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Abstract: The Transitivity function, defined in terms of the reciprocal of the apparent activation
energy, measures the propensity for a reaction to proceed and can provide a tool for implementing
phenomenological kinetic models. Applications to systems which deviate from the Arrhenius law at
low temperature encouraged the development of a user-friendly graphical interface for estimating the
kinetic and thermodynamic parameters of physical and chemical processes. Here, we document the
Transitivity code, written in Python, a free open-source code compatible with Windows, Linux and
macOS platforms. Procedures are made available to evaluate the phenomenology of the temperature
dependence of rate constants for processes from the Arrhenius and Transitivity plots. Reaction rate
constants can be calculated by the traditional Transition-State Theory using a set of one-dimensional
tunneling corrections (Bell (1935), Bell (1958), Skodje and Truhlar and, in particular, the deformed
(d-TST) approach). To account for the solvent effect on reaction rate constant, implementation is
given of the Kramers and of Collins–Kimball formulations. An input file generator is provided
to run various molecular dynamics approaches in CPMD code. Examples are worked out and
made available for testing. The novelty of this code is its general scope and particular exploit of
d-formulations to cope with non-Arrhenius behavior at low temperatures, a topic which is the focus
of recent intense investigations. We expect that this code serves as a quick and practical tool for data
documentation from electronic structure calculations: It presents a very intuitive graphical interface
which we believe to provide an excellent working tool for researchers and as courseware to teach
statistical thermodynamics, thermochemistry, kinetics, and related areas.

Keywords: d-TST; activation energy; Transitivity plot; solution kinetic

1. Introduction

Recent applications of chemical kinetics to a variety of complex systems involves the accurate
dealing of properties to be described by techniques, which treat a series of processes beyond elementary
chemical quantum dynamics or even approximate classical and semiclassical approaches. We analyze
in a companion paper [1] the state of our approaches to these problems from a general viewpoint.
Here, we deal with explicit computational calculations that allow moving directly in a simple way to
global applications.
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Recourse needs to be made at one stage or another to statistical treatments [1–3] among which there
is modern insurgence with respect to more traditional ones—exemplary is, in particular, this topical
collection essentially dedicated to “Fuzzy Logic” [4,5].

Information on the kinetic and related parameters in chemical transformations and transport
phenomena and their role in complex mechanisms is needed: Particularly the temperature dependence
of rate processes, k(T) and often in the low temperature range, where deviations from linearity
of Arrhenius plots are revealed. The phenomenology of curvatures in Arrhenius plot span all of
chemistry: From the long list that is continuously updated, we refer here to some selected cases,
such as combustion chemistry [6], condensed-phase [7], atmospheric and astrochemical reactions [8,9],
processes involved in the preservation and aging of food and drugs [10,11], as well as in basic
geochemical [12] and biochemical environments [13,14]. The current status of the phenomenology
is classified emphasizing case studies, specifically (i) super-Arrhenius kinetics, convex curvature
in the Arrhenius plot, where transport phenomena brakes the processes as temperature decreases;
(ii) sub-Arrhenius kinetics, concave curvature in the Arrhenius plot, where quantum mechanical
tunneling propitiates low temperature reactivity; (iii) anti-Arrhenius kinetics, negative apparent
activation energy, where processes are limited by stereodynamic requirements.

The curvature in the Arrhenius plot promotes a temperature dependence on the apparent activation
energy Ea, the definition of which has been recommended by the International Union for Pure and
Applied Chemistry (IUPAC) [13,15] as follows,

Ea = −kB
d ln k(T)

d
(

1
T

) = −
d ln k(β)

d β
. (1)

In Equation (1), kB is the Boltzmann constant, T is the absolute temperature and β = 1/kBT.
The so-called Tolman’s Theorem [16] proposed an interpretation for Ea as the difference between the
average over the energy of all reacting systems and energy of all (reactive and nonreactive) systems—
propitiating a connection between canonical quantities with microcanonical features of the potential
energy surface. Independently, the same spirit lead to transition-state formulations [15–18]. Recently,
it was found expedient to introduce the reciprocal of the apparent activation energy in order to define
the Transitivity function [2,3], Equation (2),

γ(β) ≡
1

Ea(β)
(2)

to construct an appropriate scaling plane, γ(β) vs. β, where the regular curvatures on the Arrhenius
plane are approximately linearized: The Transitivity plot. The function γ(β) can be interpreted as a
measure of the propensity for the reaction to proceed and permit uniformly to account for experimental
and theoretical rate processes, such as quantum tunneling, transport properties, and diffusion in the
neighborhoods of phase transitions.

