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Single-Cell RNA Sequencing Identifies MMP11+

Cancer-Associated Fibroblasts as Drivers of Angiogenesis
and Bladder Cancer Progression
Wuwu Xu, Ting Liang, Hu Fang, Lu Fu, Dashi Deng, Xiyang Tan, Lisha Liu,
Dongdong Tang, Haoxiang Zheng, Qiuxia Ding, Xiuqi Hou, Daquan Feng, Tao Tao,*
and Song Wu*

Cancer-associated fibroblasts (CAFs) play a crucial role in tumor progression,
with heterogeneity influencing therapeutic response and prognosis,
highlighting their potential as viable targets for treatment. In this study, a
novel CAF subgroup, MMP11+ mCAF is identified, through single-cell RNA
sequencing, which accumulates progressively during bladder cancer
progression and is significantly associated with poor prognosis. This cell
population regulates the migration of tip endothelial cell clusters (ESM1+tEC)
via the WNT5A-MCAM signaling axis, and modulates the expression of key
transcription factors, SOX18, NFIC, and HOXB9. Additionally, MMP11+

mCAFs recruit SPP1+ macrophages through CCL11/CCL2, promoting VEGFA
secretion, which further enhances the pro-angiogenic activity of ESM1+ tECs.
Furthermore, interferon-associated basal-like tumor cells secrete BMP2, which
induces the expression and activity of NFE2L3, a transcription factor specific
to MMP11+ mCAFs, promotingWNT5A expression. Mouse experiments
confirmed that inhibiting BMP2 can suppress tumor angiogenesis and growth
in bladder cancer. Pan-cancer analysis revealed that MMP11+ mCAFs are
present across various cancer types, including breast cancer, lung
adenocarcinoma, gastric cancer, and colorectal cancer. These findings provide
insights into the heterogeneity of CAFs and their regulatory role in tumor
progression, offering new potential therapeutic targets for CAF-targeted
treatments with broad applicability across cancers.
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1. Introduction

Bladder cancer ranks among the ten most
common malignancies worldwide, and its
incidence is expected to continue rising
globally. However, the 5-year survival rate
has shown little improvement over the
years.[1,2] Conventional therapies for ad-
vanced cancer which primarily target cell
proliferation or induce apoptosis, often fail
to completely eradicate malignancies.[3] In-
creasing evidence suggests that the tumor
microenvironment (TME) plays a crucial
role in tumor progression and therapeutic
resistance—yet remain insufficiently ad-
dressed in current treatment paradigms.[4,5]

Among the various TME components,
tumor angiogenesis is particularly pivotal.
It not only supplies oxygen and nutrients
essential for tumor growth but also estab-
lishes vascular routes that facilitate tumor
cell dissemination and metastasis.[6,7] An-
giogenesis is a highly orchestrated process
involving extensive crosstalk between en-
dothelial cells, pericytes, vascular smooth
muscle cells, tumor cells, tumor-associated
immune cells, and cancer-associated
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Figure 1. Identification of high-risk (HR) gene set associated with bladder cancer progression. A) HR gene set identification and single cell analysis
process. B) Expression of HR gene set in different stages of TCGA-BLCA. C) Kaplan–Meier survival curves showing overall survival of HR gene set.
Statistical analysis was performed using log-rank test. High groups and low groups referred expression levels of HR gene set. D) UMAP layout of all
cells belonging to the integrated dataset, colored by cell types. E,F) Violin plots (E) and UMAP (F) show the expression of HR gene set in different cell
types. G) GSEA of HR gene set on genes ranked by log2 fold change between fibroblast versus other cells. H) Expression of genes in the HR gene set
across different cell types.

fibroblasts (CAFs).[8] Despite the clinical implementation of anti-
angiogenic therapies, their long-term efficacy remains limited
due to tumor adaptive mechanisms, activation of alternative pro-
angiogenic pathways, and the emergence of more invasive tu-
mor phenotypes following treatment. Therefore, a deeper under-
standing of the regulatory mechanisms underlying tumor angio-
genesis is essential for identifying novel therapeutic targets and
improving treatment outcomes in bladder cancer.

CAFs are a major constituent of the TME and play a pivotal
role in tumor progression through extracellular matrix (ECM) re-
modeling, cytokine secretion, and immune modulation.[9–14] Re-
cent studies have highlighted their significant involvement in tu-
mor angiogenesis. CAFs can directly promote neovascularization
by secreting multiple pro-angiogenic factors, including VEGF-
A, FGF2, and CXCL12.[15–17] Additionally, CAFs indirectly facil-
itate tumor angiogenesis by recruiting and activating endothelial
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progenitor cells and myeloid-derived cells within the TME, fur-
ther accelerating tumor growth and invasion.[18] Furthermore,
CAF-mediated fibrosis can alter the structural and functional
properties of tumor vasculature, affecting vascular permeability
and overall angiogenic dynamics.[19] Notably, CAFs exhibit both
pro-tumorigenic and tumor-suppressive functions depending on
their specific subtypes and activation states. As a result, target-
ing distinct CAF subpopulations has emerged as a promising av-
enue for precision cancer therapy.[10,20] For example, selective tar-
geting of PDGFR𝛼+ ITGA11+ CAFs in bladder cancer has been
shown to markedly reduce lymphovascular invasion and lymph
node metastasis in early-stage bladder cancer models.[21] Like-
wise, inhibiting CCL2 signaling through ICAM1+ inflammatory
CAFs effectively curtails tumor growth in murine bladder cancer
models.[22] These findings underscore the potential of therapeu-
tic interventions aimed at specific CAF subtypes or their associ-
ated signaling pathways to advance bladder cancer treatment.
This study identified a novel fibroblast subset, MMP11+

mCAFs (matrix CAFs), which is associated with bladder can-
cer progression and poor prognosis. This subgroup resides
in the perivascular region, promoting migration of ESM1+

tEC endothelial cells via the WNT5A-MACM signaling path-
way. Additionally, it recruits SPP1+ macrophages through the
CCL2/CCL11 axis, promoting VEGFA secretion and regulating
angiogenesis. This fibroblast population is regulated by BMP2
secreted by interferon-associated basal-like tumor cells. Mouse
experiments confirmed that BMP2 promotes tumor progression,
MMP11 expression, and angiogenesis. Pan-cancer analysis fur-
ther revealed that MMP11+ mCAFs are prevalent across multi-
ple cancers, including breast cancer, lung adenocarcinoma, gas-
tric cancer, and colorectal cancer, all correlated with poor prog-
nosis. Our study emphasizes the role of the MMP11+ mCAF in
bladder cancer and identifies a potential therapeutic target for its
treatment. These findings advance our understanding of tumor
heterogeneity in bladder cancer and provide a foundation for per-
sonalized therapy in urothelial carcinoma.

2. Results

2.1. A Geneset Associated with Advanced-Stage Tumors and
Poor Prognosis is Highly Expressed in Fibroblasts

Advanced-stage tumors exhibit distinct transcriptional alter-
ations compared to early-stage tumors. To investigate this, we
analyzed differentially expressed genes (DEGs) between stage
III/IV and stage I/II tumors in the TCGA-BLCA cohort, identify-
ing 107 upregulated and 18 downregulated genes. Univariate Cox
regression analysis further revealed that 59 upregulated DEGs
were associated with poor prognosis, while 7 downregulated
genes correlated with favorable outcomes (Figure 1A; Figure S1A
and Table S1, Supporting Information). These 59 upregulated
genes were designated as the High-Risk (HR) gene set, which
showed significantly higher expression in stage III/IV tumors
(Figure 1B). Kaplan-Meier survival analysis confirmed that ele-
vated HR expression was linked to reduced overall survival in the
TCGA-BLCA cohort (HR = 2.068, 95% CI = 1.516–2.822, p =
4.53e-6) (Figure 1C).
To investigate the cellular expression pattern of the HR gene

set, we constructed a single-cell RNA sequencing library com-

prising 29 bladder tumors and adjacent normal tissues from our
internal dataset, as well as two publicly available datasets (Table
S2, Supporting Information).[23,24] After stringent quality con-
trol and batch correction, 184 996 cells were clustered into 29
subpopulations and classified into six major cell types based on
established marker genes (Figure S1B–D, Supporting Informa-
tion; Figure 1D). HR gene set signature score revealed that fi-
broblasts exhibited the highest expression among all cell types
(Figure 1E,F), which was further supported by Gene Set Enrich-
ment Analysis (GSEA) showing significant enrichment of the
HR gene set in fibroblasts (Figure 1G). Examination of individ-
ual genes expression confirmed that most HR genes were pre-
dominantly expressed by fibroblasts (Figure 1H). These findings
suggest that fibroblasts are the primary source of the HR gene
set associated with poor prognosis in advanced-stage bladder tu-
mors.

