various two-locus interaction models.

To evaluate the capability of the proposed CMI-based metrics

to control the type 1 error, we considered varieties of parameter

settings in a systematic way. In absence of both main effect and

interaction effect or presence of main effect at one locus, the

proposed two CMI-based metrics achieved adequate control of

type 1 error in both common and rare disease models, with only

Figure 12. Power curves for testing interaction under the recessive-recessive interaction model. A. Assuming no main effect at both loci
(ORG = ORH = 1.0); B. Assuming main effect at one locus (ORG = 2.0). G-MI: GenoMI; G-CMI: GenoCMI; H-CMI: GameteCMI; Wu-adj: Adjusted Wu statistics;
JE: Joint Effects statistics; Logit_1 df: logistic regression model with 1 df test; Logit_4 df: logistic regression model with 4 df test. Disease prevalence
was chosen at 0.02.
doi:10.1371/journal.pone.0081984.g012

Table 3. Comparison of P-values in testing gene-gene interaction between hemoglobin (Hb) gene and a+-thalassemia gene.

Genotypes Frequencya P-values obtained by

GenoMI GenoCMI GameteCMI Wald testb ORc ORd

Malaria Admission HbAA aa/aa 168/458 1.84E-10 3.88E-3 3.30E-5 2.60E-2 4.35E-4 8.63E-4

HbAA 2a/aa 187/680

HbAA 2a/2a 56/246

HbAs aa/aa 6/107

HbAs 2a/aa 9/141

HbAs 2a/2a 10/36

Severe Malaria HbAA aa/aa 67/559 2.12E-7 1.17E-3 2.24E-6 1.20E-3 1.40E-5 1.80E-4

HbAA 2a/aa 53/814

HbAA 2a/2a 17/285

HbAs aa/aa 0/113

HbAs 2a/aa 2/148

HbAs 2a/2a 5/41

afrequencies were shown as No. of case/No. of control.
bP-values reported by Williams et al.
cthe lowest P-value among logistic regression models by assuming additive 6 additive, dominant 6 dominant and recessive 6 recessive interaction models,
respectively.
dobtained by logistic regression model by coding genotypes as factors.
doi:10.1371/journal.pone.0081984.t003
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feebly influenced by genetic models and the sizes of main effect. In

the scenario of a common disease and both loci having main

effects, GenoCMI and the previous joint effect statistic could control

false positive error well under the recessive-recessive or dominant-

dominant genetic models, whereas GameteCMI as well as the

adjusted Wu statistic exhibited noticeable inflated type 1 error

under the dominant-dominant genetic model. Unfortunately, we

are not very clear about why the GameteCMI appeared having an

inconsistent type 1 error rate under dominant-dominant interac-

tion models. Although this phenomenon was also observed (but

without explanations) in the previous studies (e.g. the previously

proposed adjusted Wu statistic that is in essence a haplotype-based

statistic, see [27]), we have not found a good way to adjust for this

bias yet. In the scenarios of additive-additive genetic model, except

for the benchmark logistic regression models, none of the

remaining six metrics or statistics could well control the false

positive error, when the main effects were large (e.g. OR$3.0).

Fortunately, both our proposed CMI-based metrics and several

previous statistics (adjusted Wu statistics and the joint effect

statistic) were able to control type 1 error with moderate main

effects at both loci, e.g. OR = 2.0, which is often the case for most

complex diseases. Furthermore, based on our simulation studies,

the disease prevalence (K) and case/control ratio (PA), two

important factors underlying a case-control study, appeared to

have subtle influence on the control of type 1 error.

In terms of statistical power for detecting gene-gene interaction,

the proposed CMI-based metrics in general had better perfor-

mance than the adjusted Wu statistic and the joint effect statistic,

and had comparable performance to the benchmark logistic

regression. In the absence of main effect at both loci, the GenoMI

performed best in detecting the additive-additive or dominant-

dominant interaction effect. However, this advantage was

somewhat tempered by its possibility of inflated type 1 error.