For cases where experimental and theoretical rate processes are difficult to interpret—by
molecular complexity, extreme conditions or impossibility of exact solution to the Schrodinger’s
equation—phenomenological and semiclassical theoretical approaches are of increasing utility.
Over the years, the paramount useful phenomenological tool for studying the kinetics of
physicochemical processes has been the Arrhenius law. It fails when the temperature range of
the rate process becomes large: Empirical laws have been proposed, involving empirical parameters
often lacking of physical interpretation, e.g., Kooij [19], power law [20], Vogel–Fulcher–Tamman
(VFT) [21–23], Nakamura–Takayanagi–Sato (NTS) [24], deformed (d) Aquilanti–Mundim (AM) [25]
and Aquilanti–Sanchez–Coutinho–Carvalho (ASCC) [26]. In Reference [27], it was presented how
the transitivity concept can sort and interpret all these empirical laws, permitting a microscopic
interpretation of the phenomenological parameters.
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For understanding and predicting a wide variety of kinetic processes with large molecular
complexity and presenting deviation from Arrhenius law, Transition-State Theory (TST) remains
an excellent formulation. The TST triggered the development of a variety of improved approaches:
Important variants include the variational TST [28], the Marcus theory of electron transfer [29],
and quantum [30] and path integral [31,32] versions. However, the variants of TST require additional
information of the potential energy surface rendering formidable the task of estimating kinetic
parameters as the size of molecular systems increases: Examples are the degradation kinetics of organic
pollutants in aquatic, soil, and atmospheric environments [33–38].

The late twentieth century saw the advent, beyond the Transition State formulation, of molecular
dynamics simulations, which is nowadays a powerful theoretical tool in understanding mechanisms
of physical and chemical processes. Recently, there is a vast activity evaluating whether advances
in molecular dynamics simulations can provide quantitatively rate constants [39–41]. However,
the extraction of quantitative information on rate constants from molecular dynamics simulations is an
important issue but a very difficult one to tackle [42–44].

Software tools to calculate and interpret rate constants are enormously useful in material,
biochemical, and geochemical research to permit the exploitation of intense progress in computational
hardware. Widely diverse codes have been developed to calculate rate constants in a gas-,
liquid-, and solid-phase using Transition-State Theory and its variants: Polyrate [45], TheRate [46],
MultiWell [47], TAMkin [48], Mesmer [49], RMG [50], APUAMA [51], KiSThelP [52], FRIGUS [53]
and Eyringpy [54] codes are excellent options available to work out the kinetics of chemical
reactions. Herein, we describe a new code with a user-friendly graphical interface able to perform
various procedures for computing kinetic and related parameters in chemical transformations
and transport phenomena: The code is referred to as “Transitivity” (see Figure 1), a concept
related to the function defined in Equation (2); written in Python, it is a free open-source
code compatible with Windows, Linux, and MacOS platforms. It offers the possibility of
estimating phenomenological parameters from Arrhenius and Transitivity plots using a stochastic
optimization method, Generalized Simulated Annealing (GSA) [55], with several options: Arrhenius,
Aquilanti–Mundim (AM) [25], Vogel–Fulcher–Tammann (VFT) [22], Nakamura–Takayanagi–Sato
(NTS) [24,56] and Aquilanti–Sanchez–Coutinho–Carvalho (ASCC) [26] formulas. This code also allows
the estimation of unimolecular and bimolecular reaction rate constants with traditional TST using
Bell35 [57], Bell58 [58], Skodje–Truhlar (ST) [59] and deformed (d-TST) corrections [60]. Solvent effects
can be accounted for by the Collins–Kimball [61] and Kramers [62] models. Finally, input files for
different first-principles molecular dynamics—Born–Oppenheimer Molecular Dynamics (BOMD),
Car–Parrinello Molecular Dynamics (CPMD), Metadynamics, Path-Integral Molecular Dynamics
(PIMD), and Trajectory Surface Hopping (TSH)—can be generated to run by the CPMD code [63].