2.2. The HR Geneset is Highly Expressed in MMP11+ mCAFs

To investigate the heterogeneity of fibroblasts, we isolated and
reclustered fibroblasts population into eight distinct subclusters,
each labeled based on its top marker genes (Figure 2A; Figure
S2A, Supporting Information). Among these, the MMP11+

mCAFs exhibited the highest HR signature scores (Figure 2B),
with elevated expression of genes such as COL1A1, MMP11,
POSTN, COL3A1, and CTHRC1 (Figure S2B, Supporting Infor-
mation). Proportional analysis revealed that MMP11+ mCAFs
were more abundant in tumor tissues compared to adjacent nor-
mal tissues (Figure 2C). Immunofluorescence (IF) staining of tu-
mor and adjacent normal tissue sections, usingCOL1A1 as a pan-
fibroblast marker andMMP11 as a specific marker,[25] confirmed
the predominant presence of MMP11+ mCAFs within the TME,
supporting their potential functional relevance (Figure 2D).
To assess the clinical significance of MMP11+ mCAFs, we per-

formed deconvolution analysis of the TCGA-BLCA bulk RNA-
seq data using CIBERSORTx, estimating the abundance of each
fibroblast subpopulations. The proportion of MMP11+ mCAFs
progressively increasedwith tumor progression andwas predom-
inantly enriched in high-grade tumors (Figure 2E; Figure S2C,
Supporting Information). Validation in three independent GEO
datasets (GSE31684, GSE48075, and GSE13507) confirmed a
similar trend (Figure 2E).[26–28] Importantly, higher abundance of
MMP11+ mCAFs was consistently associated with poorer overall
survival across all four datasets (Figure 2F). In contrast, IGLC1+

CAFs, another fibroblast subpopulation, exhibited a decreasing
trendwith tumor progression andwere linked to better prognosis
(Figure S2D,E, Supporting Information). Notably, a significant
negative correlation was observed betweenMMP11+ mCAFs and
IGLC1+ CAFs across all four datasets (Figure S2F, Supporting
Information). These findings suggest that MMP11+ mCAFs con-
tribute to tumor progression, while IGLC1+ CAFs may be linked
to more favorable clinical outcomes.
Further functional analysis of MMP11+ mCAFs revealed

that DEGs were significantly enriched in pathways related to
ECMorganization, vasculature development, cell adhesion, BMP
and TGF𝛽1 signaling response (Figure 2G,H). GSEA further
demonstrated strong enrichment in hallmark pathway such
as epithelial-mesenchymal transition, angiogenesis, coagulation,
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Figure 2. Identification of the fibroblast population MMP11+ mCAFs with high expression of the HR gene set. A) UMAP plot showing the classification
of fibroblast populations. B) Expression of the HR gene set across all fibroblast populations. C) The proportion distribution of different fibroblast
subpopulations in tumor and normal tissues. D) IF staining confirming the presence of MMP11+ mCAF cells in tumor tissues and normal tissues. Scale
bar = 20 μm. The white arrow indicates the MMP11+ mCAF cells. E) The proportion of MMP11+ mCAFs in each clinical stage across four datasets.
The box plots show the median (center line), the first and third quartiles (box boundaries), and the whiskers representing a maximum of 1.5× the
interquartile range. Statistical analysis was performed using the Kruskal test. F) Kaplan–Meier survival curves illustrating the overall survival of patients
stratified by the proportion of MMP11+ mCAFs across four bladder cancer cohorts. Statistical analysis was performed using log-rank test. "High" and
"Low" indicate groups with high and low proportions of MMP11+ mCAFs, respectively. G,H) Enriched GO (G) and KEGG (H) functions of upregulated
genes in MMP11+mCAFs. I, GSEA shows top enriched pathways in MMP11+mCAFs.
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and apical junction formation. Collectively, these findings sug-
gest that MMP11+ mCAFs may play a key role in promoting tu-
mor angiogenesis (Figure 2I).

2.3. MMP11+ mCAFs Promote Migration of ESM1+ tEC Tip Cells
Through WNT5A

To elucidate the mechanisms by which MMP11+ mCAFs in-
fluence the TME, we conducted comprehensive cell–cell com-
munication analyses across all cell types, identifying the non-
canonical WNT (ncWNT) signaling pathway as particularly ac-
tive in MMP11+ mCAFs (Figure 3A; Figure S3A, Supporting In-
formation). The WNT5A-MCAM axis emerged as the primary
driver of this activity (Figure S3B, Supporting Information), with
MMP11+ mCAFs exerting a strong influence on endothelial cells
through this axis (Figure 3B). To characterize the endothelial
compartment, endothelial cells were further isolated and reclus-
tered into four distinct clusters using canonical and cell-specific
marker genes: ACKR1+ vEC (venous endothelial cell), MALAT1+

vEC, ESM1+ tEC (tip endothelial cell), and FBLN5+ aEC (ar-
terial endothelial cell) (Figure 3C; Figure S3C–E, Supporting
Information).[29] Notably, MCAMwas predominantly enriched in
ESM1+ tECs (Figure 3D), suggesting that MMP11+ mCAFs may
preferentially target this endothelial subset.
Functional analysis of ESM1+ tECs revealed significant en-

richment in pathways related to ECM remodeling, angiogene-
sis, endothelial cell migration, hypoxia response, ncWNT signal-
ing, and focal adhesion (Figure 3E; Figure S3F, Supporting Infor-
mation). Gene set variation analysis (GSVA) further showed that
both ESM1+ tECs and FBLN5+ aECs exhibited enrichment in ox-
idative phosphorylation, protein secretion, lipogenesis, DNA re-
pair, PI3K-Akt-mTOR signaling, and TGF-𝛽 signaling pathways.
Importantly, ESM1+ tECs displayed stronger associations with
angiogenesis-related programs and E2F target activity, indicating
their role in vascular remodeling and development (Figure 3F).
To explore the molecular interactions between MMP11+

mCAFs and ESM1+ tECs, we applied NicheNet analysis (Figure
S3G, Supporting Information). Potential target genes in ESM1+

tECs were enriched in biological processes such as vascular de-
velopment, endothelial cell proliferation, ECM remodeling, and
hypoxia response, corroborating the functional characteristics of
ESM1+ tECs and supporting their pivotal role in angiogenesis
(Figure 3E; Figure S3H, Supporting Information).
Accumulating evidence highlights WNT5A and MCAM as key

drivers of angiogenesis.[30–33] Given the role of tip endothelial
cells in directing angiogenesis through directed migration,[34]

and the known function of the WNT5A-MCAM axis in regu-
lating cell motility and convergent extension,[35] we hypothe-
size that MMP11+ mCAFs promote the migration of ESM1+

tECs via this pathway. IF staining of tumor sections showed
that MMP11+ mCAFs are spatially adjacent to endothelial cells,
providing anatomical evidence for potential paracrine signal-
ing (Figure 3G). Transwell migration and tube formation as-
says showed that WNT5A significantly enhanced the migratory
and tube-forming abilities of human umbilical vein endothelial
cells (HUVECs). Conversely, theWNT5A inhibitor Box5-TFA im-
paired both processes, underscoring the importance of WNT5A
signaling in endothelial activation (Figure 3H–L). These results

suggest thatMMP11+ mCAFsmay facilitate angiogenesis by pro-
moting ESM1+ tECs migration through WNT5A signaling.
We further examined the transcription factors active in en-

dothelial cells. ESM1+ tECs showed elevated activity of tran-
scription factors including SOX18, several members of HOX
and ATF families, as well as RARG, ING4, MXD4, and NFIC
(Figure 3M). These factors targeted signature genes specific to
ESM1+ tECs, with HOXB9 directly regulating ESM1, a well-
established angiogenesis-related gene,[36] and SOX18 target-
ing EGFL7, a gene involved in endothelial cell adhesion, cy-
toskeletal remodeling, and migration.[37] NFIC was found to
regulate FSCN1, an actin crosslinker critical for cell migration
(Figure 3N).[38–41] Additionally, previous studies have established
that SOX18 and HOXB9 are key pro-angiogenic factors,[42–45]

while SOX18, NFIC, and HOXB9 have been implicated in pro-
moting cell migration.[46–50]

To further explore the upstream regulation of these transcrip-
tion factors, we examined the relationship between the WNT5A-
MCAM axis and the expression of SOX18,HOXB9, and NFIC. A
positive correlation between MCAM expression and these tran-
scription factors was observed (Figure 3O). To experimentally val-
idate the role of WNT5A in transcriptional regulation, we treated
HUVEC cells with WNT5A and its inhibitor Box5-TFA in vitro
and quantified the expression of SOX18,HOXB9, andNFIC. The
results showed that WNT5A stimulation significantly upregu-
lated these genes (Figure S3I–K, Supporting Information). Based
on these findings, we speculate that MMP11+ mCAFs may con-
tribute to the upregulation of WNT5A, which in turn modulates
the expression of specific transcription factors such as SOX18,
HOXB9, andNFIC in ESM1+ tECs, potentially promoting angio-
genesis.