The trade-off between the gain of power and the risk of false

positive error becomes a difficult balance to strike in real data

analysis. One feasible consideration is to apply multistage tests or

an ensemble approach, in which we first use GenoMI to filter out

non-informative gene pairs, followed by refining gene pairs that

are with genuine interaction effects by using GenoCMI and

GameteCMI or other alternatives mentioned in this study.

Finally, we should recognized that several issues still remained

unattended in this study, although we have very carefully explored

the statistical properties of the two proposed CMI-based metrics

for detecting gene-gene interaction. First, we did not concern

varieties of definitions of interaction, which can be very diverse

from statistical standpoints to biological ones [41], for examples,

from statistically defined as deviation from additive effects [42,43]

or compositional epistasis [44,45] to various forms of biological

interactions such as physical binding of proteins [46] and

transcriptional regulations. In this study, we mainly concerned in

detecting the statistical interactions, and whether these proposed

information-based metrics are able to reveal various biological

mechanisms remains unclear. Second, we only considered several

common two-locus interaction models. Theoretically, the number

of two-locus models for binary complex human diseases is up to 50

models under full penetrance assumption [47] or 69 models for

continuous penetrance [48]. A natural extension should compre-

hensively examine their capability of the newly proposed metrics

in detecting genuine interaction under various two-locus models.

Because of their model-free nature, the two proposed CMI-based

metrics are anticipated to be robust to various forms of

interactions, which, however, requires further studies to verify.

Third, we only considered the simplest case of two independent

SNP loci (i.e. located on different chromosomes) in this study. The

more complicated scenarios involve, for example, the multiple

SNP loci from the same LD block or correlation of the tests due to

the sharing of the same SNP etc. To deal with these scenarios

requires a more involved method to distinguish the true epistasis

from other reasons. Anyway, given their potential of capturing

various forms of non-linear interactions, the newly proposed CMI-

based metrics could become promising and powerful alternatives

for detecting large-scale interactions.

Table 4. Application of entropy-based statistics for testing gene-gene interaction between SNP309 in MDM2 gene and codon72
polymorphism in p53 gene.

p53 72Arg.Pro GCC LC HCC BC

Casea Controlb Casea Controlb Casea Controlb Casea Controlb

Arg/Arg 19/59/45 96/162/58 62/170/89 122/223/80 23/48/39 40/56/28 349/317/104 488/539/166

Arg/Pro 61/119/65 150/222/114 127/259/120 222/343/166 18/58/35 38/53/45 218/266/63 346/365/92

Pro/Pro 27/72/33 52/114/32 60/132/87 74/145/45 4/19/43 6/23/8 40/45/14 60/52/10

GenoMI 3.88E-06 5.11E-08 9.34E-07 2.02E-01

GenoCMI 1.36E-03 4.99E-02 5.69E-05 7.41E-02

GameteCMI 1.90E-03 1.28E-03 2.44E-04 1.28E-03

ORA
1 9.46E-02 9.90E-01 8.49E-02 1.87E-02

ORD
2 7.99E-02 2.96E-01 4.90E-01 1.42E-02

ORR
3 7.45E-01 1.48E-02 7.15E-04 1.56E-01

ORC
4 7.92E-02 2.26E-02 3.92E-03 9.08E-02

afrequencies were shown as No. of individuals genotyped as TT/TG/GG of MDM2 309T.G in case.
bfrequencies were shown as No. of individuals genotyped as TT/TG/GG of MDM2 309T.G in control.
1obtained by logistic regression model assuming additive 6 additive model.
2obtained by logistic regression model assuming dominant 6dominant model.
3obtained by logistic regression model assuming recessive 6 recessive model.
4obtained by logistic regression model by coding genotypes as factors.
GCC: gaster cardia cancer; LC: lung cancer; HCC: hepatacelluar cancer; BC: breast cancer.
doi:10.1371/journal.pone.0081984.t004
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Supporting Information

Figure S1 Chi-squared Q-Q plots for the dominant
model with main effect at one locus (Schema 2). Top

panels: A. GenoMI; B. GenoCMI; C. GameteCMI. Middle panels: D.

original Wu et al statistic; E. adjusted Wu statistic; F. joint effect

statistic. Bottom panel: G. logistic regression model with 1 df test;

H. logistic regression model with 4 df test.

(TIFF)

Figure S2 Chi-squared Q-Q plots for the additive model
with main effect at one locus (Schema 2). Top panels: A.