We propose this code, as we expect it serves as a quick and practical tool for documentation data
from electronic structure calculations. Additionally, it presents a very intuitive graphical interface
which we believe to provide a useful working tool for the general public and researchers and also
as courseware to teach statistical thermodynamics, thermochemistry, kinetics, and related areas.
The body of this article is structured in two parts, one that deals with a brief theoretical and operational
description of the code, and a second one that shows a variety of examples. A final section is devoted
to additional and concluding remarks and an Appendix A collects used symbols and their meaning.
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2. Theoretical Background

2.1. Phenomenology of Temperature Dependence of the Reaction Rate Constant

The theoretical apparatus to connect the Transitivity function, γ(T), and phenomenological
reaction rate constant formulas and vice-versa is built and extensively discussed in Reference [27]
and references therein. Classical and recent phenomenological reaction rate constant formulas
to account for sub-, super-, and anti-Arrhenius behavior are applied in Section 4.1 by use
of: (i) Deformed (d) Aquilanti–Mundim [25], (ii) VFT (Vogel–Fulcher–Tammann) [22], (iii) NTS
(Nakamura–Takayanagi–Sato) [24,56], and (iv) ASCC (Aquilanti–Sanchez–Coutinho–Carvalho) [26].
More details of the formulas are presented in Table 1.

2.2. Calculation of Reaction Rate Constant

The Transition-State Theory, TST, is the most popular tool used to study the kinetics of chemical
reactions with a well-defined activated complex—as customary, a double dagger (‡) denotes the
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properties pertaining to the transition-state complex. For a general bimolecular reaction, such as
Reactants → TS‡ → Products, it is necessary to compute the Q1, Q2 and Q‡ partition functions
of reactants R1 and R2 and of the transition state, respectively. At absolute temperature T, the rate
constant is given by:

kTST(T) =
kBT

h
Q‡

Q1Q2
exp

(
−
ε‡

kBT

)
, (3)

where h is Planck’s constant; and ε‡ is the effective height of the energy barrier, eventually with the
addition of the zero-point energy correction in Equation (3). The tunneling correction introduced
in TST can be calculated by Skodje–Truhlar [59], Bell35 [57], and Bell58 [58] corrections and by the
deformed (d) tunneling formulation presented in the next section [60].

2.2.1. Deformed Transition-State Theory (d-TST)

The deformed Transition-State Theory (d-TST) [60] formulation:

kd(T) =
kBT

h
Q‡

Q1Q2

(
1− d

ε‡

kBT

)1/d

, d = −
1
3

(
hν‡

2ε‡

)2

, (4)

where ν‡ is frequency for crossing the barrier, uniformly covers the range from classical to moderate
tunneling regimes but needs an amendment for deep tunneling in exothermic reactions, a relatively
rare case. The proposed variant of the transition-state theory was obtained from the transitivity
concept and deformed (d) Aquilanti–Mundim law permit comparison with experiments and tests
against alternative formulations. The nomenclature in Equation (4) is the same as used in Equation (3).
A popular formulation in the literature is to use the Wigner tunneling correction: However, in our
previous study [60,64], we have shown that d-TST is a more satisfactory approximation also in view of
uniform behavior across the height of the energy barrier.

2.2.2. Bell35 and Bell58

To cover the moderate-to-deep tunneling transition in exothermic reactions, we applied both
Bell35 correction [57,65], Equation (5):

κBell35 =

[
1
}ν‡ −

1
kBT exp

(
ε‡

kBT −
ε‡

}ν‡
)]

1
}ν‡ −

1
kBT

, (5)

and Bell58 [58,65] correction truncated at the second term (2T)

κBell58−2T =

(
hν‡

2kBT

)
sin

(
hν‡

2kBT

) − exp
(
ε‡

kBT −
ε‡

}ν‡
)

( kBT
}ν‡ − 1

) , (6)

that, although non-uniform across the transition between negligible and moderate tunneling regimes,
were found to behave smoothly enough to adequately perform practically astride the whole range.

Truncating Equation (6) to the first term, we recover the usual formula used in the literature to
describe the tunneling under deep regime Equation (7):

κBell58 =

(
hν‡

2kBT

)
sin

(
hν‡

2kBT

) (7)

However, this formulation presents divergence at the crossover temperature Tc = hν‡/πkB.
The tunneling regimes can be delimited within four temperatures ranges—negligible (T > 2Tc),
small (2Tc > T > Tc), moderate (Tc > T > Tc/2), and deep (T > Tc/2) [60,66,67].
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2.2.3. Skodje and Truhlar, ST

To avoid spurious divergence at Tc in the Bell58 formulation, in 1981, Skodje and Truhlar [59]
gave a generalization extending the parabolic barrier treatment. In their approximation for tunneling
correction Equations (8a) and (8b)