2.4. MMP11+ mCAFs Mediate SPP1+ Macrophage Infiltration
and the Production of VEGFA

To explore the association between MMP11+ mCAFs and the tu-
mor immune microenvironment, we categorized samples from
the TCGA-BLCA dataset into two distinct molecular subtypes
based on the signature gene expression profiles of MMP11+

mCAFs (Figure S4A and Table S3, Supporting Information).
Subtype 2 exhibited significantly higher stromal and immune
scores, ESTIMATE scores, MMP11+ mCAF signature scores,
and proportions of MMP11+ mCAFs compared to Subtype 1,
along with notably lower tumor purity (Figure S4B, Supporting
Information). Immune infiltration analysis showed increased
macrophage infiltration in Subtype 2 (Figure S4C, Supporting In-
formation), prompting further investigation of myeloid cells.
Myeloid cells were isolated and reclustered into monocytes,

macrophages, mast cells, cDC1, cDC2, mregDC, and pDC
based on canonical and cluster-specific marker genes (Figure
S4D,E, Supporting Information). Notably, macrophages, cDC2,
and mregDC were more abundant in tumor tissues compared
to normal tissues (Figure S4F, Supporting Information). Cell-
cell communication analysis revealed that MMP11+ mCAFs re-
cruit myeloid cells via chemokines, including CCL11, CXCL1,
and CXCL6 (Figure S4F, Supporting Information), with the
strongest communication occurring between MMP11+ mCAFs
and monocytes/macrophages, mediated by CXCL12, CCL11,
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Figure 3. MMP11+ mCAFs drive the migration of ESM1+ tECs through the WNT5A-MCAM signaling axis. A) Signaling output landscape of different cell
populations, visualized to highlight key pathways and intercellular communication hubs. B) Communication intensity of the WNT5A-MCAM signaling
axis between MMP11+ mCAFs with distinct cell populations. C) UMAP plot displaying the classification of endothelial cell subpopulation. D) Expression
levels of MCAM across identified endothelial subpopulations, visualized as a UMAP plot (top) and a Dot plot (bottom) overlay. E) GO enrichment
analysis showing key biological processes and pathways associated with upregulated genes in ESM1+ tECs. F) Heatmap of pathway activity variations
scored by GSVA for each cell between different endothelial groups. G) IF staining for spatial localization of MMP11+ mCAFs, confirming their proximity
to endothelial regions of interest. Scale bar= 20 μm. The white arrow indicates theMMP11+ mCAF cells. H) Transwell migration assay demonstrating the
effect of WNT5A and Box5-TFA, with representative images showing cell migration trends. Scale bar = 50 μm, n = 3. I) Angiogenesis assays assessing
effect of WNT5A and Box5-TFA on tube formation activity in HUVECs. Scale bar = 50 μm, n = 3. J–L) Quantifications of migrated cells in Transwell
migration assay (J), junction numbers (K), and mesh numbers (L) in Angiogenesis assays. Statistical analysis was performed using Student’s t-test;
**p < 0.01, ***p < 0.001, ****p < 0.0001. M) Transcription factors specific to endothelial subpopulations, identified via single-cell transcriptomics. N)
ESM1+ tEC-specific transcription factors and their regulatory target genes, mapped to demonstrate transcriptional control over ESM1+ tEC signature
genes. O) Correlation between ESM1+ tEC-specific transcription factors genes andMCAM expression, tested by Spearman correlation.
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Figure 4. MMP11+ mCAFs promote VEGFA production by SPP1+ macrophages. A) UMAP plot showing the classification of macrophage subpopula-
tions. B) Interaction strength between MMP11+ mCAFs and macrophage subpopulations. C,D) Violin plots showing M2 polarization scores (C) and
angiogenesis scores (D) of macrophage subpopulations. E) Enriched GO terms associated with upregulated genes in SPP1+ macrophages. F) Heatmap
of pathway activity differences across macrophage subpopulations scored by GSVA. G) GSEA of the angiogenesis gene set, ranking genes by log2
fold changes between SPP1+ macrophages and other macrophage subpopulations. H) NecheNet analysis illustrating cell-cell communication between
MMP11+ mCAFs and SPP1+ macrophages, including regulated target genes. I) GO enrichment analysis of genes targeted by MMP11+ mCAFs in SPP1+

macrophages. J) VEGFA expression levels across macrophage subpopulations. K,L) VEGFA signaling interactions between macrophage subpopulations
and endothelial cells, with ligand-receptor communication strength (K) and receptor distribution (L) visualized. M,N) Spearman correlation between
expression of ESM1+tEC-specific transcription factors genes with VEGFA receptor genes VEGFR1 (M) and VEGFR2 (N).

CCL2, and CCL5 (Figure S4G, Supporting Information). This
suggests MMP11+ mCAFs orchestrate myeloid cell infiltration
in the TME.
Given the observed macrophage infiltration (Figure S4C, Sup-

porting Information), we further reclustered the macrophage
into five subgroups: FOLR2+ Mac, SPP1+ Mac, RGS1+ Mac,

ATP5E+ Mac, and prolif Mac (Figure 4A; Figure S4H, Support-
ing Information). The strongest interactions between MMP11+

mCAFs and macrophages were observed in the SPP1+ Mac
subgroup (Figure 4B). Notably, SPP1+ Mac, along with RGS1+

Mac and FOLR2+ Mac, underwent M2 polarization, with SPP1+

Mac exhibiting the highest angiogenesis scores (Figure 4C,D).
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Functional enrichment analysis revealed that SPP1+ Mac was
significantly involved in cellular signaling and vascular develop-
ment (Figure 4E–G), highlighting their role in promoting tumor
angiogenesis through enhanced pro-angiogenic signaling.
To explore the communication between MMP11+ mCAFs and

SPP1+ Mac, we used NicheNet to identify target genes regulated
by MMP11+ mCAFs in SPP1+ Mac (Figure 4H). This analysis
revealed that MMP11+ mCAFs influence SPP1+ Mac through
multiple signaling pathways, with ANXA1 emerging as a key
regulator of cytokines such as CCL2, CXCL2, IL1B, and TNF.
Among the ligands, CCL2 and CCL11 were the most promi-
nently expressed (Figure 4H). Gene Ontology (GO) enrichment
of the target genes highlighted their involvement in cytokine
production, nutrient response, hypoxia adaptation, and angio-
genesis (Figure 4I). Moreover, a specific GO term related to the
positive regulation of VEGFA production, a critical angiogene-
sis mediator, was identified (Figure 4I). NicheNet analysis con-
firmed that CCL2 and CCL11 act as inducers of VEGFA expres-
sion (Figure 4H). Expression analysis showed that VEGFA was
predominantly expressed in SPP1+ Mac (Figure 4J), leading us to
hypothesize that MMP11+ mCAFs promote VEGFA production
in SPP1+ Mac through these signaling pathways, thereby facili-
tating angiogenesis.
Further communication analysis between macrophages and

endothelial cells revealed that VEGFA signaling, primarily orig-
inating from SPP1+ Mac, targets ESM1+ tECs (Figure 4K). This
interaction ismediated by VEGFR1 and VEGFR2, which regulate
ESM1+ tEC function (Figure 4L). Correlation analysis showed
that VEGFA signaling was positively associated with the ex-
pression of NFIC (Figure 4M,N). In summary, we propose that
MMP11+ mCAFs recruit and activate SPP1+ Mac to upregulate
VEGFA production, which in turn influences ESM1+ tECs and
promotes angiogenesis.