GenoMI; B. GenoCMI; C. GameteCMI. Middle panels: D. original

Wu et al statistic; E. adjusted Wu statistic; F. joint effect statistic.

Bottom panel: G. logistic regression model with 1 df test; H.

logistic regression model with 4 df test.

(TIFF)

Figure S3 Chi-squared Q-Q plots for the dominant-
dominant model with main effect at one locus, when
disease prevalence varied (Schema 4). Assuming a main

effect at single locus (ORG = 2.0) and 1:1 case/control ratio. Top

panels: A. GenoMI; B. GenoCMI; C. GameteCMI. Middle

panels: D. original Wu et al statistic; E. adjusted Wu statistic; F.
joint effect statistic. Bottom panel: G. logistic regression model

with 1 df test; H. logistic regression model with 4 df test.

(TIFF)

Figure S4 Chi-squared Q-Q plots for the additive-
additive model with main effect at one locus, when
disease prevalence varied (Schema 4). Assuming a main

effect at single locus (ORG = 2.0) and 1:1 case/control ratio. Top

panels: A. GenoMI; B. GenoCMI; C. GameteCMI. Middle

panels: D. original Wu et al statistic; E. adjusted Wu statistic; F.
joint effect statistic. Bottom panel: G. logistic regression model

with 1 df test; H. logistic regression model with 4 df test.

(TIFF)

Figure S5 Chi-squared Q-Q plots for the dominant-
dominant model with main effects at both loci, when
disease prevalence varied (Schema 5). Assuming main

effects at both locus (ORG = ORH = 2.0) and 1:1 case/control ratio.

Top panels: A. GenoMI; B. GenoCMI; C. GameteCMI. Middle

panels: D. original Wu et al statistic; E. adjusted Wu statistic; F.

joint effect statistic. Bottom panel: G. logistic regression model

with 1 df test; H. logistic regression model with 4 df test

(TIFF)

Figure S6 Chi-squared Q-Q plots for the additive-
additive model with main effects at both loci, when
disease prevalence varied (Schema 5). Assuming main

effects at both locus (ORG = ORH = 2.0) and 1:1 case/control ratio.

Top panels: A. GenoMI; B. GenoCMI; C. GameteCMI. Middle

panels: D. original Wu et al statistic; E. adjusted Wu statistic; F.

joint effect statistic. Bottom panel: G. logistic regression model

with 1 df test; H. logistic regression model with 4 df test.

(TIFF)

Figure S7 Chi-squared Q-Q plots for the dominant-
dominant model with main effects at both loci, when
case/control ratios varied (Schema 7). Assuming main

effects at both locus (ORG = ORH = 2.0) and disease prevalence

0.02. Top panels: A. GenoMI; B. GenoCMI; C. GameteCMI. Middle

panels: D. original Wu et al statistic; E. adjusted Wu statistic; F.

joint effect statistic. Bottom panel: G. logistic regression model

with 1 df test; H. logistic regression model with 4 df test.

(TIFF)

Figure S8 Chi-squared Q-Q plots for the additive-
additive model with main effects at both loci, when
case/control ratios varied (Schema 7). Assuming main

effects at both locus (ORG = ORH = 2.0) and disease prevalence

0.02. Top panels: A. GenoMI; B. GenoCMI; C. GameteCMI. Middle

panels: D. original Wu et al statistic; E. adjusted Wu statistic; F.

joint effect statistic. Bottom panel: G. logistic regression model

with 1 df test; H. logistic regression model with 4 df test.

(TIFF)

Text S1 Mathematical derivation of GenoCMI and
GameteCMI metrics.
(DOC)

Text S2 Mathematical derivation of asymptotic distri-
butions of GenoCMI and GameteCMI metrics.
(DOC)
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