κST =

(
hν‡

2kBT

)
sin

(
hν‡

2kBT

) − exp
[(

1
kBT −

1
}ν‡

)(
ε‡ − ∆H

)]
( kBT
}ν‡ − 1

) , β ≤
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, (8a)

and
κST =

1( kBT
}ν‡ − 1

){exp
[( 1

kBT
−

1
}ν‡

)(
ε‡ − ∆H

)]
− 1

}
,
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≤ β, (8b)
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Treatment of chemical reactions in liquid-phase requires accounting for the solvent effect,
considering the ability of the reagents to diffuse and to lead them to effective reactive collisions.
According to the Onsager solvent reaction field model [68–70], the solvent creates a solvation layer,
as a cage around the molecular entities that participate in the reaction. The reactive process between
molecular entities A and B is represented by the sequential equation,

Asolv + Bsolv

→

k D



←

k D

{AB}solv
k
→ Product. (9)

The “solv” symbol indicates that the molecular entity is surrounded by a roughly spherical

solvation layer, the cage, having a specific radius.
→

k D is the diffusion kinetic rate constant which

the reagent A travels in the solvent to find B; vice versa,
←

k D is the kinetic rate constant for reverse
diffusion; k denotes the reaction rate constant due to effective reactive collisions: It can be estimated
from Equations (3) or (4). Assuming the Steady-State Approximation [70] for Equation (9), the
Smoluchowski expression for the diffusion kinetic rate constant [71], takes the form Equation (10):

→

k D = 4πrABDAB, (10)

where rAB is a reaction radial distance and DAB is the sum of the diffusion constants for each reagent
in the solvent. The generalization of Collins and Kimball [61,72] for the irreversible bimolecular

diffusion-controlled reactions at infinite reaction rate,
→

k D �
←

k D [73], yields an overall reaction rate
constant, kObs Equation (11)

1
kObs

=
1

kTST
+

1
→

k D

. (11)

In the code, the diffusion is accounted for by the Stokes–Einstein formulation and the temperature
dependence of viscosity η of the solvent is estimated through the Aquilanti–Mundim formula (see details
in Section 3).

2.3.2. Kramers’ Formulation

To account for dynamical effects of the solvent in a reactive process and to generalize to
unimolecular and pseudo-unimolecular processes, Kramers’ model considers a stochastic motion of
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the system, where the solvent effect is added considering Brownian movements along the reaction
path [70].

Assuming that the friction constant, µ (see below), is independent of time, the overall reaction
rate constant kObs can be calculated as Equation (12)

kObs = κKrkTST, (12)

where κKr is the transmission factor obtained by Kramers [62] as:

κKr =
1
ω‡


√
µ2

4
+ω‡2 −

µ

2

. (13)

For the transition-state theory rate constant kTST and variants see Section 2.2. In Equation (13),ω‡ is
the imaginary frequency of the transition state and the friction constant is given by µ = (6πrAB/M)η,
where rAB and M are the radius of the cage and the molecular mass of the transition-state, respectively.
Again, the viscosity is calculated in the code through the Aquilanti–Mundim formula.

3. Handling the Transitivity Code

Several aspects regarding nomenclature and the theoretical background used in this article are
presented in already cited references and in Reference [27]. Furthermore, the code with the manual,
examples (see next section), and installation video can be freely downloaded in the www.vhcsgroup.
com/transitivity web page.

In the main window of the code, the user can choose between three options: (i) Fitting reaction
rate constant data as a function of temperature; (ii) predicting the reaction rate constant in the gas-
and liquid-phase; and (iii) creating the input for the calculation of first-principles molecular dynamics
by the CPMD code. If the option chosen is “Kinetic and Related Parameters”, the program needs the
electronic structure output files provided by the Gaussian program for the structures of the reagents,
of the transition state and of the products. If the system under study requires the calculation of the
electronic energy using a specifically high level method, the energy values must be included separately
in the box. The code provides the reaction rate constants for both unimolecular and bimolecular
reactions and the users should indicate if the molecular entity corresponds to an atom or whether
the molecule is linear or not. In a new window, the user can choose between TST or d-TST [60]
and Bell35 [57], Bell58 [58], Skodje–Truhlar (ST) [59] tunneling corrections. In addition, the program
provides a visualization of the Arrhenius plot with the possibility of including any experimental and/or
theoretical data available for validation. In the same window, reaction properties (such as internal
energy, enthalpy, Gibbs-free energy, barrier height, d parameter, imaginary frequency (ν‡), crossover
temperature (Tc), and the parameter of the Skodje–Truhlar model) are exhibited.