2.5. Interferon-Associated Basal-Like Tumor Cells Secrete BMP2
to Induce the Expression of Characteristic Genes in MMP11+

mCAFs

To investigate the origin of MMP11+ mCAFs, we performed
RNA velocity analysis across all fibroblast populations. The re-
sults indicated that MMP11+ mCAFs are at the initiation point of
differentiation (Figure 5A; Figure S5A–C, Supporting Informa-
tion). PAGA analysis revealed three differentiation trajectories:
MMP11+ mCAFs transitioning into IGLC1+ CAFs, CXCL14+

CAFs, and progressing through PLA2G2A+ CAFs to PTGDS+

CAFs (Figure 5B). Given the progressive increase in MMP11+

mCAFs with tumor development, we hypothesize that this pop-
ulation may revert along these pathways. Further confirmation
from Slingshot, Cytotrace, and Monocle3 analysis supports that
MMP11+ mCAFs represent a low-differentiated state (Figure
S5D–I, Supporting Information). Pseudotime trajectory analysis
ofMMP11+mCAFs showed significant enrichment in genemod-
ules related to ECM remodeling, collagen metabolism, endothe-
lial cell proliferation, BMP binding, and immune system regula-
tion (Figure S5J–L, Supporting Information).
We constructed a gene set based on MMP11+ mCAF sig-

nature genes reflecting RNA velocity dynamics and identified
TGFB1, IL1B, BMP2, and SPP1 signaling as key modulators

(Figure 5C). Further investigation revealed that BMP2, primar-
ily secreted by epithelial cells, regulates MMP11+ mCAFs in the
TME (Figure 5D; Figure S7A, Supporting Information). Addi-
tionally, MMP11+ mCAFs exhibited relatively high BMP signal-
ing receptor activity (Figure 5E,F), suggesting BMP2 signaling
drives their formation.
To explore the expression of BMP2 in epithelial cells, epithelial

cells were reclustered into 18 distinct clusters, with BMP2 pre-
dominantly expressed in the Ep3 cluster, which is largely tumor-
derived (Figure 5G,H; Figure S6A, Supporting Information).
Copy number variation (CNV) analysis confirmed that the Ep3
cluster mainly composed of tumor cells (Figure 5I; Figure S6B,
Supporting Information). Tumor cell characterization revealed
that Ep3 cells exhibit high expression of interferon-related genes
(IFI27, IFI6) and are involved in antiviral immune responses,
cellular stress, immune regulation, and cholesterol homeostasis
(Figure S6C–F, Supporting Information). Further analysis identi-
fied Basal, Stress, Hypoxia, pEMT, Interferon, and Oxphos signa-
tures in Ep3 cells (Figure S6G, Supporting Information),[51] clas-
sifying them as interferon-associated basal-like tumor cells (IFN-
BL tumor cells). CellPhoneDB analysis revealed strong interac-
tions between Ep3 and MMP11+ mCAFs (Figure S6H, Support-
ing Information), while CellChat analysis indicated that BMP sig-
naling from Ep3 primarily targets MMP11+ mCAFs (Figure 5J).
These findings support the hypothesis that IFN-BL tumor cells
secrete BMP2, driving the formation of MMP11+ mCAFs.
We next analyzed the transcription factors within fibrob-

last clusters, identifying NFE2L3, RARB, TCF12, and ING4
as the most specific transcription factors in MMP11+ mCAFs
(Figure 5K,L; Figure S7B,C, Supporting Information). CREB3L1
ranked highly in terms of activity (Figure 5L). Analysis of the
top 15 transcription factors with the greatest activity or specificity
revealed that CREB3L1 regulates most MMP11+ mCAF-specific
genes, while NFE2L3 primarily regulates WNT5A (Figure 5M).
In TCGA-BLCA samples, NFE2L3, CREB3L1, and WNT5A ex-
pression was positive correlated with BMP signaling receptors
ACVR1 and BMPR2 (Figure 5N; Figure S7D, Supporting In-
formation). Additionally, in MMP11+ mCAFs, NFE2L3 activity
correlated with BMP receptor expression and WNT5A (Figure
S7E, Supporting Information). In vitro quantitative experiments
demonstrated that BMP2 treatment induced the expression of
transcription factors NFE2L3 and CREB3L1, as well as several
signature genes of MMP11+ CAFs, includingWNT5A,MMP11,
and POSTN (Figure S7F–J, Supporting Information). These re-
sults suggest that IFN-BL tumor cells may promote the expres-
sion and activity of CREB3L1 and NFE2L3 in MMP11+ mCAFs
via BMP signaling, thereby inducing the expression of MMP11+

mCAF signature genes.

2.6. BMP2 Promotes Tumor Growth and Angiogenesis in a
Mouse Bladder Cancer Model

To investigate the role of BMP2 in bladder cancer progression, we
treated C57BL/6J mouse bladder orthotopic tumor models with
BMP2 and its small molecule inhibitor, Dorsomorphin. BMP2
treatment significantly increased tumor burden compared to the
PBS control group, as evidenced by a higher tumor weight at the
experimental endpoint (Figure 6A–D). In contrast, inhibition of
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Figure 5. Tumor-secreted BMP2 induces the expression of MMP11+ mCAF signature genes. A,B) RNA velocity analysis (A) and PAGA (partition-based
graph abstraction) analysis (B) of fibroblasts. C) NechNet analysis showing cytokine signaling that regulates highly dynamic genes in MMP11+ mCAFs.
D) NechNet analysis showing ligand activity (left) and ligand expression in different cell populations (right), with MMP11+ mCAFs as the receptor cell
population. E) NechNet analysis display receptor activity in MMP11+ mCAFs. F) Expression levels of BMP receptor genes across fibroblast subpopula-
tions. G) UMAP plot showing epithelial cell classification. H) UMAP plot showing the expression distribution of BMP2 in epithelial cells. I) Identification
of normal epithelial cells and tumor cells, with CNV_score > 0.005 considered indicative of tumor cells. J) Interaction strength of the BMP signaling
pathway network between Ep3 and fibroblast subclusters. K) Key transcription factors inMMP11+ mCAFs. L) UMAP plot showing the activity distribution
of MMP11+ mCAF-specific transcription factors across fibroblast subpopulations. M) Target genes regulated by MMP11+ mCAF-specific transcription
factors. N) Spearman correlation analysis showing significant positive correlations between MMP11+ mCAF-specific transcription factors, signature
genes, and BMP2 receptor gene expression.
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Figure 6. BMP2 promotes tumor growth and angiogenesis in mice. A) Schematic representation of the in vivo biodistribution experiment in tumor-
bearing mice. B) Bioluminescence imaging of tumors in live mice. C) Representative tumor images. D) Tumor volumemeasurement at the experimental
endpoint (n = 4). E,F) Flow cytometry analysis of endothelial cell content in tumors (n = 3). E) Representative endothelial cell density images in tumor
tissues. F) Quantification of endothelial cell content in tumors across different treatment groups. G) IHC analysis showing the expression of MMP11+,
SPP1+, and CD31+ cells in tumors from different treatment groups. H) Quantification the stained area ofMMP11 and SPP1 in the IHC experiment (n= 4)
and the number of CD31-labeled microvessels under 20x magnification (n = 8). I,J) Representative images of Transwell migration (I) and tube formation
(J) assays of HUVEC treated with conditioned media derived from HBdSFs after treatment with BMP2 or the BMP pathway inhibitor Dorsomorphin. K)
Quantification of cell migration in the Transwell assay (I). L,M) Quantification of junction and mesh formation in the tube formation assay (J). Data are
presented as mean ± SD. Statistical analysis was performed using Student’s t-test; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Figure 7. Pan-cancer analysis of MMP11+ mCAFs. A,C,E,G) UMAP plots showing fibroblast subpopulation identification in breast cancer (A), gastric
cancer (C), colorectal cancer (E), and lung adenocarcinoma (G). B,D,F,H) GSEA on genes ranked by log2FC between each fibroblast subset and other
fibroblasts in breast cancer (B), gastric cancer (D), colorectal cancer (F), and lung adenocarcinoma (H), using MMP11+ mCAF signature genes. NES:
Normalized Enrichment Score. I–L) Kaplan–Meier survival curves showing overall survival of patients stratified by high or low proportions of MMP11+

mCAFs in breast cancer (I), gastric cancer (J), colorectal cancer (K), and lung adenocarcinoma (L). Statistical significance was determined by the log-rank
test. M) Proportion of MMP11+ mCAFs across clinical stages in the four cancer types. Statistical analysis was performed using the Kruskal test.

BMP signaling with Dorsomorphinmitigated tumor progression
(Figure 6A–D), indicating that BMP2 enhances tumor growth in
vivo.
Flow cytometry analysis further revealed a marked increase in

vascular endothelial cells in the BMP2-treated group compared to
controls, whereas Dorsomorphin treatment reduced their abun-
dance (Figure 6E,F), suggesting that BMP2 promotes angiogene-
sis within the TME. Immunohistochemical (IHC) and IF analysis
revealed a marked enrichment of MMP11+, SPP1+, and CD31+

cells in BMP2-treated tumors, with the opposite pattern observed
in the inhibitor-treated group (Figure 6G,H; Figure S8A,B, Sup-
porting Information). SPP1+ cells displayed clear clustering in
both PBS and BMP2-treated groups, while CD31+ endothelial
cells in BMP2-treated tumors formed denser and more intricate
vascular structures.
Given that BMP2 may induce the expression of WNT5A

(Figure 5M,N; Figure S7E,H, Supporting Information), which is
known to promote endothelial cell migration and tube forma-
tion, we conducted conditioned medium transfer experiments.
Fibroblast cells (HBdSF) were treated with BMP2 as well as with
the BMP pathway inhibitors Dorsomorphin and LDN193189.
The resulting conditioned medium was then transferred to HU-
VECs. Conditionedmedium fromBMP2-treatedHBdSFs signifi-
cantly enhancedHUVECmigration and tube formation, whereas

inhibitors markedly suppressed these processes (Figure 6I–M;
Figure S8C–H, Supporting Information). In conclusion, our re-
sults demonstrate that BMP2 enhances tumor growth and an-
giogenesis in a mouse bladder cancer model, likely through the
induction of WNT5A and modulation of endothelial cell behav-
ior.

2.7. MMP11+ mCAFs are Widely Present in Various Cancers

To investigate the presence of MMP11+ mCAFs across vari-
ous cancer types, we performed a pan-cancer analysis. Fibrob-
lasts from breast cancer, gastric cancer, colorectal cancer, and
lung adenocarcinoma were subjected to dimensionality reduc-
tion and clustering (Figure 7A,C,E,G). Using the signature genes
of MMP11+ mCAFs, we constructed a gene set for GSEA anal-
ysis. The results revealed that MMP11+ mCAFs predominantly
overlapped with FN1+ CAFs in breast cancer, COL11A1+ CAFs in
colorectal cancer, and CTHRC1+ CAFs in lung adenocarcinoma.
In gastric cancer, MMP11+ mCAFs were primarily associated
with COL11A+ CAFs, with a secondary association to CXCL5+

CAFs (Figure 7B,D,F,H).
We further applied the CIBERSORT deconvolution algorithm

to estimate the proportion of MMP11+ CAFs in TCGA datasets
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corresponding to these cancers and explored their relationship
with tumor progression. Analysis revealed that the proportion of
MMP11+ mCAFs varied significantly across different stages of
gastric cancer, breast cancer, and lung adenocarcinoma. In gas-
tric and colorectal cancers, the prevalence of MMP11+ mCAFs
increased with tumor progression, although stage-specific dif-
ferences in colorectal cancer were not statistically significant
(Figure 7M). Despite this variability, survival analysis indicated
that MMP11+ mCAFs were consistently associated with poor
prognosis across all four cancer types (Figure 7I–L). These find-
ings suggest that while MMP11+ mCAFs are linked to tumor
progression in certain cancers, they are generally associated with
poor clinical outcomes across multiple malignancies, highlight-
ing their potential as a universal therapeutic target in cancer treat-
ment.

3. Discussion

In this study, we identified a prognostically unfavorable fibroblast
subpopulation associated with tumor progression, characterized
by high expression ofMMP11, which we designated as MMP11+

mCAF. A similar MMP11-expressing myofibroblast cluster, as-
sociated with ECM remodeling, has previously been identified in
ovarian cancer.[52] This population is induced by TGF-𝛽 and ex-
presses markers including ACTA2, POSTN, COL10A1,MMP11,
and TAGLN. Comparative analysis of the two populations reveals
significant overlap in marker gene expression, suggesting that
our MMP11+mCAF subpopulation shares several features with
the previously identified myofibroblast cluster, despite some dif-
ferences in marker profiles. Both subpopulations are enriched in
genes involved in ECM remodeling. The observed discrepancies
inmarker expressionmay reflect tumor type-specific differences,
tissue origin variations, or methodological differences in cluster-
ing approaches, which could contribute to the heterogeneity be-
tween these populations.
WNT5A plays a multifaceted role in cancer. Previous research

by Zikun Ma et al. demonstrated that a subpopulation of bladder
CAFs (SLC14A1+ CAFs), promotes cancer stemness in bladder
cancer cells via theWNT5A signaling pathway, thereby contribut-
ing to tumor aggressiveness and chemotherapy resistance.[25] In
this study, we identified a distinct mechanism whereby MMP11+

mCAFs regulate themigration of ESM1+ tEC through aWNT5A-
mediated ncWNT signaling axis. Previous research has shown
that WNT5A utilizes MCAM (CD146) as its receptor to regulate
cellular movement and convergent extension.[35] GO enrichment
analysis further supports this, revealing that ESM1+ tECs are en-
riched in genes related to ncWNT signaling and endothelial cell
migration. Functional assays confirmed that WNT5A promotes
the migration of HUVECs. Based on the expression of specific
cell markers, we identified the ESM1+ tEC population as tip cells
within the context of angiogenesis.[29] Tip cells play a pivotal role
in blood vessel formation, acting as “leaders” by migrating and
sensing the surrounding chemical gradients (e.g., VEGFA) to
guide the direction of vascular growth.[34] The ESM1+ endothe-
lial cell population has also been implicated in promoting angio-
genesis in other contexts. For instance, in gastric cancer, fibrob-
last subpopulations have been shown to interact with EC-ESM
(tip-like endothelial) cells to enhance blood vessel formation.[53]

Taken together, our data suggest that the MMP11+ mCAF sub-

populationmay enhances themigratory capacity of the ESM+ tEC
cells via the WNT5A-MCAM signaling axis, thereby potentially
facilitating angiogenesis. From the perspective of angiogenesis,
our findings provide deeper insights into how CAFs may exert
a paradoxical role in promoting tumor progression, simultane-
ously contributing to both tumorigenesis and the vascularization
of tumors.
In addition, our study reveals that the MMP11+ mCAF sub-

population may not only directly interacts with endothelial cells
but could also exerts an indirect effect through the recruit-
ment of SPP1+ Mac, promoting their production of VEGFA,
which further influences endothelial cells. Previous research
by Zemin Zhang’s group demonstrated that SPP1+ tumor-
associated macrophages (TAMs) primarily function to promote
angiogenesis and facilitate tumor metastasis.[54] Similarly, Xu
Pan et al. reported that SPP1+ TAMs frequently interact with en-
dothelial cells, with a particularly close spatial relationship with
tip cells.[55] In our study, we observed that MMP11+ mCAFs
exhibit the strongest interaction with SPP1+ Mac among all
macrophage subpopulations, and that this interaction enhances
VEGFA production by SPP1+ Mac. Notably, the VEGFA secreted
by SPP1+ Mac predominantly targets tip cells. Previous studies
have established that VEGFA is essential for the formation of
tip cells and the extension of filopodia, which are crucial for the
migration of endothelial cells.[56–59] Taken together, our findings
suggest that MMP11+ mCAFs can induce the formation and mi-
gration of tip endothelial cells both directly and indirectly, thereby
contributing to tumor angiogenesis. These results highlight the
complex interplay between fibroblasts, macrophages, and en-
dothelial cells in promoting vascularization within the TME, fur-
ther emphasizing the role of MMP11+ mCAFs in facilitating tu-
mor progression.
Mechanistically, CAFs exist in a dynamic and transient state,

regulated by a variety of factors through both autocrine and
paracrine signaling, granting them remarkable plasticity. For in-
stance, TGF-𝛽 family ligands are key drivers of fibroblast acti-
vation, with TGFB1 considered a primary stimulator of myofi-
broblast differentiation.[60–63] Conversely, IL-1 is a known inducer
of inflammatory fibroblasts.[9,64] Therefore, selective elimination
or remodeling of specific CAFs subpopulations, or inhibition of
downstream signaling pathways in CAFs,may represent effective
therapeutic strategies in cancer treatment. In our study,MMP11+

mCAFs are characterized by signature genes and functional path-
ways that align them with the myofibroblast lineage. These cells
are not only activated by TGF-𝛽 signaling but also exhibit gene
signatures responsive to BMP2. Previous research has suggested
that BMP2 and BMP4 can induce the transdifferentiation of my-
ofibroblasts into adipocyte-like cells that store lipids.[65] In pan-
creatic cancer, for example, tumor cells have been shown to se-
crete BMP2, promoting the differentiation of lipid-rich CAFs.[66]

In this context, we found that BMP2 may play a role in promot-
ing the transformation of cancer-associated myofibroblasts into
theMMP11+ mCAFs subpopulation. This suggests that targeting
BMP2 could potentially reprogram the MMP11+ mCAFs popula-
tion.
In our experimental models, we employed the BMP2 inhibitor