If the VOLUME keyword is used in the calculation input file of G09, the option including solvent
effects is available through the Kramers and Collins–Kimball formulations. It is necessary to make the
choice of solvent parameters for the estimation of the viscosity or use the default (water). The parameters
for the viscosity estimation (η/Poise) of a solvent other than water should be those fitted by the
Aquilanti–Mundim formula [25] with ηo in Poise and ε in J·mol−1 and inserted in the “Solvent Type”
option. The temperature dependence of viscosity of water using the experimental data [74] is expressed
as η(T) = 2.7024.10−4Poise(1− 213.0543/T)−2.75634. When the Kramers formulation is chosen, the
friction coefficient of the solvent (µ/s−1), the Kramers transmission coefficient, and the overall reaction
rate constant (kObs/cm3

·mol−1
·s−1 or s−1) are provided. If the Collins–Kimball formulation is selected,

the overall reaction rate constant (kObs/cm3
·mol−1.s−1), separate diffusion coefficients (cm2

·s−1) for the

reactants and the Smoluchowski diffusion rate constant (
→

k D/cm3
·mol−1

·s−1) are provided.
With the "GSA Fitting" option, the values of the rate constants and temperatures will be needed.

In the software, the fitting in the Arrhenius plot is implemented for the rate constant data using

www.vhcsgroup.com/transitivity
www.vhcsgroup.com/transitivity


Molecules 2019, 24, 3478 8 of 20

the Arrhenius, Aquilanti–Mundim, VFT, NTS, and ASCC formulas by the stochastic optimization
algorithm GSA. It is possible to insert the guess parameters d, ε‡, Ea, E0, Eν, B and T0 (see formulas
in Table 1). Furthermore, information of the fit are available in “Fit [FormulaName].dat” output
file. Internal parameters of GSA can be also controlled [55]. The fitting in the Transitivity plot is
implemented of the reaction rate constant data using only Arrhenius, Aquilanti–Mundim, and VFT.
The Transitivity plot is calculated using numerical differentiation with the option “Preview” and
if necessary the smoothing of the data can be applied with the option “Apply SG” enabling the
Savitzky–Golay filter [75]. In addition, the program provides a visualization of the Arrhenius and
Transitivity plots with the fitting model chosen step-by-step.

The present code also offers the possibility of creating input to first-principles molecular dynamics
simulation by the CPMD computational code. After selecting the input file of the system to be studied,
which contains the molecular geometry of the system in a specific extension (*.xyz, *.gjf, *.out and
*.log), the user should choose the molecular dynamics method. In addition, the user has the option to
choose the Density Functional Theory (DFT) functional, pseudopotential, the temperature, the charge,
the simulation time, and the integration time step. The size of the simulation box can be changed in
the “Lattices” section. Additionally, the Transitivity code generates another output file with a *.gjf
extension, where the user can check if the geometry of the system to be simulated is correct.

4. Examples

4.1. Fitting Mode—Arrhenius and Transitivity Plots

To illustrate the use of most of functionalities and to validate the accuracy of the running of the
Transitivity code, a fitting of the reaction rate constants in the Arrhenius plot is performed as a function
of temperature for four different systems in different regimes: sub-Arrhenius, corresponding to both
deep and moderate tunneling, super-Arrhenius, and anti-Arrhenius behavior.

The first example concerns the keto–enol tautomerization of 2-(2′-hydroxy-4′-methylphenyl)
benzoxazole (MeBO), a well-known case of a deep-tunneling regime [7]: For this case we performed
a fitting using Arrhenius, Aquilanti–Mundim, Nakamura–Takayanagi–Sato and ASCC formulas.
In order to present the results for the sub-Arrhenius behavior under the moderate-tunneling regime,
we evaluated the OH + H2 → H + H2O reaction [76] using the Arrhenius and Aquilanti–Mundim
formulas. The third example is centered on the investigations that have revealed the super-Arrhenius
behavior for the rates of the processes promoted by enzymatic catalysis [77–79]. Here, we regard the
reaction rate constant of the hydride transfer between the substrate and NAD+, catalyzed by F147L,
which exhibits a strong convex curvature in the temperature range of 5 to 65 ◦C [78]: A fitting is
performed with the Arrhenius, Aquilanti–Mundim and VTF formulas. The final case is aimed at
showing a case of anti-Arrhenius behavior, which is characterized by the decrease of the reaction rate
constant with the increase in the temperature. The OH + HBr→ Br + H2O reaction is prototypical in
studies of an example, both from a theoretical and an experimental point of view: It exhibits negative
temperature dependence of the reaction rate constant [80–82]. Fitting is performed with the Arrhenius
and the Aquilanti–Mundim formulas.

The fitting parameters and statistical analysis of the quality of the fits for all the systems are given
in Table 1. The statistical measure χ2 is used in tests to compare the quality of the formula with the
reference. It is noteworthy that in a fitting process, in order to obtain parameters with a physical
meaning, it is necessary to avoid compensation effects [83] exploiting any prior knowledge of the
system, since the formulas with more than two parameters can lead to multiple solutions.

Figure 2 shows the experimental data and fitted formulas for each system in the Arrhenius plot.
Both NTS and ASCC formulas were satisfactory for fitting sub-Arrhenius behavior under deep-tunneling
regime, while Aquilanti–Mundim is satisfactory just within a specific range of temperature. Under
moderate-tunneling regime, the Aquilanti–Mundim formula was an excellent option to describe
experimental data for OH + H2 reaction. The VTF and Aquilanti–Mundim formulas seem adequate to
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fit super-Arrhenius behavior. The Aquilanti–Mundim parameters that were obtained for the OH + HBr
reaction indicate that they provide an excellent option for the anti-Arrhenius behavior. As expected,
the Arrhenius formula is clearly inadequate to account for deviations at low temperature for all the
reactions presented.
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Figure 2. Arrhenius plots comparing the experimental reaction rate constant and fitted formulas for
keto–enol tautomerization reaction (sub-Arrhenius behavior under deep tunneling), OH + H2 −→H2O
+ H reaction (sub-Arrhenius behavior under moderate tunneling), hydride transfer with enzymatic
catalysis (super-Arrhenius behavior) and OH + HBr −→ H2O + Br reaction (anti-Arrhenius behavior).
NTS and ASCC formulas were of use for sub-Arrhenius behavior under deep-tunneling regime. The
Aquilanti–Mundim formula was of use for sub-Arrhenius cases under moderate-tunneling regime, for
super-Arrhenius and for anti-Arrhenius behaviors. VFT also was of use for super-Arrhenius situations.
The references of experimental data can be found in Table 1.
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Table 1. Fitted parameters for the Arrhenius, AM, ASCC, NTS and VFT formulas, using the Transitivity code for keto–enol tautomerization [7], OH + H2 [76],
enzymatic catalysis [78] and OH + Br [84] reactions. Energy (Ea, ε‡, Eυ and E0) is in cal/mol and temperature (T0 and B) in K. Pre-factor units can be identified in
the references.

Formula

Chemical Processes

Fitted
Parameters

Keto-enol Tautomerization
[7] Sub -Arrhenius
(Deep-Tunneling)

OH + H2 → H + H2
[76] Sub-Arrhenius

(Moderate Tunneling)

Enzymatic Catalysis
[78] Super-Arrhenius

OH + HBr→ Br + H2O
[84] Anti-Arrhenius

Arrhenius
k(T) = A exp

(
−

Ea
kBT

) A 1.74 × 103 2.16·10-11 1.52 × 1011 1.66 × 10-11

Ea 214 4891 14600 −94.6

χ2 1.10 × 10-2 4.20·10-3 2.60 × 10-2 6.69 × 10-2

Aquilanti–Mundim (AM)

k(T) = A
(
1− d ε‡

kBT

) 1
d

A 3.32 × 106 1.11·10-10 1.91 × 104 7.43 × 10-14

ε‡ 318.06 9170 2391 −324.61

d −0.81 −0.086 0.207 1.24

χ2 3.68 × 10-2 6.80·10-4 2.91 × 10-2 2.78 × 10-3

Aquilanti–Sanchez–Coutinho–Carvalho
(ASCC)

k(T) = A
(
1− d ε‡

kBT+Eν

) 1
d , d = − 1

3

(
Eυ
2ε‡

)2

A 2.33 × 104 - - -

ε‡ 2441 - - -

Eυ 429 - - -

χ2 2.18 × 10-2 - - -

Sato–Nakamura–Takayanagi (NTS)

k(T) = A exp

− E0

kB(T2+T2
0)