Dorsomorphin in mice with bladder tumors and observed a sig-
nificant inhibition of tumor progression. Targeting BMP sig-
naling has also been shown to suppress tumor metastasis in
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pancreatic cancer.[66] Additionally, another study demonstrated
that BMP2 promotes melanoma growth, and its inhibition sen-
sitizes tumors to therapeutic treatments.[67] A similar effect has
been reported in ovarian cancer, where BMP2 inhibition not
only suppresses tumor growth but also reverses chemotherapy
resistance.[68] These findings suggest that targeting BMP2 could
offer a promising therapeutic approach across various cancer
types, including those with poor prognostic features, such as
tumors enriched in MMP11+ mCAFs. Notably, we have identi-
fied similar MMP11+ mCAFs populations in other cancer types
(Figure 7), which are also associated with poor prognosis. This
underscores the clinical relevance of exploring targeted thera-
pies aimed at these cells. Further investigation into combining
BMP2 inhibition with other therapeutic strategies, such as im-
munotherapy, may provide a more comprehensive approach to
improving cancer treatment outcomes.
An intriguing finding in our study is the observation that, dur-

ing tumor progression, the MMP11+ mCAFs subpopulation ex-
hibits an inverse trend compared to the IGLC1+ CAFs subpopu-
lation, which is associated with a better prognosis. This inverse
relationship between the two fibroblast populations is consis-
tently observed across multiple datasets (Figure S2F, Support-
ing information). Furthermore, RNA velocity analysis reveals a
dynamic transition between MMP11+ mCAFs and other fibrob-
last subpopulations, including IGLC1+ CAFs (Figure 5A). No-
tably, in the later stages of tumor progression, the poor-prognosis
MMP11+ mCAFs predominate, whereas IGLC1+ CAFs are more
prevalent in the early stages. These findings suggest that the
transition between these two fibroblast states may play a piv-
otal role in tumor progression and prognosis. Investigating the
molecular mechanisms underlying this cellular state transition
could provide valuable insights into the evolving TME. More-
over, strategies aimed at reversing the transition from the poor-
prognosis MMP11+ mCAFs state to the more favorable IGLC1+

CAFs state could offer a novel and potentially more effective
therapeutic approach. Targeting these specific fibroblast popula-
tions andmodulating their differentiation or functional statemay
improve patient outcomes and enhance the efficacy of cancer
treatments.
Despite the valuable insights provided by our study, several

limitations should be acknowledged. While Dorsomorphin treat-
ment reduced MMP11+ mCAFs and suppressed tumor angio-
genesis, its antitumor effects may also involve other mecha-
nisms, such as reducing HSF1 activity or inhibiting ABCG2
function, as previously reported.[69,70] Thus, attributing its effects
solely to BMP2 inhibition in MMP11+ mCAFs remains challeng-
ing, and potential off-target effects warrant further investigation.
Beyond pharmacological concerns, somemechanistic insights—
particularly the direct and indirect roles of MMP11+ mCAFs in
angiogenesis—were primarily based on bioinformatics analyses
and in vitro simulations. Although tube formation and condi-
tioned medium experiments support their pro-angiogenic func-
tion, further validation using co-culture systems or in vivo mod-
els is needed. Future studies should consider genetic pertur-
bation strategies, such as CRISPR/Cas9-mediated knockout or
RNA interference, combined with lineage tracing, to more pre-
cisely delineate the role of BMP2 signaling in MMP11+ mCAF-
mediated tumor progression. Additionally, identifying more se-
lective BMP2 inhibitors or optimizing Dorsomorphin dosing

may help reduce off-target effects and improve therapeutic po-
tential.

4. Conclusion

This study identified a new subgroup of CAFs characterized as
MMP11+ mCAFs, which increases progressively with the ad-
vancement of bladder cancer and is associated with poor progno-
sis. The findings elucidate the mechanisms through which this
CAF population promotes tumor angiogenesis by regulating tip
endothelial cell migration through both direct and indirect path-
ways. Furthermore, the study revealed the widespread presence
ofMMP11+ mCAFs acrossmultiple cancer types, offering a novel
potential therapeutic target for cancer treatment.

5. Experimental Section
Patients and Samples: In this study, the in-house single-cell dataset

was integrated with two publicly available datasets.[23,24] The inclusion cri-
teria were patients’ individuals diagnosed with bladder cancer, aged 25–
85 years, with pathological stages ranging from T0 to T4, and no prior
exposure to chemotherapy or radiotherapy. The combined dataset com-
prised 22 tumor samples and 7 adjacent normal tissue samples, span-
ning pathological stages T0 to T3. Clinical metadata for the public datasets
were obtained from the original publications, while comprehensive clini-
cal details for the in-house dataset are provided in Table S2 (Supporting
Information). The internal bladder samples were obtained from patients
undergoing transurethral resection of bladder tumors at Shenzhen Luohu
District People’s Hospital. The experimental procedures were approved by
the Institutional Review Board (IRB) of Shenzhen Luohu District People’s
Hospital (IRB approval number: 2023-GDSKJ-07). Fresh tumor and adja-
cent normal mucosal samples were collected, rapidly rinsed with saline,
and then preserved in GEXSCOPETM Tissue Preservation Solution (Sin-
gleron, Cologne, Germany). Subsequently, the samples were cut into <2
mm pieces, digested with tissue dissociation solution at 37 °C for 15 min
and filtered through a sterile 40 μm mesh. All cells were collected by cen-
trifugation at 250 g for 5 min at 4 °C and washed with PBS buffer. Red
blood cells were lysed by incubating with 2 mL GEXSCOPETM red blood
cell lysis buffer (Singleron, Cologne, Germany) at 4 °C for 10min. The cells
were then washed with 10 mL PBS buffer, centrifuged again at 250 g for 10
min, and resuspended in PBS buffer for further analysis.

Publicly available single-cell datasets used in this study can be accessed
from the following sources: BioProject PRJNA662018 in the SRA database,
GEO datasets GSE135337, GSE161529 (BRCA), GSE188711 (CRC), and
GSE163558 (GC). The LUAD single-cell dataset is available at https://doi.
org/10.24433/CO.0121060.v1. The Affymetrix microarray datasets used in
this study include GSE31684, GSE48075, and GSE13507. Furthermore,
TCGA datasets for BLCA, BRCA, STAD, COAD, and LUAD were obtained
from UCSC Xena (http://xena.ucsc.edu/).

Single-Cell RNA Sequencing and Raw Data Processing: Single-cell sus-
pensions were captured using the GEXSCOPER microfluidic chip accord-
ing to the Singleron GEXSCOPER protocol. Libraries were constructed
using the GEXSCOPER Single-Cell RNA Library Kit (Singleron Biotech-
nologies, Nanjing, China) and sequenced on the Illumina HiSeq X plat-
form (Illumina, USA) with 150 base pair paired-end reads. The raw data
was processed using the Celescope pipeline (v1.7.2, https://github.com/
singleron-RD/CeleScope) developed by Singleron. Quality control and
data filtering were performed using FASTQC (version 0.11.7) and Cutadapt
(version 1.17). Sequence reads were aligned to the GRCh38 reference
genome using STAR (version 2.6.1b). Gene expression matrices for down-
stream analyses were generated using FeatureCounts (version 1.6.2).

Dimensionality Reduction, Clustering, and Cell Group Annotation: To an-
alyze the single-cell transcriptomic data, Seurat (v4.3.0) was employed for
processing both the own dataset and two publicly available datasets. Cells
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expressing fewer than 200 genes or with mitochondrial UMI percentages
exceeding 10% were excluded from downstream analyses. All single-cell
datasets were subsequently integrated, and the UMI count matrix was
subjected to standardization and normalization following Seurat’s estab-
lished pipeline. Principal component analysis (PCA) was performed using
the RunPCA function in Seurat, and batch effects among samples were
addressed using Harmony (v0.1.1).

Clustering was conducted using the FindClusters function in Seurat
across multiple resolutions, followed by dimensionality reduction with
UMAP using the top 15 principal components through the RunUMAP
function. DEGs between clusters were identified using the FindAllMarkers
function with the parameters min.pct = 0.25 and logfc.threshold = 0.75.
DEG significance was assessed using the non-parametric Wilcoxon rank-
sum test, with p-values adjusted via Bonferroni correction. An adjusted
p-value < 0.05 was considered statistically significant. Cluster annotation
was performedmanually based on canonical cell-typemarkers and cluster-
specific marker genes.

For each major cell type, further normalization, dimensionality reduc-
tion, batch effect correction withHarmony, and clustering were performed.
Subclusters co-expressing marker genes of two or more major cell types
were manually identified and excluded as doublets. The remaining cells
were re-analyzed using the aforementioned pipeline to define major cell
types and subclusters.

Functional Enrichment Analysis: To assess functional enrichment, gene
set scores were assigned to each cell type using the AddModuleScore func-
tion in the Seurat package. DEGs between two cell populations were identi-
fied using the FindMarkers function. GO, Kyoto Encyclopedia of Genes and
Genomes (KEGG), and GSEA were performed using the ClusterProfiler
package (v3.18.1).[71] To evaluate differences in pathway activity among
cell types, GSVA was conducted using the GSVA package (v1.30.0) with
default parameters.[72]

Single-Cell Trajectory Analysis: To investigate the differentiation trajec-
tory of fibroblasts, RNA velocity analysis, slingshot, and Monocle3 were
applied. RNA velocity estimation was performed using the scVelo pack-
age (v0.2.5, https://github.com/theislab/scvelo),[73,74] implemented in
Python v3.7.12 within the Conda environment (v23.7.4). Spliced and un-
spliced mRNA count matrices were first derived from BAM files and con-
verted into loom format. Loom files generated by Velocyto were subse-
quently imported, and cell barcodes were standardized for consistency.
The datasets were integrated using scVelo to quantify the proportions of
spliced, unspliced, and ambiguous RNA across cell types. RNA velocity
was calculated in stochastic mode, and velocity vectors were projected
onto UMAP embeddings to visualize dynamic transitions. Downstream
analyses involved the identification of genes driving RNA velocity, pseu-
dotime inference, and trajectory reconstruction using PAGA. The results
were represented as velocity streamlines and lineage graphs, providing
insights into cellular transitions and connectivity. Furthermore, spatial dy-
namics were explored using Monocle to project the velocity vectors and
highlight transitions across pseudotime.

Slingshot (v2.7.0) was applied to infer differentiation trajectories. The
Seurat object was converted into a SingleCellExperiment object, and
UMAP was used for dimensionality reduction and clustering based on cell
type annotations. The inferred trajectory, approximated using 150 points,
was visualized by overlaying pseudotime values and trajectory paths on
UMAP embeddings.

For Monocle3 (v1.3.1), a CellDataSet object was constructed from the
gene expressionmatrix and cell metadata extracted from the Seurat object,
incorporating both cell and gene annotation information. Data normaliza-
tion and selection of highly variable genes were performed, followed by di-
mensionality reduction and clustering. Trajectories were reconstructed us-
ing the learn_graph function, and pseudotime ordering was applied based
on the trajectory graph. DEGs along the pseudotime trajectory were iden-
tified using the graph_test function, with a q-value threshold of < 0.05.
Co-expressed gene modules related to differentiation were identified us-
ing the find_gene_modules function, and their expression patterns were
visualized via heatmaps across different cell populations.

CytoTRACE Analysis for Fibroblast Differentiation Assessment: To assess
the differentiation status of fibroblasts, CytoTRACE analysis (v0.3.3) was

employed. First, the gene expression matrix was extracted from the single-
cell RNA sequencing dataset and filtered out genes with low expression,
retaining only those expressed in at least five cells. The filtered expression
matrix was then used as input for the CytoTRACE function, which esti-
mates the differentiation potential of individual cells. CytoTRACE scores
range from 0 to 1, with higher scores indicating stronger stemness, and
lower scores reflecting a higher degree of differentiation.

Estimation of CNVs in Cancer Cells: Chromosomal copy number vari-
ations (CNVs) were analyzed using the inferCNV framework,[75] imple-
mented with infercnvpy (v0.4.5, https://github.com/icbi-lab/infercnvpy).
In brief, CNV profiles were inferred by mapping gene-level expression data
to their corresponding chromosomal locations. After filtering out genes
lacking chromosomal information, CNVs were inferred using cells from
normal tissue as the reference. Clustering of cells was performed based
on their CNV profiles, followed by UMAP visualization to explore CNV
patterns. Tumor cells were identified based on a CNV score threshold of
>0.005. Chromosomal CNV heatmaps and UMAP plots colored by CNV
status were generated for visualization.

Simultaneous Gene Regulatory Network Analysis: Single-cell transcrip-
tion factor (TF) activity was analyzed using the pySCENIC package
(v0.12.1, https://github.com/aertslab/pySCENIC) in a Python environ-
ment (Python v3.7.12, conda v23.9.0).[76] TF annotations and motif
databases were obtained from recommended sources. The expressionma-
trix was converted into a loom file, ensuring compatibility with pySCENIC’s
downstream analyses. Gene regulatory networks (GRNs) were inferred us-
ing the GRNBoost2 algorithmwith default parameters applied to the loom
file. Subsequently, the inferred networks were contextualized using the ctx
function, which integrates motif enrichment analysis and module annota-
tion. This step was performed in a distributedmanner with Daskmultipro-
cessing, utilizing TF motif data and gene-to-motif ranking files, resulting
in a regulon activity file. Finally, cell-specific TF activity scores were quan-
tified using the AUCell method, and the results were exported as a loom
file.

Cell Communication Analysis: The analysis of cell communication was
performed using the CellChat (v1.6.1, https://github.com/sqjin/CellChat),
NicheNet (v2.0.2, https://github.com/saeyslab/nichenetr) R packages
and CellphoneDB (v3.1.0, https://github.com/Teichlab/cellphonedb)
Python package on python 3.7.12 platform with their default
parameters.[77–79] Input data for CellChat were extracted from Seurat
objects, and communication probabilities between different cell groups
were calculated using the computeCommunProb function in CellChat.
The inferred cell-cell communication networks were visualized using the
netAnalysis_dot function to present the output communication patterns
of specific cell groups and either netVisual_bubble or netVisual_aggregate
to display specific signaling pathways. The plotGeneExpression function
was used to visualize the expression of signaling-related genes.

The NicheNet package was employed to analyze ligand activity, recep-
tor interaction, and potential target genes between sender and receiver
cell groups. For receiver cells, the nichenet_seuratobj_aggregate function
was used to compute ligand-receptor activity and identify potential tar-
get genes with the following thresholds: expression_pct = 0.10, lfc_cutoff
= 0.25, and cutoff_visualization = 0.33. Alternatively, the highly dynamic
gene set identified from MMP11+ mCAFs in RNA velocity analysis was
used as the target, and ligand activities were predicted using the pre-
dict_ligand_activities function. After calculating the differential expres-
sion and activity of ligands among sender cells, the connections between
ligands-receptors and ligands-targets were prioritized. The top-ranked lig-
ands in the sender cell groups were selected, and only those target genes
with scores exceeding 0.25 were retained. Additionally, cell-cell commu-
nication strength between the Ep3 epithelial cell cluster and the fibroblast
cluster was inferred using the default parameters of CellphoneDB, and the
results were visualized in a heatmap.

Deconvolution Analysis: Deconvolution analysis was performed to
estimate the composition of different cell types using the digital cytome-
try tool CIBERSORTx (https://cibersortx.stanford.edu/).[80] CIBERSORTx
leverages gene expression data alongside known associations between
genes and specific cell types to infer the relative abundance of various
cell populations within heterogeneous samples. For this analysis, the
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expression matrix of fibroblasts extracted from single-cell datasets was
used as the “signature matrix,” while the TCGA-BLCA dataset and three
GEO datasets were employed as reference matrices. Immune infiltration
in TCGA-BLCA samples was assessed using the CIBERSORTx LM22 sig-
nature matrix, which includes 22 validated leukocyte gene signatures.[81]

Quantile normalization was disabled in accordance with the recommen-
dations provided by the CIBERSORTx web interface, and the number of
permutations was set to 500.

Cluster Analysis and Signature Scoring in TCGA-BLCA Dataset: Based
on the MMP11+mCAF-related signature, consensus clustering analysis
was performed on the TCGA-BLCA dataset using ConsensusClusterPlus
(v1.64.0).[82] Consensus clustering was carried out using a hierarchical
clustering algorithm with 100 iterations and a resampling rate of 80%.
Tumor stromal score, immune score, tumor purity, and the ESTIMATE
score were calculated using the ESTIMATE algorithm (v1.0.13). Addition-
ally, the C3 signature score in TCGA-BLCA samples was assessed using
GSVA (v1.30.0) based on the MMP11+mCAF-related signature.

Immunohistochemical/Immunofluorescence Staining: For IHC staining,
formalin-fixed and paraffin-embedded tissue samples were sectioned at a
thickness of 5 μm. Following deparaffinization and rehydration, antigen
retrieval was performed by heating the sections in 10 mm sodium citrate
buffer (pH 6) at 100 °C for 10 min. Endogenous peroxidase activity was
blocked using 0.3% hydrogen peroxide for 10 min. The sections were then
incubated overnight at 4 °C with the primary antibodies. The following
day, sections were treated with horseradish peroxidase-conjugated sec-
ondary antibodies at room temperature for 30 min, and signal detection
was achieved using 3,3′-diaminobenzidine (DAB) as a chromogen. The
sections were counterstained with hematoxylin, dehydrated, and imaged.
The positively stained area and the number of microvessels at 20× mag-
nification was quantified using ImageJ software (v1.53e, U.S. National In-
stitutes of Health). Color deconvolution was applied to separate the DAB
signal from the background. The “Analyze→Measure” function was used
for quantification. For each sample, 3–5 randomly selected fields were an-
alyzed, and the average value was used for statistical comparison.