1
2


A 3.12 × 104 - - -

E0 1655 - - -

T0 168 - - -

χ2 7.38 × 10-3 - - -

Vogel–Fulcher–Tammann (VFT)
k(T) = A exp

(
B

T−T0

)
A - - 1.25 × 105 -

B - - −1298 -

T0 - - 175 -

χ2 - - 2.16 × 10-2 -
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Curvature is easily identified through the Arrhenius plot in non-Arrhenius processes; however,
the application of the phenomenological formulas to fit this behavior can lead to multiple solutions that
make the physical interpretation of the obtained parameters difficult. In Reference [27], we show that
curvature in the Arrhenius plot can be linearized using the transitivity plot. Analogous definition to
transitivity function were proposed at 1980s to evaluate glass transition of supercooled materials [85–87].
However, the definitions failed to propose a connection with the Tolman theorem, Equation (1), being
important only as scaling tools for relaxation processes. Figure 3 shows the Transitivity plot for the
temperature dependence of relaxation time of the propylene carbonate [86], where a linear behavior
is observed for a certain temperature range as expected by the deformed Aquilanti–Mundim law.
However, at 198 K a transition to another linear regime is observed—a break not perceived in the
Arrhenius plot. With the linearization of the data in the transitivity plot, the fitting process becomes
much simpler: In the first high temperature range the Aquilanti–Mundim parameters are 1

ε‡
= 1.71 K−1

and d = 0.32; for the second lower temperature range, 1
ε‡

= 0.53K−1 and d = 0.08. The interpretation
of these results will be published in a future paper considering a large variety of examples.
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Figure 3. The Arrhenius (upper panel) and Transitivity (lower panel) planes of the temperature
dependence of relaxation time of the propylene carbonate. The diamond symbols represent the
transitivity values obtained numerically and smoothing with the Savitzky–Golay filter. Red lines
emphasize two regions where the temperature dependence of the transitivity is linearized, as expected
by the Aquilanti–Mundim law.

4.2. Reaction Rate Constants’ Mode

The estimation of the rate constants for the OH + HCl→ H2O + Cl reaction in the gas-phase
was performed to validate TST and tunneling corrections, implemented in the Transitivity code.



Molecules 2019, 24, 3478 12 of 20

Furthermore, using the suggestion of the Eyringpy code [54], the NH3 + OH→ NH2 + H2O reaction
was selected to demonstrate the accuracy of the Collins–Kimball and Kramers models to estimate
reaction rate constants in an aqueous solution.

4.2.1. The OH + HCl→ H2O + Cl Reaction

The reaction rate constants for the reaction between hydroxyl radical and hydrogen chloride are
only slightly dependent on temperature in the range 138–300 K, although, as the range increases further,
a temperature dependence is observed. This strong concave curvature detected in the Arrhenius
plot (sub-Arrhenius behavior) is very convincing evidence of the role of deep quantum tunneling for
this reaction [88]. We employed the d-TST, Bell35, Bell58, and ST tunneling corrections to calculate
the rate constants for the reaction of OH + HCl over a wide range of temperatures (200–2000 K).
The electronic structure properties of the reactants, of the products, and of the transition state were
calculated employing the MP2/aug-cc-pVDZ calculation level using Gaussian 09 [89]. A complete
study of this reaction using our methodology can be found in Reference [44].

Figure 4 obtained by the Transitivity code shows the comparison between the calculated reaction
rate constant and the experimental data [90]. No major differences were found using either the Bel58-2T
and ST tunneling corrections. Conversely, as expected, a divergence is observed of the Bell58 formula
at Tc, and d-TST does not describe the range of experimental data at low temperature, where the
deep-tunneling regime becomes dominant: This confirms that its validity is limited to weak tunneling.
Traditional TST is presented for comparative purposes and visualizes the need for corrections.
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Figure 4. Arrhenius plot obtained from the Transitivity code for the OH + HCl→ Cl + H2O reaction
using TST with Bell35, Bell58, ST tunneling correction, and d-TST. Experimental data in the literature [90]
are available for comparison and shown as full dots.

4.2.2. The NH3 + OH→ NH2 + H2O Reaction

The NH3 + OH→ NH2 + H2O reaction permits to illustrate the accuracy of the methodology in
the liquid-phase. Energies, geometries, and frequencies of stationary points were extracted at the same
level of calculation used in the Eyringpy code [54].
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The upper panels in Figure 5 show the temperature dependence of the overall reaction rate
constant, kObs, for NH3 + OH → NH2 + H2O reaction from 273 to 4000 K using Kramers and

Collins–Kimball models. The Smoluchowski diffusion rate constant
→

k D, which evaluates the
diffusion limit for a bimolecular reactive process including the solvent effect, is shown in the
lower right panel. The Kramers transmission correction, which evaluates the interference of the
friction effect of the solvent in the reactive process as a function of temperature, is shown in the
lower left panel. At 298.15 K, Kramers’ formulation gives for the reaction rate constant the value
6.73 × 1011 cm3 mol−1 s−1, while the Collins-Kimball formulation yields 6.77 × 1011 cm3 mol−1 s−1,

(the experimental value indicates ~1011 cm3 mol−1 s−1) [91–93]. The value of
→

k D from Smoluchowski
(Collins–Kimball) is 3.73 × 1012 cm3 mol−1 s−1, in accordance with that calculated in Reference [54],
→

k D = 3.60 × 1012 cm3 mol−1 s−1.
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4.3. CPMD Input Files Generator

Coordinates of specific molecules can be selected to test the function of creating a first-principles
molecular dynamics input to run by the CPMD code (Figure 6). When selecting this option, the user
must choose between the CPMD, PIMD, TSH, MTD and BOMD approaches and must provide the
molecular geometry of the system in *.xyz format. Additional information (DFT functional, simulation
temperature, system charge, the maximum number of steps, integration time step, and the size of
the box) can be inserted through the indicated boxes. Furthermore, it is possible to generate several
aleatory configurations by selecting specific initial conditions for the geometric parameters (For more
information, see the input files in the Example directory on the www.vhcsgroup.com/transitivity
web page).
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Figure 6. An exemplary view of the input generation function of the transitivity program. Details of
input files can be found in the www.vhcsgroup.com/transitivity web page.

5. Final Remarks

The Transitivity code presented in this article tends to systematize the tools developed over the
last ten years [25] to handle the kinetics of processes beyond Arrhenius, providing options for: (i) The
phenomenological fitting and estimation of reaction rate constants in gas- and liquid-phases and (ii)
the preparation of first-principles molecular dynamics in order to evaluate the parameters relative to a
variety of reactive processes. In addition, the code provides an easy user-friendly interface and may be
relevant for didactic purposes.

A characterizing feature of the code is the consistent use of the d-formulation, which recently
culminated in a series of successful applications from phenomenological to first-principles descriptions
of pure and applied chemical kinetics and material science. Examples are available:

• From the phenomenology of elementary processes (such as the H2 + F [94], OH + HBr [80],
F + HD [65] and C + CH+ [95] reactions) to complex processes (such as food systems [96],
plant respiration [25], plasma chemistry [97], and solid-state diffusive reaction [98]);

• Calculation of the kinetic rate constants for chemical reactions from the potential energy surface
features profile, such as the CH4 + OH [60], CH3OH + H [99], OH + HCl [44], OH + HI [43],
to proton rearrangement of enol forms of curcumin [100], OH + H2 [101], and chiral nucleophilic
substitution reaction [102].

Regarding the evolution and consistency of the code, efforts are being made to introduce d
predictive formulations to transport properties, as well as post-processing of trajectories obtained
by first-principles molecular dynamics simulations. Furthermore, the Eckart tunneling correction
and the variational Transition-State Theory represent focuses for the future implementation of the
Transitivity code.

www.vhcsgroup.com/transitivity
www.vhcsgroup.com/transitivity
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Appendix A

Table A1. List of Symbols and Nomenclatures.

Symbols Nomenclature

k Rate constant
T Temperature
kB Boltzmann constant
β Lagrange multiplier
γ Transitivity function
d Deformed parameter
h Planck’s constant
Q Partition functions

AM Aquilanti-Mundim
dH Enthalpy of reaction

ASCC Aquilanti–Sanchez–Coutinho–Carvalho
NTS Nakamura–Takayanagi–Sato
TST Transition-State Theory
GSA Generalized Simulated Annealing

d-TST Deformed Transition-State Theory
ST Skodje and Truhlar tunneling correction

Bell35 Bell’s tunneling correction of 1935
Bell58 Bell’s tunneling correction of 1958
ε‡ barrier height (Eyring’s parameter)
Ea Apparent Activation Energy
E0 Energy parameter from NTS formula
Eυ Energy parameter from ASCC formula
B Temperature parameter from VFT formula
T0 Temperature parameter from NTS and VFT formulas.
Tc Crossover temperature
→

k D Diffusion rate constant
ν‡ Imaginary frequency

kObs Overall reaction rate constant
κKr Transmission factor from Kramers’ model
µ Friction constant
η Viscosity

DFT Density functional theory
BOMD Born-Oppenheimer molecular dynamics
CPMD Car-Parrinello molecular dynamics
PIMD Path-Integral molecular dynamics
MTD Metadynamics
TSH Trajectory Surface Hopping
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