For IF staining, antigen retrieval was performed as described above,
followed by blocking with PBS containing 1% normal goat serum at room
temperature for 1 h. Primary antibodies were applied to the sections and
incubated overnight at 4 °C. After washing with PBS, Alexa Fluor 488-
or Alexa Fluor 594-conjugated secondary antibodies were added and in-
cubated at room temperature for 1 h. Nuclei were counterstained with
DAPI (Servicebio, China; GDP1024), and the sections were mounted us-
ing an anti-fade mounting medium (Servicebio, China). Fluorescent im-
ages were captured using a Nikon Eclipse Ti-SR fluorescence micro-
scope (Nikon, Japan), and images were processed using CaseViewer soft-
ware. The antibodies utilized in this study include anti-COL1A1 (Service-
bio, China; GB115707), anti-MMP11 (Affinity, Jiangsu, China; AF0211),
anti-CD34 (Servicebio, China; GB15013), anti-CD31 (Servicebio, China;
GB11063), anti-SPP1 (Servicebio, China; GB11500), and anti-F4/80 (Ser-
vicebio, China; GB113373).

Transwell Migration Assay: To evaluate cell migration, 500 μL of com-
plete 10% fetal bovine serum (FBS) DMEM medium containing different
treatments was added to the lower chamber of an 8 μm pore size Tran-
swell insert (Corning Transwell, 24-well plate). The treatments included 10
ng mL−1 WNT5A (Yeasen, Shanghai, China; 92282ES10), 10 μm Box5-TFA
(MedChemExpress, New Jersey, USA; HY-123071A), a combination of the
two agents, and PBS as a control. In the upper chamber, 100 μL of serum-
free DMEM containing 50 000 HUVEC cells was seeded. The cells were
incubated at 37 °C for 6 h. After incubation, the Transwell inserts were re-
moved, and the medium was carefully aspirated. Non-migrated cells on
the upper surface of the membrane were gently wiped off using a cotton
swab. The inserts were then fixed with 4% paraformaldehyde for 20–30
min. After fixation, the inserts were rinsed with PBS. Migrated cells on
the lower side of the membrane were stained with 0.1% crystal violet for
5–10 min, followed by three PBS washes to remove unbound dye. After
air-drying, the stained cells were observed and imaged using a light mi-
croscope Axio observer3 (Carl Zeiss, AG, Oberkochen, Germany) at 10×
magnification, selecting 3–5 random fields per sample. Cell quantification
was subsequently performed using ImageJ software (v1.53e, U.S. National

Institutes of Health). For statistical analysis, each experimental group in-
cluded three independent replicates, with at least three fields analyzed per
replicate. The significance of differences between groups was determined
using a Student’s t-test.

Angiogenesis Assay: A mixture of Matrigel (Corning, NY, USA; 354230)
and serum - free DMEM (Gibco; 31885) was prepared at a 1:1 ratio. A
total of 50 μL of this mixture was added to each well of a 96-well cell cul-
ture plate and allowed to solidify at 37 °C for 3 h. HUVEC cells at passage
five were seeded into the wells in a volume of 100 μL of medium, contain-
ing 50 000 cells per well. The cells were treated with different agents: 10
ng mL−1 WNT5A (Yeasen, Shanghai, China; 92282ES10), 10 μm Box5-TFA
(MedChemExpress, New Jersey, USA; HY-123071A) and a combination of
the two agents. Tube formation was monitored hourly under a light micro-
scope Axio observer (Carl Zeiss, AG, Oberkochen, Germany), and repre-
sentative images were captured. Tube formation metrics were quantified
with ImageJ software (v1.53e, U.S. National Institutes of Health) using the
Angiogenesis Analyzer plug-in (http://image.bio.methods.free.fr/ImageJ/
?Angiogenesis-Analyzer-for-ImageJ). Statistical analysis was performed
with three independent biological replicates per experimental group, each
including at least three fields of analysis. Differences between groups were
assessed using a Student’s t-test.

Supernatant Transfer Experiments: Fibroblasts (HBdSF) were cultured
until passage 3 (P3). The cells were then treated with a medium con-
sisting of PBS, 5 ng mL−1 BMP2 (MedChemExpress, New Jersey, USA;
HY-P7006B), 10 ug mL−1 dorsomorphin (MedChemExpress, New Jersey,
USA; HY-13418A) or LDN193189 (MedChemExpress, New Jersey, USA;
HY-12071)and a combination of BMP2 and the inhibitor in DMEM for 24
h. Then, the supernatant was collected and mixed with DMEM supple-
mented with 10% FBS in a 1:1 ratio. For the migration assay, the super-
natant mixture was added to the lower chamber of a Transwell system, and
the remaining procedures were carried out according to standard Tran-
swell migration protocols. Alternatively, for the angiogenesis assay, the
supernatant was mixed with DMEM at a 1:1 ratio and used to resuspend
HUVECs for subsequent experimentation. The cell quantification and tube
formation metrics were calculated using the same methods as those em-
ployed in the Transwell migration and angiogenesis assays.

AnimalModel Experiment: All mice used in this study weremaintained
under specific pathogen-free (SPF) conditions, and all experimental pro-
tocols were approved by the Institutional Ethics Committee of Shenzhen
Luohu District People’s Hospital. For tumor establishment, 20 μL of PBS
containing 1 × 106 MB49 tumor cells was injected into the bladder of 6–
8-week-old C57BL/6 mice. One week after tumor cell injection, the tumor-
bearing mice were randomly divided into four groups (n = 6 per group)
and received intraperitoneal injections every two days with PBS, 2 μg kg−1

BMP2 (MedChemExpress, New Jersey, USA; HY-P7006B), 5 mg kg−1 Dor-
somorphin (MedChemExpress, New Jersey, USA; HY-13418A), or a combi-
nation of the two agents. Tumor growthwasmonitored and recorded using
a multimodal in vivo imaging system (AniView100, BioLight, Guangzhou,
China) throughout the experiment. After 27 days of treatment, tumors
were harvested andweighed. Portions of the tumor tissues were processed
for paraffin embedding, sectioning, IHC staining, and flow cytometry anal-
ysis.

Quantitative Real-Time PCR (qRT-PCR) Analysis: HUVEC cells were
treated with PBS, WNT5A (10 ng mL−1), WNT5A + Box5-TFA (10 μm), or
Box5-TFA (10 μm) for 12 h. HBdSF fibroblast cells were treated with PBS,
BMP2 (5 ng mL−1), LDN193189 (10 ug mL−1, MedChemExpress, New
Jersey, USA; HY-12071), or BMP2 + LDN193189 for 12 h. Total RNA was
extracted using TRIzol reagent (Invitrogen, 15596026CN) according to the
manufacturer’s instructions. The RNA concentration and purity were as-
sessed using a NanoDrop spectrophotometer (Thermo Fisher Scientific,
USA). Reverse transcription was performed using the HiScript III All-in-
One RT SuperMix Perfect for qPCR (Vazyme, China; R333-01) following the
manufacturer’s protocol. qRT-PCR was conducted using the ChamQSYBR
qPCR Master Mix (Vazyme, China; Q311) on a QuantStudio Dx Real-Time
PCR System (Applied Biosystems, USA). The reaction conditions were as
follows: 95 °C for 30 s, followed by 40 cycles of 95 °C for 10 s and 60 °C for
30 s. Gene-specific primers used for qRT-PCR are listed in Table S4 (Sup-
porting Information). The 𝛽-actin (ACTB) gene was used as an internal
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control for normalization. Relative gene expression levels were calculated
using the 2-ΔΔCt method. Each experiment was performed in triplicate, and
data were presented as mean ± standard deviation (SD).

Flow Cytometry: Tumor samples were minced and digested in DMEM
(Gibco) containing collagenase I (1 mg mL−1, Sigma), collagenase IV (1
mg mL−1, Sigma), DNase I (5 mg mL−1, Roche), and 2% FBS (Gibco)
at 37 °C for 1 h. The resulting cell suspension was filtered through a 40
μm cell strainer and treated with red blood cell lysis buffer (Gibco) for
3 min. Cells were then resuspended in FACS buffer and incubated with
fluorochrome-conjugated antibodies FITC Plus Anti-Mouse CD31 (Pro-
teintech, FITC-65058) at 4 °C in the dark for 40 min. After two washes with
cold PBS, the samples were analyzed using a BD FACS Canto II flow cy-
tometer (BD Bioscience). Data were processed and analyzed using FlowJo
software (FlowJo, LLC, Ashland, Oregon).

Statistical Analysis: All statistical analyses and visualizations were per-
formed using R (v4.0.3 and v4.3.3), Python (v3.7.0), and GraphPad Prism
8. Survival data were analyzed using the Kaplan-Meier method and the
log-rank test. Optimal cut-off values were determined to stratify cell pro-
portions or gene set expression levels for survival analysis. Spearman’s
correlation coefficient was used to evaluate linear relationships. p-values
indicated in the figures denote statistical significance, with p < 0.05 con-
sidered statistically significant.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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